diff planemo/lib/python3.7/site-packages/bioblend/galaxy/objects/wrappers.py @ 0:d30785e31577 draft

"planemo upload commit 6eee67778febed82ddd413c3ca40b3183a3898f1"
author guerler
date Fri, 31 Jul 2020 00:18:57 -0400
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/planemo/lib/python3.7/site-packages/bioblend/galaxy/objects/wrappers.py	Fri Jul 31 00:18:57 2020 -0400
@@ -0,0 +1,1480 @@
+# pylint: disable=W0622,E1101
+
+"""
+A basic object-oriented interface for Galaxy entities.
+"""
+
+import abc
+import json
+from collections.abc import (
+    Iterable,
+    Mapping,
+    Sequence,
+)
+
+import bioblend
+
+
+__all__ = (
+    'Wrapper',
+    'Step',
+    'Workflow',
+    'ContentInfo',
+    'LibraryContentInfo',
+    'HistoryContentInfo',
+    'DatasetContainer',
+    'History',
+    'Library',
+    'Folder',
+    'Dataset',
+    'HistoryDatasetAssociation',
+    'DatasetCollection',
+    'HistoryDatasetCollectionAssociation',
+    'LibraryDatasetDatasetAssociation',
+    'LibraryDataset',
+    'Tool',
+    'Job',
+    'Preview',
+    'LibraryPreview',
+    'HistoryPreview',
+    'WorkflowPreview',
+)
+
+
+class Wrapper(object, metaclass=abc.ABCMeta):
+    """
+    Abstract base class for Galaxy entity wrappers.
+
+    Wrapper instances wrap deserialized JSON dictionaries such as the
+    ones obtained by the Galaxy web API, converting key-based access to
+    attribute-based access (e.g., ``library['name'] -> library.name``).
+
+    Dict keys that are converted to attributes are listed in the
+    ``BASE_ATTRS`` class variable: this is the 'stable' interface.
+    Note that the wrapped dictionary is accessible via the ``wrapped``
+    attribute.
+    """
+    BASE_ATTRS = ('id', 'name')
+
+    @abc.abstractmethod
+    def __init__(self, wrapped, parent=None, gi=None):
+        """
+        :type wrapped: dict
+        :param wrapped: JSON-serializable dictionary
+
+        :type parent: :class:`Wrapper`
+        :param parent: the parent of this wrapper
+
+        :type gi: :class:`GalaxyInstance`
+        :param gi: the GalaxyInstance through which we can access this wrapper
+        """
+        if not isinstance(wrapped, Mapping):
+            raise TypeError('wrapped object must be a mapping type')
+        # loads(dumps(x)) is a bit faster than deepcopy and allows type checks
+        try:
+            dumped = json.dumps(wrapped)
+        except (TypeError, ValueError):
+            raise ValueError('wrapped object must be JSON-serializable')
+        object.__setattr__(self, 'wrapped', json.loads(dumped))
+        for k in self.BASE_ATTRS:
+            object.__setattr__(self, k, self.wrapped.get(k))
+        object.__setattr__(self, '_cached_parent', parent)
+        object.__setattr__(self, 'is_modified', False)
+        object.__setattr__(self, 'gi', gi)
+
+    @abc.abstractproperty
+    def gi_module(self):
+        """
+        The GalaxyInstance module that deals with objects of this type.
+        """
+        pass
+
+    @property
+    def parent(self):
+        """
+        The parent of this wrapper.
+        """
+        return self._cached_parent
+
+    @property
+    def is_mapped(self):
+        """
+        ``True`` if this wrapper is mapped to an actual Galaxy entity.
+        """
+        return self.id is not None
+
+    def unmap(self):
+        """
+        Disconnect this wrapper from Galaxy.
+        """
+        object.__setattr__(self, 'id', None)
+
+    def clone(self):
+        """
+        Return an independent copy of this wrapper.
+        """
+        return self.__class__(self.wrapped)
+
+    def touch(self):
+        """
+        Mark this wrapper as having been modified since its creation.
+        """
+        object.__setattr__(self, 'is_modified', True)
+        if self.parent:
+            self.parent.touch()
+
+    def to_json(self):
+        """
+        Return a JSON dump of this wrapper.
+        """
+        return json.dumps(self.wrapped)
+
+    @classmethod
+    def from_json(cls, jdef):
+        """
+        Build a new wrapper from a JSON dump.
