Mercurial > repos > guerler > springsuite
diff planemo/lib/python3.7/site-packages/networkx/drawing/layout.py @ 1:56ad4e20f292 draft
"planemo upload commit 6eee67778febed82ddd413c3ca40b3183a3898f1"
author | guerler |
---|---|
date | Fri, 31 Jul 2020 00:32:28 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/planemo/lib/python3.7/site-packages/networkx/drawing/layout.py Fri Jul 31 00:32:28 2020 -0400 @@ -0,0 +1,1078 @@ +# Copyright (C) 2004-2019 by +# Aric Hagberg <hagberg@lanl.gov> +# Dan Schult <dschult@colgate.edu> +# Pieter Swart <swart@lanl.gov> +# Richard Penney <rwpenney@users.sourceforge.net> +# Michael Fedell <mfedell@jpl.nasa.gov> +# Valentino Constantinou <vconstan@jpl.nasa.gov> +# All rights reserved. +# BSD license. +# +# Authors: Aric Hagberg <aric.hagberg@gmail.com>, +# Dan Schult <dschult@colgate.edu> +""" +****** +Layout +****** + +Node positioning algorithms for graph drawing. + +For `random_layout()` the possible resulting shape +is a square of side [0, scale] (default: [0, 1]) +Changing `center` shifts the layout by that amount. + +For the other layout routines, the extent is +[center - scale, center + scale] (default: [-1, 1]). + +Warning: Most layout routines have only been tested in 2-dimensions. + +""" +import networkx as nx +from networkx.utils import random_state + +__all__ = ['bipartite_layout', + 'circular_layout', + 'kamada_kawai_layout', + 'random_layout', + 'rescale_layout', + 'shell_layout', + 'spring_layout', + 'spectral_layout', + 'planar_layout', + 'fruchterman_reingold_layout', + 'spiral_layout'] + + +def _process_params(G, center, dim): + # Some boilerplate code. + import numpy as np + + if not isinstance(G, nx.Graph): + empty_graph = nx.Graph() + empty_graph.add_nodes_from(G) + G = empty_graph + + if center is None: + center = np.zeros(dim) + else: + center = np.asarray(center) + + if len(center) != dim: + msg = "length of center coordinates must match dimension of layout" + raise ValueError(msg) + + return G, center + + +@random_state(3) +def random_layout(G, center=None, dim=2, seed=None): + """Position nodes uniformly at random in the unit square. + + For every node, a position is generated by choosing each of dim + coordinates uniformly at random on the interval [0.0, 1.0). + + NumPy (http://scipy.org) is required for this function. + + Parameters + ---------- + G : NetworkX graph or list of nodes + A position will be assigned to every node in G. + + center : array-like or None + Coordinate pair around which to center the layout. + + dim : int + Dimension of layout. + + seed : int, RandomState instance or None optional (default=None) + Set the random state for deterministic node layouts. + If int, `seed` is the seed used by the random number generator, + if numpy.random.RandomState instance, `seed` is the random + number generator, + if None, the random number generator is the RandomState instance used + by numpy.random. + + Returns + ------- + pos : dict + A dictionary of positions keyed by node + + Examples + -------- + >>> G = nx.lollipop_graph(4, 3) + >>> pos = nx.random_layout(G) + + """ + import numpy as np + + G, center = _process_params(G, center, dim) + pos = seed.rand(len(G), dim) + center + pos = pos.astype(np.float32) + pos = dict(zip(G, pos)) + + return pos + + +def circular_layout(G, scale=1, center=None, dim=2): + # dim=2 only + """Position nodes on a circle. + + Parameters + ---------- + G : NetworkX graph or list of nodes + A position will be assigned to every node in G. + + scale : number (default: 1) + Scale factor for positions. + + center : array-like or None + Coordinate pair around which to center the layout. + + dim : int + Dimension of layout. + If dim>2, the remaining dimensions are set to zero + in the returned