Mercurial > repos > guerler > springsuite
diff planemo/lib/python3.7/site-packages/networkx/generators/lattice.py @ 1:56ad4e20f292 draft
"planemo upload commit 6eee67778febed82ddd413c3ca40b3183a3898f1"
author | guerler |
---|---|
date | Fri, 31 Jul 2020 00:32:28 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/planemo/lib/python3.7/site-packages/networkx/generators/lattice.py Fri Jul 31 00:32:28 2020 -0400 @@ -0,0 +1,361 @@ +# -*- coding: utf-8 -*- +# Copyright (C) 2004-2019 by +# Aric Hagberg <hagberg@lanl.gov> +# Dan Schult <dschult@colgate.edu> +# Pieter Swart <swart@lanl.gov> +# All rights reserved. +# BSD license. +# +# Authors: Aric Hagberg (hagberg@lanl.gov) +# Pieter Swart (swart@lanl.gov) +# Joel Miller (jmiller@lanl.gov) +# Dan Schult (dschult@lanl.gov) +"""Functions for generating grid graphs and lattices + +The :func:`grid_2d_graph`, :func:`triangular_lattice_graph`, and +:func:`hexagonal_lattice_graph` functions correspond to the three +`regular tilings of the plane`_, the square, triangular, and hexagonal +tilings, respectively. :func:`grid_graph` and :func:`hypercube_graph` +are similar for arbitrary dimensions. Useful relevant discussion can +be found about `Triangular Tiling`_, and `Square, Hex and Triangle Grids`_ + +.. _regular tilings of the plane: https://en.wikipedia.org/wiki/List_of_regular_polytopes_and_compounds#Euclidean_tilings +.. _Square, Hex and Triangle Grids: http://www-cs-students.stanford.edu/~amitp/game-programming/grids/ +.. _Triangular Tiling: https://en.wikipedia.org/wiki/Triangular_tiling + +""" + +from math import sqrt + +from networkx.classes import Graph +from networkx.classes import set_node_attributes +from networkx.algorithms.minors import contracted_nodes +from networkx.algorithms.operators.product import cartesian_product +from networkx.exception import NetworkXError +from networkx.relabel import relabel_nodes +from networkx.utils import flatten +from networkx.utils import nodes_or_number +from networkx.utils import pairwise +from networkx.generators.classic import cycle_graph +from networkx.generators.classic import empty_graph +from networkx.generators.classic import path_graph + +__all__ = ['grid_2d_graph', 'grid_graph', 'hypercube_graph', + 'triangular_lattice_graph', 'hexagonal_lattice_graph'] + + +@nodes_or_number([0, 1]) +def grid_2d_graph(m, n, periodic=False, create_using=None): + """Returns the two-dimensional grid graph. + + The grid graph has each node connected to its four nearest neighbors. + + Parameters + ---------- + m, n : int or iterable container of nodes + If an integer, nodes are from `range(n)`. + If a container, elements become the coordinate of the nodes. + + periodic : bool (default: False) + If this is ``True`` the nodes on the grid boundaries are joined + to the corresponding nodes on the opposite grid boundaries. + + create_using : NetworkX graph constructor, optional (default=nx.Graph) + Graph type to create. If graph instance, then cleared before populated. + + Returns + ------- + NetworkX graph + The (possibly periodic) grid graph of the specified dimensions. + + """ + G = empty_graph(0, create_using) + row_name, rows = m + col_name, cols = n + G.add_nodes_from((i, j) for i in rows for j in cols) + G.add_edges_from(((i, j), (pi, j)) + for pi, i in pairwise(rows) for j in cols) + G.add_edges_from(((i, j), (i, pj)) + for i in rows for pj, j in pairwise(cols)) + if periodic is True: + if len(rows) > 2: + first = rows[0] + last = rows[-1] + G.add_edges_from(((first, j), (last, j)) for j in cols) + if len(cols) > 2: + first = cols[0] + last = cols[-1] + G.add_edges_from(((i, first), (i, last)) for i in rows) + # both directions for directed + if G.is_directed(): + G.add_edges_from((v, u) for u, v in G.edges()) + return G + + +def grid_graph(dim, periodic=False): + """Returns the *n*-dimensional grid graph. + + The dimension *n* is the length of the list `dim` and the size in + each dimension is the value of the corresponding list element. + + Parameters + ---------- + dim : list or tuple of numbers or iterables of nodes + 'dim' is a tuple or list with, for each dimension, either a number + that is the size of that dimension or an iterable of nodes for + that dimension. The dimension of the grid_graph is the length + of `dim`. + + periodic : bool + If `periodic is True` the nodes on the grid boundaries are joined + to the corresponding nodes on the opposite grid boundaries. + + Returns + ------- + NetworkX graph + The (possibly periodic) grid graph of the specified dimensions. + + Examples + -------- + To produce a 2 by 3 by 4 grid graph, a graph on 24 nodes: + + >>> from networkx import grid_graph + >>> G = grid_graph(dim=[2, 3, 4]) + >>> len(G) + 24 + >>> G = grid_graph(dim=[range(7, 9), range(3, 6)]) + >>> len(G) + 6 + """ + dlabel = "%s" % dim + if not dim: + return empty_graph(0) + + func = cycle_graph if periodic else path_graph + G = func(dim[0]) + for current_dim in dim[1:]: + Gnew = func(current_dim) + G = cartesian_product(Gnew, G) + # graph G is done but has labels of the form (1, (2, (3, 1))) so relabel + H = relabel_nodes(G, flatten) + return H + + +def hypercube_graph(n): + """Returns the *n*-dimensional hypercube graph. + + The nodes are the integers between 0 and ``2 ** n - 1``, inclusive. + + For more information on the hypercube graph, see the Wikipedia + article `Hypercube graph`_. + + .. _Hypercube graph: https://en.wikipedia.org/wiki/Hypercube_graph + + Parameters + ---------- + n : int + The dimension of the hypercube. + The number of nodes in the graph will be ``2 ** n``. + + Returns + ------- + NetworkX graph + The hypercube graph of dimension *n*. + """ + dim = n * [2] + G = grid_graph(dim) + return G + + +def triangular_lattice_graph(m, n, periodic=False, with_positions=True, + create_using=None): + r"""Returns the $m$ by $n$ triangular lattice graph. + + The `triangular lattice graph`_ is a two-dimensional `grid graph`_ in + which each square unit has a diagonal edge (each grid unit has a chord). + + The returned graph has $m$ rows and $n$ columns of triangles. Rows and + columns include both triangles pointing up and down. Rows form a strip + of constant height. Columns form a series of diamond shapes, staggered + with the columns on either side. Another way to state the size is that + the nodes form a grid of `m+1` rows and `(n + 1) // 2` columns. + The odd row nodes are shifted horizontally relative to the even rows. + + Directed graph types have edges pointed up or right. + + Positions of nodes are computed by default or `with_positions is True`. + The position of each node (embedded in a euclidean plane) is stored in + the graph using equilateral triangles with sidelength 1. + The height between rows of nodes is thus $\sqrt(3)/2$. + Nodes lie in the first quadrant with the node $(0, 0)$ at the origin. + + .. _triangular lattice graph: http://mathworld.wolfram.com/TriangularGrid.html + .. _grid graph: http://www-cs-students.stanford.edu/~amitp/game-programming/grids/ + .. _Triangular Tiling: https://en.wikipedia.org/wiki/Triangular_tiling + + Parameters + ---------- + m : int + The number of rows in the lattice. + + n : int + The number of columns in the lattice. + + periodic : bool (default: False) + If True, join the boundary vertices of the grid using periodic + boundary conditions. The join between boundaries is the final row + and column of triangles. This means there is one row and one column + fewer nodes for the periodic lattice. Periodic lattices require + `m >= 3`, `n >= 5` and are allowed but misaligned if `m` or `n` are odd + + with_positions : bool (default: True) + Store the coordinates of each node in the graph node attribute 'pos'. + The coordinates provide a lattice with equilateral triangles. + Periodic positions shift the nodes vertically in a nonlinear way so + the edges don't overlap so much. + + create_using : NetworkX graph constructor, optional (default=nx.Graph) + Graph type to create. If graph instance, then cleared before populated. + + Returns + ------- + NetworkX graph + The *m* by *n* triangular lattice graph. + """ + H = empty_graph(0, create_using) + if n == 0 or m == 0: + return H + if periodic: + if n < 5 or m < 3: + msg = "m > 2 and n > 4 required for periodic. m={}, n={}" + raise NetworkXError(msg.format(m, n)) + + N = (n + 1) // 2 # number of nodes in row + rows = range(m + 1) + cols = range(N + 1) + # Make grid + H.add_edges_from(((i, j), (i + 1, j)) for j in rows for i in cols[:N]) + H.add_edges_from(((i, j), (i, j + 1)) for j in rows[:m] for i