+        """
+        return cls(json.loads(jdef))
+
+    # FIXME: things like self.x[0] = 'y' do NOT call self.__setattr__
+    def __setattr__(self, name, value):
+        if name not in self.wrapped:
+            raise AttributeError("can't set attribute")
+        else:
+            self.wrapped[name] = value
+            object.__setattr__(self, name, value)
+            self.touch()
+
+    def __repr__(self):
+        return "%s(%r)" % (self.__class__.__name__, self.wrapped)
+
+
+class Step(Wrapper):
+    """
+    Abstract base class for workflow steps.
+
+    Steps are the main building blocks of a Galaxy workflow. A step can be: an
+    input (type ``data_collection_input``, ``data_input`` or
+    ``parameter_input``), a computational tool (type ``tool``), a subworkflow
+    (type ``subworkflow``) or a pause (type ``pause``).
+    """
+    BASE_ATTRS = Wrapper.BASE_ATTRS + (
+        'input_steps', 'tool_id', 'tool_inputs', 'tool_version', 'type'
+    )
+
+    def __init__(self, step_dict, parent):
+        super().__init__(step_dict, parent=parent, gi=parent.gi)
+        try:
+            stype = step_dict['type']
+        except KeyError:
+            raise ValueError('not a step dict')
+        if stype not in {'data_collection_input', 'data_input', 'parameter_input', 'pause', 'subworkflow', 'tool'}:
+            raise ValueError('Unknown step type: %r' % stype)
+
+    @property
+    def gi_module(self):
+        return self.gi.workflows
+
+
+class Workflow(Wrapper):
+    """
+    Workflows represent ordered sequences of computations on Galaxy.
+
+    A workflow defines a sequence of steps that produce one or more
+    results from an input dataset.
+    """
+    BASE_ATTRS = Wrapper.BASE_ATTRS + (
+        'deleted', 'inputs', 'published', 'steps', 'tags'
+    )
+    POLLING_INTERVAL = 10  # for output state monitoring
+
+    def __init__(self, wf_dict, gi=None):
+        super().__init__(wf_dict, gi=gi)
+        missing_ids = []
+        if gi:
+            tools_list_by_id = [t.id for t in gi.tools.get_previews()]
+        else:
+            tools_list_by_id = []
+        tool_labels_to_ids = {}
+        for k, v in self.steps.items():
+            # convert step ids to str for consistency with outer keys
+            v['id'] = str(v['id'])
+            for i in v['input_steps'].values():
+                i['source_step'] = str(i['source_step'])
+            step = Step(v, self)
+            self.steps[k] = step
+            if step.type == 'tool':
+                if not step.tool_inputs or step.tool_id not in tools_list_by_id:
+                    missing_ids.append(k)
+                tool_labels_to_ids.setdefault(step.tool_id, set()).add(step.id)
+        input_labels_to_ids = {}
+        for id_, d in self.inputs.items():
+            input_labels_to_ids.setdefault(d['label'], set()).add(id_)
+        object.__setattr__(self, 'input_labels_to_ids', input_labels_to_ids)
+        object.__setattr__(self, 'tool_labels_to_ids', tool_labels_to_ids)
+        dag, inv_dag = self._get_dag()
+        heads, tails = set(dag), set(inv_dag)
+        object.__setattr__(self, 'dag', dag)
+        object.__setattr__(self, 'inv_dag', inv_dag)
+        object.__setattr__(self, 'source_ids', heads - tails)
+        assert set(self.inputs) == self.data_collection_input_ids | self.data_input_ids | self.parameter_input_ids, \
+            "inputs is %r, while data_collection_input_ids is %r, data_input_ids is %r and parameter_input_ids is %r" % (
+                self.inputs, self.data_collection_input_ids, self.data_input_ids, self.parameter_input_ids)
+        object.__setattr__(self, 'sink_ids', tails - heads)
+        object.__setattr__(self, 'missing_ids', missing_ids)
+
+    @property
+    def gi_module(self):
+        return self.gi.workflows
+
+    def _get_dag(self):
+        """
+        Return the workflow's DAG.
+
+        For convenience, this method computes a 'direct' (step =>
+        successors) and an 'inverse' (step => predecessors)
+        representation of the same DAG.