positions. + If dim<2, a ValueError is raised. + + Returns + ------- + pos : dict + A dictionary of positions keyed by node + + Raises + ------- + ValueError + If dim < 2 + + Examples + -------- + >>> G = nx.path_graph(4) + >>> pos = nx.circular_layout(G) + + Notes + ----- + This algorithm currently only works in two dimensions and does not + try to minimize edge crossings. + + """ + import numpy as np + + if dim < 2: + raise ValueError('cannot handle dimensions < 2') + + G, center = _process_params(G, center, dim) + + paddims = max(0, (dim - 2)) + + if len(G) == 0: + pos = {} + elif len(G) == 1: + pos = {nx.utils.arbitrary_element(G): center} + else: + # Discard the extra angle since it matches 0 radians. + theta = np.linspace(0, 1, len(G) + 1)[:-1] * 2 * np.pi + theta = theta.astype(np.float32) + pos = np.column_stack([np.cos(theta), np.sin(theta), + np.zeros((len(G), paddims))]) + pos = rescale_layout(pos, scale=scale) + center + pos = dict(zip(G, pos)) + + return pos + + +def shell_layout(G, nlist=None, scale=1, center=None, dim=2): + """Position nodes in concentric circles. + + Parameters + ---------- + G : NetworkX graph or list of nodes + A position will be assigned to every node in G. + + nlist : list of lists + List of node lists for each shell. + + scale : number (default: 1) + Scale factor for positions. + + center : array-like or None + Coordinate pair around which to center the layout. + + dim : int + Dimension of layout, currently only dim=2 is supported. + Other dimension values result in a ValueError. + + Returns + ------- + pos : dict + A dictionary of positions keyed by node + + Raises + ------- + ValueError + If dim != 2 + + Examples + -------- + >>> G = nx.path_graph(4) + >>> shells = [[0], [1, 2, 3]] + >>> pos = nx.shell_layout(G, shells) + + Notes + ----- + This algorithm currently only works in two dimensions and does not + try to minimize edge crossings. + + """ + import numpy as np + + if dim != 2: + raise ValueError('can only handle 2 dimensions') + + G, center = _process_params(G, center, dim) + + if len(G) == 0: + return {} + if len(G) == 1: + return {nx.utils.arbitrary_element(G): center} + + if nlist is None: + # draw the whole graph in one shell + nlist = [list(G)] + + if len(nlist[0]) == 1: + # single node at center + radius = 0.0 + else: + # else start at r=1 + radius = 1.0 + + npos = {} + for nodes in nlist: + # Discard the extra angle since it matches 0 radians. + theta = np.linspace(0, 1, len(nodes) + 1)[:-1] * 2 * np.pi + theta = theta.astype(np.float32) + pos = np.column_stack([np.cos(theta), np.sin(theta)]) + if len(pos) > 1: + pos = rescale_layout(pos, scale=scale * radius / len(nlist)) + center + else: + pos = np.array([(scale * radius + center[0], center[1])]) + npos.update(zip(nodes, pos)) + radius += 1.0 + + return npos + + +def bipartite_layout(G, nodes, align='vertical', + scale=1, center=None, aspect_ratio=4/3): + """Position nodes in two straight lines. + + Parameters + ---------- + G : NetworkX graph or list of nodes + A position will be assigned to every node in G. + + nodes : list or container + Nodes in one node set of the bipartite graph. + This set will be placed on left or top. + + align : string (default='vertical') + The alignment of nodes. Vertical or horizontal. + + scale : number (default: 1) + Scale factor for positions. + + center : array-like or None + Coordinate pair around which to center the layout. + + aspect_ratio : number (default=4/3): + The ratio of the width to the height of the layout. + + Returns + ------- + pos : dict + A dictionary of positions keyed by node. + + Examples + -------- + >>> G = nx.bipartite.gnmk_random_graph(3, 5, 10, seed=123) + >>> top = nx.bipartite.sets(G)[0] + >>> pos = nx.bipartite_layout(G, top) + + Notes + ----- + This algorithm currently only works in two dimensions and does not + try to minimize edge crossings. + + """ + + import numpy as np + + G, center = _process_params(G, center=center, dim=2) + if len(G) == 0: + return {} + + height = 1 + width = aspect_ratio * height + offset = (width/2, height/2) + + top = set(nodes) + bottom = set(G) - top + nodes = list(top) + list(bottom) + + if align == 'vertical': + left_xs = np.repeat(0, len(top)) + right_xs = np.repeat(width, len(bottom)) + left_ys = np.linspace(0, height, len(top)) + right_ys = np.linspace(0, height, len(bottom)) + + top_pos = np.column_stack([left_xs, left_ys]) - offset + bottom_pos = np.column_stack([right_xs, right_ys]) - offset + + pos = np.concatenate([top_pos, bottom_pos]) + pos = rescale_layout(pos, scale=scale) + center + pos = dict(zip(nodes, pos)) + return pos + + if align == 'horizontal': + top_ys = np.repeat(height, len(top)) + bottom_ys = np.repeat(0, len(bottom)) + top_xs = np.linspace(0, width, len(top)) + bottom_xs = np.linspace(0, width, len(bottom)) + + top_pos = np.column_stack([top_xs, top_ys]) - offset + bottom_pos = np.column_stack([bottom_xs, bottom_ys]) - offset + + pos = np.concatenate([top_pos, bottom_pos]) + pos = rescale_layout(pos, scale=scale) + center + pos = dict(zip(nodes, pos)) + return pos + + msg = 'align must be either vertical or horizontal.' + raise ValueError(msg) + + +@random_state(10) +def fruchterman_reingold_layout(G, + k=None, + pos=None, + fixed=None, + iterations=50, + threshold=1e-4, + weight='weight', + scale=1, + center=None, + dim=2, + seed=None): + """Position nodes using Fruchterman-Reingold force-directed algorithm. + + The algorithm simulates a force-directed representation of the network + treating edges as springs holding nodes close, while treating nodes + as repelling objects, sometimes called an anti-gravity force. + Simulation continues until the positions are close to an equilibrium. + + There are some hard-coded values: minimal distance between + nodes (0.01) and "temperature" of 0.1 to ensure nodes don't fly away. + During the simulation, `k` helps determine the distance between nodes, + though `scale` and `center` determine the size and place after + rescaling occurs at the end of the simulation. + + Fixing some nodes doesn't allow them to move in the simulation. + It also turns off the rescaling feature at the simulation's end. + In addition, setting `scale` to `None` turns off rescaling. + + Parameters + ---------- + G : NetworkX graph or list of nodes + A position will be assigned to every node in G. + + k : float (default=None) + Optimal distance between nodes. If None the distance is set to + 1/sqrt(n) where n is the number of nodes. Increase this value + to move nodes farther apart. + + pos : dict or None optional (default=None) + Initial positions for nodes as a dictionary with node as keys + and values as a coordinate list or tuple. If None, then use + random initial positions. + + fixed : list or None optional (default=None) + Nodes to keep fixed at initial position. + ValueError raised if `fixed` specified and `pos` not. + + iterations : int optional (default=50) + Maximum number of iterations taken + + threshold: float optional (default = 1e-4) + Threshold for relative error in node position changes. + The iteration stops if the error is below this threshold. + + weight : string or None optional (default='weight') + The edge attribute that holds the numerical value used for + the edge weight. If None, then all edge weights are 1. + + scale : number or None (default: 1) + Scale factor for positions. Not used unless `fixed is None`. + If scale is None, no rescaling is performed. + + center : array-like or None + Coordinate pair around