in cols) + # add diagonals + H.add_edges_from(((i, j), (i + 1, j + 1)) + for j in rows[1:m:2] for i in cols[:N]) + H.add_edges_from(((i + 1, j), (i, j + 1)) + for j in rows[:m:2] for i in cols[:N]) + # identify boundary nodes if periodic + if periodic is True: + for i in cols: + H = contracted_nodes(H, (i, 0), (i, m)) + for j in rows[:m]: + H = contracted_nodes(H, (0, j), (N, j)) + elif n % 2: + # remove extra nodes + H.remove_nodes_from(((N, j) for j in rows[1::2])) + + # Add position node attributes + if with_positions: + ii = (i for i in cols for j in rows) + jj = (j for i in cols for j in rows) + xx = (0.5 * (j % 2) + i for i in cols for j in rows) + h = sqrt(3) / 2 + if periodic: + yy = (h * j + .01 * i * i for i in cols for j in rows) + else: + yy = (h * j for i in cols for j in rows) + pos = {(i, j): (x, y) for i, j, x, y in zip(ii, jj, xx, yy) + if (i, j) in H} + set_node_attributes(H, pos, 'pos') + return H + + +def hexagonal_lattice_graph(m, n, periodic=False, with_positions=True, + create_using=None): + """Returns an `m` by `n` hexagonal lattice graph. + + The *hexagonal lattice graph* is a graph whose nodes and edges are + the `hexagonal tiling`_ of the plane. + + The returned graph will have `m` rows and `n` columns of hexagons. + `Odd numbered columns`_ are shifted up relative to even numbered columns. + + Positions of nodes are computed by default or `with_positions is True`. + Node positions creating the standard embedding in the plane + with sidelength 1 and are stored in the node attribute 'pos'. + `pos = nx.get_node_attributes(G, 'pos')` creates a dict ready for drawing. + + .. _hexagonal tiling: https://en.wikipedia.org/wiki/Hexagonal_tiling + .. _Odd numbered columns: http://www-cs-students.stanford.edu/~amitp/game-programming/grids/ + + Parameters + ---------- + m : int + The number of rows of hexagons in the lattice. + + n : int + The number of columns of hexagons in the lattice. + + periodic : bool + Whether to make a periodic grid by joining the boundary vertices. + For this to work `n` must be odd and both `n > 1` and `m > 1`. + The periodic connections create another row and column of hexagons + so these graphs have fewer nodes as boundary nodes are identified. + + with_positions : bool (default: True) + Store the coordinates of each node in the graph node attribute 'pos'. + The coordinates provide a lattice with vertical columns of hexagons + offset to interleave and cover the plane. + Periodic positions shift the nodes vertically in a nonlinear way so + the edges don't overlap so much. + + create_using : NetworkX graph constructor, optional (default=nx.Graph) + Graph type to create. If graph instance, then cleared before populated. + If graph is directed, edges will point up or right. + + Returns + ------- + NetworkX graph + The *m* by *n* hexagonal lattice graph. + """ + G = empty_graph(0, create_using) + if m == 0 or n == 0: + return G + if periodic and (n % 2 == 1 or m < 2 or n < 2): + msg = "periodic hexagonal lattice needs m > 1, n > 1 and even n" + raise NetworkXError(msg) + + M = 2 * m # twice as many nodes as hexagons vertically + rows = range(M + 2) + cols = range(n + 1) + # make lattice + col_edges = (((i, j), (i, j + 1)) for i in cols for j in rows[:M + 1]) + row_edges = (((i, j), (i + 1, j)) for i in cols[:n] for j in rows + if i % 2 == j % 2) + G.add_edges_from(col_edges) + G.add_edges_from(row_edges) + # Remove corner nodes with one edge + G.remove_node((0, M + 1)) + G.remove_node((n, (M + 1) * (n % 2))) + + # identify boundary nodes if periodic + if periodic: + for i in cols[:n]: + G = contracted_nodes(G, (i, 0), (i, M)) + for i in cols[1:]: + G = contracted_nodes(G, (i, 1), (i, M + 1)) + for j in rows[1:M]: + G = contracted_nodes(G, (0, j), (n, j)) + G.remove_node((n, M)) + + # calc position in embedded space + ii = (i for i in cols for j in rows) + jj = (j for i in cols for j in rows) + xx = (0.5 + i + i // 2 + (j % 2) * ((i % 2) - .5) + for i in cols for j in rows) + h = sqrt(3) / 2 + if periodic: + yy = (h * j + .01 * i * i for i in cols for j in rows) + else: + yy = (h * j for i in cols for j in rows) + # exclude nodes not in G + pos = {(i, j): (x, y) for i, j, x, y in zip(ii, jj, xx, yy) if (i, j) in G} + set_node_attributes(G, pos, 'pos') + return G