+
+        For instance, a workflow with a single tool *c*, two inputs
+        *a, b* and three outputs *d, e, f* is represented by (direct)::
+
+          {'a': {'c'}, 'b': {'c'}, 'c': {'d', 'e', 'f'}}
+
+        and by (inverse)::
+
+          {'c': {'a', 'b'}, 'd': {'c'}, 'e': {'c'}, 'f': {'c'}}
+        """
+        dag, inv_dag = {}, {}
+        for s in self.steps.values():
+            for i in s.input_steps.values():
+                head, tail = i['source_step'], s.id
+                dag.setdefault(head, set()).add(tail)
+                inv_dag.setdefault(tail, set()).add(head)
+        return dag, inv_dag
+
+    def sorted_step_ids(self):
+        """
+        Return a topological sort of the workflow's DAG.
+        """
+        ids = []
+        source_ids = self.source_ids.copy()
+        inv_dag = dict((k, v.copy()) for k, v in self.inv_dag.items())
+        while source_ids:
+            head = source_ids.pop()
+            ids.append(head)
+            for tail in self.dag.get(head, []):
+                incoming = inv_dag[tail]
+                incoming.remove(head)
+                if not incoming:
+                    source_ids.add(tail)
+        return ids
+
+    @property
+    def data_input_ids(self):
+        """
+        Return the ids of data input steps for this workflow.
+        """
+        return {id_ for id_, s in self.steps.items() if s.type == 'data_input'}
+
+    @property
+    def data_collection_input_ids(self):
+        """
+        Return the ids of data collection input steps for this workflow.
+        """
+        return {id_ for id_, s in self.steps.items() if s.type == 'data_collection_input'}
+
+    @property
+    def parameter_input_ids(self):
+        """
+        Return the ids of parameter input steps for this workflow.
+        """
+        return {id_ for id_, s in self.steps.items() if s.type == 'parameter_input'}
+
+    @property
+    def tool_ids(self):
+        """
+        Return the ids of tool steps for this workflow.
+        """
+        return {id_ for id_, s in self.steps.items() if s.type == 'tool'}
+
+    @property
+    def input_labels(self):
+        """
+        Return the labels of this workflow's input steps.
+        """
+        return set(self.input_labels_to_ids)
+
+    @property
+    def is_runnable(self):
+        """
+        Return True if the workflow can be run on Galaxy.
+
+        A workflow is considered runnable on a Galaxy instance if all
+        of the tools it uses are installed in that instance.
+        """
+        return not self.missing_ids
+
+    def convert_input_map(self, input_map):
+        """
+        Convert ``input_map`` to the format required by the Galaxy web API.
+
+        :type input_map: dict
+        :param input_map: a mapping from input labels to datasets
+
+        :rtype: dict
+        :return: a mapping from input slot ids to dataset ids in the
+          format required by the Galaxy web API.
+        """
+        m = {}
+        for label, slot_ids in self.input_labels_to_ids.items():
+            datasets = input_map.get(label, [])
+            if not isinstance(datasets, Iterable):
+                datasets = [datasets]
+            if len(datasets) < len(slot_ids):
+                raise RuntimeError('not enough datasets for "%s"' % label)
+            for id_, ds in zip(slot_ids, datasets):
+                m[id_] = {'id': ds.id, 'src': ds.SRC}
+        return m
+
+    def preview(self):
+        getf = self.gi.workflows.get_previews
+        try:
+            p = [_ for _ in getf(published=True) if _.id == self.id][0]
+        except IndexError:
+            raise ValueError('no object for id %s' % self.id)
+        return p
+
+    def run(self, input_map=None, history='', params=None, import_inputs=False,
+            replacement_params=None, wait=False,
+            polling_interval=POLLING_INTERVAL, break_on_error=True):
+        """
+        Run the workflow in the current Galaxy instance.
+
+        :type input_map: dict
+        :param input_map: a mapping from workflow input labels to
+          datasets, e.g.: ``dict(zip(workflow.input_labels,
+          library.get_datasets()))``
+
+        :type history: :class:`History` or str
+        :param history: either a valid history object (results will be
+          stored there) or a string (a new history will be created with
+          the given name).
+
+        :type params: dict
+        :param params: a mapping of non-datasets tool parameters (see below)
+
+        :type import_inputs: bool
+        :param import_inputs: If ``True``, workflow inputs will be imported into
+          the history; if ``False``, only workflow outputs will be visible in
+          the history.