which to center the layout. + Not used unless `fixed is None`. + + dim : int + Dimension of layout. + + seed : int, RandomState instance or None optional (default=None) + Set the random state for deterministic node layouts. + If int, `seed` is the seed used by the random number generator, + if numpy.random.RandomState instance, `seed` is the random + number generator, + if None, the random number generator is the RandomState instance used + by numpy.random. + + Returns + ------- + pos : dict + A dictionary of positions keyed by node + + Examples + -------- + >>> G = nx.path_graph(4) + >>> pos = nx.spring_layout(G) + + # The same using longer but equivalent function name + >>> pos = nx.fruchterman_reingold_layout(G) + """ + import numpy as np + + G, center = _process_params(G, center, dim) + + if fixed is not None: + if pos is None: + raise ValueError('nodes are fixed without positions given') + for node in fixed: + if node not in pos: + raise ValueError('nodes are fixed without positions given') + nfixed = {node: i for i, node in enumerate(G)} + fixed = np.asarray([nfixed[node] for node in fixed]) + + if pos is not None: + # Determine size of existing domain to adjust initial positions + dom_size = max(coord for pos_tup in pos.values() for coord in pos_tup) + if dom_size == 0: + dom_size = 1 + pos_arr = seed.rand(len(G), dim) * dom_size + center + + for i, n in enumerate(G): + if n in pos: + pos_arr[i] = np.asarray(pos[n]) + else: + pos_arr = None + dom_size = 1 + + if len(G) == 0: + return {} + if len(G) == 1: + return {nx.utils.arbitrary_element(G.nodes()): center} + + try: + # Sparse matrix + if len(G) < 500: # sparse solver for large graphs + raise ValueError + A = nx.to_scipy_sparse_matrix(G, weight=weight, dtype='f') + if k is None and fixed is not None: + # We must adjust k by domain size for layouts not near 1x1 + nnodes, _ = A.shape + k = dom_size / np.sqrt(nnodes) + pos = _sparse_fruchterman_reingold(A, k, pos_arr, fixed, + iterations, threshold, + dim, seed) + except: + A = nx.to_numpy_array(G, weight=weight) + if k is None and fixed is not None: + # We must adjust k by domain size for layouts not near 1x1 + nnodes, _ = A.shape + k = dom_size / np.sqrt(nnodes) + pos = _fruchterman_reingold(A, k, pos_arr, fixed, iterations, + threshold, dim, seed) + if fixed is None and scale is not None: + pos = rescale_layout(pos, scale=scale) + center + pos = dict(zip(G, pos)) + return pos + + +spring_layout = fruchterman_reingold_layout + + +@random_state(7) +def _fruchterman_reingold(A, k=None, pos=None, fixed=None, iterations=50, + threshold=1e-4, dim=2, seed=None): + # Position nodes in adjacency matrix A using Fruchterman-Reingold + # Entry point for NetworkX graph is fruchterman_reingold_layout() + import numpy as np + + try: + nnodes, _ = A.shape + except AttributeError: + msg = "fruchterman_reingold() takes an adjacency matrix as input" + raise nx.NetworkXError(msg) + + if pos is None: + # random initial positions + pos = np.asarray(seed.rand(nnodes, dim), dtype=A.dtype) + else: + # make sure positions are of same type as matrix + pos = pos.astype(A.dtype) + + # optimal distance between nodes + if k is None: + k = np.sqrt(1.0 / nnodes) + # the initial "temperature" is about .1 of domain area (=1x1) + # this is the largest step allowed in the dynamics. + # We need to calculate this in case our fixed positions force our domain + # to be much bigger than 1x1 + t = max(max(pos.T[0]) - min(pos.T[0]), max(pos.T[1]) - min(pos.T[1])) * 0.1 + # simple cooling scheme. + # linearly step down by dt on each iteration so last iteration is size dt. + dt = t / float(iterations + 1) + delta = np.zeros((pos.shape[0], pos.shape[0], pos.shape[1]), dtype=A.dtype) + # the inscrutable (but fast) version + # this is still O(V^2) + # could use multilevel methods to speed this up significantly + for iteration in range(iterations): + # matrix of difference between points + delta = pos[:, np.newaxis, :] - pos[np.newaxis, :, :] + # distance between points + distance = np.linalg.norm(delta, axis=-1) + # enforce minimum distance of 0.01 + np.clip(distance, 0.01, None, out=distance) + # displacement "force" + displacement = np.einsum('ijk,ij->ik', + delta, + (k * k / distance**2 - A * distance / k)) + # update positions + length = np.linalg.norm(displacement, axis=-1) + length = np.where(length < 0.01, 0.1, length) + delta_pos = np.einsum('ij,i->ij', displacement, t / length) + if fixed is not None: + # don't change positions of fixed nodes + delta_pos[fixed] = 0.0 + pos += delta_pos + # cool temperature + t -= dt + err = np.linalg.norm(delta_pos) / nnodes + if err < threshold: + break + return pos + + +@random_state(7) +def _sparse_fruchterman_reingold(A, k=None, pos=None, fixed=None, + iterations=50, threshold=1e-4, dim=2, + seed=None): + # Position nodes in adjacency matrix A using Fruchterman-Reingold + # Entry point for NetworkX graph is fruchterman_reingold_layout() + # Sparse version + import numpy as np + + try: + nnodes, _ = A.shape + except AttributeError: + msg = "fruchterman_reingold() takes an adjacency matrix as input" + raise nx.NetworkXError(msg) + try: + from scipy.sparse import spdiags, coo_matrix + except ImportError: + msg = "_sparse_fruchterman_reingold() scipy numpy: http://scipy.org/ " + raise ImportError(msg) + # make sure we have a LIst of Lists representation + try: + A = A.tolil() + except: + A = (coo_matrix(A)).tolil() + + if pos is None: + # random initial positions + pos = np.asarray(seed.rand(nnodes, dim), dtype=A.dtype) + else: + # make sure positions are of same type as matrix + pos = pos.astype(A.dtype) + + # no fixed nodes + if fixed is None: + fixed = [] + + # optimal distance between nodes + if k is None: + k = np.sqrt(1.0 / nnodes) + # the initial "temperature" is about .1 of domain area (=1x1) + # this is the largest step allowed in the dynamics. + t = max(max(pos.T[0]) - min(pos.T[0]), max(pos.T[1]) - min(pos.T[1])) * 0.1 + # simple cooling scheme. + # linearly step down by dt on each iteration so last iteration is size dt. + dt = t / float(iterations + 1) + + displacement = np.zeros((dim, nnodes)) + for iteration in range(iterations): + displacement *= 0 + # loop over rows + for i in range(A.shape[0]): + if i in fixed: + continue + # difference between this row's node position and all others + delta = (pos[i] - pos).T + # distance between points + distance = np.sqrt((delta**2).sum(axis=0)) + # enforce minimum distance of 0.01 + distance = np.where(distance < 0.01, 0.01, distance) + # the adjacency matrix row + Ai = np.asarray(A.getrowview(i).toarray()) + # displacement "force" + displacement[:, i] +=\ + (delta * (k * k / distance**2 - Ai * distance / k)).sum(axis=1) + # update positions + length = np.sqrt((displacement**2).sum(axis=0)) + length = np.where(length < 0.01, 0.1, length) + delta_pos = (displacement * t / length).T + pos += delta_pos + # cool temperature + t -= dt + err = np.linalg.norm(delta_pos) / nnodes + if err < threshold: + break + return pos + + +def kamada_kawai_layout(G, dist=None, + pos=None, + weight='weight', + scale=1, + center=None, + dim=2): + """Position nodes using Kamada-Kawai path-length cost-function. + + Parameters + ---------- + G : NetworkX graph or list of nodes + A position will be assigned to every node in G. + + dist : float (default=None) + A two-level dictionary of optimal distances between nodes, + indexed by source and destination node. + If None, the distance is computed using shortest_path_length(). + + pos : dict or None optional (default=None) + Initial positions for nodes as a dictionary with node as keys + and values as a coordinate list or tuple. If None, then use + circular_layout() for dim >= 2 and a linear layout for dim == 1. + + weight : string or None optional (default='weight') + The edge attribute that holds the numerical value used for + the edge weight. If None, then all edge weights are 1. + + scale : number (default: 1) + Scale factor for positions. + + center : array-like or None + Coordinate pair around which to center the layout. + + dim : int + Dimension of layout. + + Returns + ------- + pos : dict + A dictionary of positions keyed by node + + Examples + -------- + >>> G = nx.path_graph(4) + >>> pos = nx.kamada_kawai_layout(G) + """ + import numpy as np + + G, center = _process_params(G, center, dim) + nNodes = len(G) + + if dist is None: + dist = dict(nx.shortest_path_length(G, weight=weight)) + dist_mtx = 1e6 * np.ones((nNodes, nNodes)) + for row, nr in enumerate(G): + if nr not in dist: + continue + rdist = dist[nr] + for col, nc in enumerate(G): + if nc not in rdist: + continue + dist_mtx[row][col] = rdist[nc] + + if pos is None: + if dim >= 2: + pos = circular_layout(G, dim=dim) + else: + pos = {n: pt for n, pt in zip(G, np.linspace(0, 1, len(G)))} + pos_arr = np.array([pos[n] for n in G]) + + pos = _kamada_kawai_solve(dist_mtx, pos_arr, dim) + + pos = rescale_layout(pos, scale=scale) + center + return dict(zip(G, pos)) + + +def _kamada_kawai_solve(dist_mtx, pos_arr, dim): + # Anneal node locations based on the Kamada-Kawai cost-function, + # using the supplied matrix of preferred inter-node distances, + # and starting locations. + + import numpy as np + from scipy.optimize import minimize + + meanwt = 1e-3 + costargs = (np, 1 / (dist_mtx + np.eye(dist_mtx.shape[0]) * 1e-3), + meanwt, dim) + + optresult = minimize(_kamada_kawai_costfn, pos_arr.ravel(), + method='L-BFGS-B', args=costargs, jac=True) + + return optresult.x.reshape((-1, dim)) + + +def _kamada_kawai_costfn(pos_vec, np, invdist, meanweight, dim): + # Cost-function and gradient for Kamada-Kawai layout algorithm + nNodes = invdist.shape[0] + pos_arr = pos_vec.reshape((nNodes, dim)) + + delta = pos_arr[:, np.newaxis, :] - pos_arr[np.newaxis, :, :] + nodesep = np.linalg.norm(delta, axis=-1) + direction = np.einsum('ijk,ij->ijk', + delta, + 1 / (nodesep + np.eye(nNodes) * 1e-3)) + + offset = nodesep * invdist - 1.0 + offset[np.diag_indices(nNodes)] = 0 + + cost = 0.5 * np.sum(offset ** 2) + grad = (np.einsum('ij,ij,ijk->ik', invdist, offset, direction) - + np.einsum('ij,ij,ijk->jk', invdist, offset, direction)) + + # Additional parabolic term to encourage mean position to be near origin: + sumpos = np.sum(pos_arr, axis=0) + cost += 0.5 * meanweight * np.sum(sumpos ** 2) + grad += meanweight * sumpos + + return (cost, grad.ravel()) + + +def spectral_layout(G, weight='weight', scale=1, center=None, dim=2): + """Position nodes using the eigenvectors of the graph Laplacian. + + Using the unnormalized Laplacion, the layout shows possible clusters of + nodes which are an approximation of the ratio cut. If dim is the number of + dimensions then the positions are the entries of the dim eigenvectors + corresponding to the ascending eigenvalues starting from the second one. + + Parameters + ---------- + G : NetworkX graph or list of nodes + A position will be assigned to every node in G. + + weight : string or None optional (default='weight') + The edge attribute that holds the numerical value used for + the edge weight. If None, then all edge weights are 1. + + scale : number (default: 1) + Scale factor for positions. + + center : array-like or None + Coordinate pair around which to center the layout. + + dim : int + Dimension of layout. + + Returns + ------- + pos : dict + A dictionary of positions keyed by node + + Examples + -------- + >>> G = nx.path_graph(4) + >>> pos = nx.spectral_layout(G) + + Notes + ----- + Directed graphs will be considered as undirected graphs when + positioning the nodes. + + For larger graphs (>500 nodes) this will use the SciPy sparse + eigenvalue solver (ARPACK). + """ + # handle some special cases that break the eigensolvers + import numpy as np + + G, center = _process_params(G, center, dim) + + if len(G) <= 2: + if len(G) == 0: + pos = np.array([]) + elif len(G) == 1: + pos = np.array([center]) + else: + pos = np.array([np.zeros(dim), np.array(center) * 2.0]) + return dict(zip(G, pos)) + try: + # Sparse matrix + if len(G) < 500: # dense solver is faster for small graphs + raise ValueError + A = nx.to_scipy_sparse_matrix(G, weight=weight, dtype='d') + # Symmetrize directed graphs + if G.is_directed(): + A = A + np.transpose(A) + pos = _sparse_spectral(A, dim) + except (ImportError, ValueError): + # Dense matrix + A = nx.to_numpy_array(G, weight=weight) + # Symmetrize directed graphs + if G.is_directed(): + A += A.T + pos = _spectral(A, dim) + + pos = rescale_layout(pos, scale=scale) + center + pos = dict(zip(G, pos)) + return pos + + +def _spectral(A, dim=2): + # Input adjacency matrix A + # Uses dense eigenvalue solver from numpy + import numpy as np + + try: + nnodes, _ = A.shape + except AttributeError: + msg = "spectral() takes an adjacency matrix as input" + raise nx.NetworkXError(msg) + + # form Laplacian matrix where D is diagonal of degrees + D = np.identity(nnodes, dtype=A.dtype) * np.sum(A, axis=1) + L = D - A + + eigenvalues, eigenvectors = np.linalg.eig(L) + # sort and keep smallest nonzero + index = np.argsort(eigenvalues)[1:dim + 1] # 0 index is zero eigenvalue + return np.real(eigenvectors[:, index]) + + +def _sparse_spectral(A, dim=2): + # Input adjacency matrix A + # Uses sparse eigenvalue solver from scipy + # Could use multilevel methods here, see Koren "On spectral graph drawing" + import numpy as np + from scipy.sparse import spdiags + from scipy.sparse.linalg.eigen import eigsh + + try: + nnodes, _ = A.shape + except AttributeError: + msg = "sparse_spectral() takes an adjacency matrix as input" + raise nx.NetworkXError(msg) + + # form Laplacian matrix + data = np.asarray(A.sum(axis=1).T) + D = spdiags(data, 0, nnodes, nnodes) + L = D - A + + k = dim + 1 + # number of Lanczos vectors for ARPACK solver.What is the right scaling? + ncv = max(2 * k + 1, int(np.sqrt(nnodes))) + # return smallest k eigenvalues and eigenvectors + eigenvalues, eigenvectors = eigsh(L, k, which='SM', ncv=ncv) + index = np.argsort(eigenvalues)[1:k] # 0 index is zero eigenvalue + return np.real(eigenvectors[:, index]) + + +def planar_layout(G, scale=1, center=None, dim=2): + """Position nodes without edge intersections. + + Parameters + ---------- + G : NetworkX graph or list of nodes + A position will be assigned to every node in G. If G is of type + PlanarEmbedding, the positions are selected accordingly. + + Parameters + ---------- + G : NetworkX graph or list of nodes + A position will be assigned to every node in G. If G is of type + nx.PlanarEmbedding, the positions are selected accordingly. + + scale : number (default: 1) + Scale factor for positions. + + center : array-like or None + Coordinate pair around which to center the layout. + + dim : int + Dimension of layout. + + Returns + ------- + pos : dict + A dictionary of positions keyed by node + + Raises + ------ + nx.NetworkXException + If G is not planar + + Examples + -------- + >>> G = nx.path_graph(4) + >>> pos = nx.planar_layout(G) + """ + import numpy as np + + if dim != 2: + raise ValueError('can only handle 2 dimensions') + + G, center = _process_params(G, center, dim) + + if len(G) == 0: + return {} + + if isinstance(G, nx.PlanarEmbedding): + embedding = G + else: + is_planar, embedding = nx.check_planarity(G) + if not is_planar: + raise nx.NetworkXException("G is not planar.") + pos = nx.combinatorial_embedding_to_pos(embedding) + node_list = list(embedding) + pos = np.row_stack((pos[x] for x in node_list)) + pos = pos.astype(np.float64) + pos = rescale_layout(pos, scale=scale) + center + return dict(zip(node_list, pos)) + + +def spiral_layout(G, scale=1, center=None, dim=2, + resolution=0.35, equidistant=False): + """Position nodes in a spiral layout. + + Parameters + ---------- + G : NetworkX graph or list of nodes + A position will be assigned to every node in G. + scale : number (default: 1) + Scale factor for positions. + center : array-like or None + Coordinate pair around which to center the layout. + dim : int + Dimension of layout, currently only dim=2 is supported. + Other dimension values result in a ValueError. + resolution : float + The compactness of the spiral layout returned. + Lower values result in more compressed spiral layouts. + equidistant : bool + If True, nodes will be plotted equidistant from each other. + Returns + ------- + pos : dict + A dictionary of positions keyed by node + Raises + ------- + ValueError + If dim != 2 + Examples + -------- + >>> G = nx.path_graph(4) + >>> pos = nx.spiral_layout(G) + + Notes + ----- + This algorithm currently only works in two dimensions. + + """ + import numpy as np + + if dim != 2: + raise ValueError('can only handle 2 dimensions') + + G, center = _process_params(G, center, dim) + + if len(G) == 0: + return {} + if len(G) == 1: + return {nx.utils.arbitrary_element(G): center} + + pos = [] + if equidistant: + chord = 1 + step = 0.5 + theta = resolution + for _ in range(len(G)): + r = step * theta + theta += chord / r + pos.append([np.cos(theta) * r, np.sin(theta) * r]) + + else: + # set the starting angle and step + step = 1 + angle = 0.0 + dist = 0.0 + # set the radius for the spiral to the number of nodes in the graph + radius = len(G) + + while dist * np.hypot(np.cos(angle), np.sin(angle)) < radius: + pos.append([dist * np.cos(angle), dist * np.sin(angle)]) + dist += step + angle += resolution + + pos = rescale_layout(np.array(pos), scale=scale) + center + + pos = dict(zip(G, pos)) + + return pos + + +def rescale_layout(pos, scale=1): + """Returns scaled position array to (-scale, scale) in all axes. + + The function acts on NumPy arrays which hold position information. + Each position is one row of the array. The dimension of the space + equals the number of columns. Each coordinate in one column. + + To rescale, the mean (center) is subtracted from each axis separately. + Then all values are scaled so that the largest magnitude value + from all axes equals `scale` (thus, the aspect ratio is preserved). + The resulting NumPy Array is returned (order of rows unchanged). + + Parameters + ---------- + pos : numpy array + positions to be scaled. Each row is a position. + + scale : number (default: 1) + The size of the resulting extent in all directions. + + Returns + ------- + pos : numpy array + scaled positions. Each row is a position. + + """ + # Find max length over all dimensions + lim = 0 # max coordinate for all axes + for i in range(pos.shape[1]): + pos[:, i] -= pos[:, i].mean() + lim = max(abs(pos[:, i]).max(), lim) + # rescale to (-scale, scale) in all directions, preserves aspect + if lim > 0: + for i in range(pos.shape[1]): + pos[:, i] *= scale / lim + return pos + + +# fixture for pytest +def setup_module(module): + import pytest + numpy = pytest.importorskip('numpy') + scipy = pytest.importorskip('scipy')