+
+        :type replacement_params: dict
+        :param replacement_params: pattern-based replacements for
+          post-job actions (see the docs for
+          :meth:`~bioblend.galaxy.workflows.WorkflowClient.invoke_workflow`)
+
+        :type wait: bool
+        :param wait: whether to wait while the returned datasets are
+          in a pending state
+
+        :type polling_interval: float
+        :param polling_interval: polling interval in seconds
+
+        :type break_on_error: bool
+        :param break_on_error: whether to break as soon as at least one
+          of the returned datasets is in the 'error' state
+
+        :rtype: tuple
+        :return: list of output datasets, output history
+
+        The ``params`` dict should be specified as follows::
+
+          {STEP_ID: PARAM_DICT, ...}
+
+        where PARAM_DICT is::
+
+          {PARAM_NAME: VALUE, ...}
+
+        For backwards compatibility, the following (deprecated) format is
+        also supported for ``params``::
+
+          {TOOL_ID: PARAM_DICT, ...}
+
+        in which case PARAM_DICT affects all steps with the given tool id.
+        If both by-tool-id and by-step-id specifications are used, the
+        latter takes precedence.
+
+        Finally (again, for backwards compatibility), PARAM_DICT can also
+        be specified as::
+
+          {'param': PARAM_NAME, 'value': VALUE}
+
+        Note that this format allows only one parameter to be set per step.
+
+        Example: set 'a' to 1 for the third workflow step::
+
+          params = {workflow.steps[2].id: {'a': 1}}
+
+        .. warning::
+
+          This is a blocking operation that can take a very long time. If
+          ``wait`` is set to ``False``, the method will return as soon as the
+          workflow has been *scheduled*, otherwise it will wait until the
+          workflow has been *run*. With a large number of steps, however, the
+          delay may not be negligible even in the former case (e.g. minutes for
+          100 steps).
+        """
+        if not self.is_mapped:
+            raise RuntimeError('workflow is not mapped to a Galaxy object')
+        if not self.is_runnable:
+            raise RuntimeError('workflow has missing tools: %s' % ', '.join(
+                '%s[%s]' % (self.steps[_].tool_id, _)
+                for _ in self.missing_ids))
+        kwargs = {
+            'dataset_map': self.convert_input_map(input_map or {}),
+            'params': params,
+            'import_inputs_to_history': import_inputs,
+            'replacement_params': replacement_params,
+        }
+        if isinstance(history, History):
+            try:
+                kwargs['history_id'] = history.id
+            except AttributeError:
+                raise RuntimeError('history does not have an id')
+        elif isinstance(history, str):
+            kwargs['history_name'] = history
+        else:
+            raise TypeError(
+                'history must be either a history wrapper or a string')
+        res = self.gi.gi.workflows.run_workflow(self.id, **kwargs)
+        # res structure: {'history': HIST_ID, 'outputs': [CI_ID, CI_ID, ...]}
+        out_hist = self.gi.histories.get(res['history'])
+        content_infos_dict = dict()
+        for ci in out_hist.content_infos:
+            content_infos_dict[ci.id] = ci
+        outputs = []
+        for output_id in res['outputs']:
+            if content_infos_dict[output_id].type == 'file':
+                outputs.append(out_hist.get_dataset(output_id))
+            elif content_infos_dict[output_id].type == 'collection':
+                outputs.append(out_hist.get_dataset_collection(output_id))
+
+        if wait:
+            self.gi._wait_datasets(outputs, polling_interval=polling_interval,
+                                   break_on_error=break_on_error)
+        return outputs, out_hist
+
+    def export(self):
+        """
+        Export a re-importable representation of the workflow.
+
+        :rtype: dict
+        :return: a JSON-serializable dump of the workflow
+        """
+        return self.gi.gi.workflows.export_workflow_dict(self.id)
+
+    def delete(self):
+        """
+        Delete this workflow.
+
+        .. warning::
+          Deleting a workflow is irreversible - all of the data from
+          the workflow will be permanently deleted.
+        """
+        self.gi.workflows.delete(id_=self.id)
+        self.unmap()
+
+
+class Dataset(Wrapper, metaclass=abc.ABCMeta):
+    """
+    Abstract base class for Galaxy datasets.
+    """
+    BASE_ATTRS = Wrapper.BASE_ATTRS + (
+        'data_type', 'file_ext', 'file_name', 'file_size', 'genome_build', 'misc_info', 'state'
+    )
+    POLLING_INTERVAL = 1  # for state monitoring
+
+    @abc.abstractmethod
+    def __init__(self, ds_dict, container, gi=None):
+        super().__init__(ds_dict, gi=gi)
+        object.__setattr__(self, 'container', container)
+
+    @property
+    def container_id(self):
+        """
+        Deprecated property.
+
+        Id of the dataset container. Use :attr:`.container.id` instead.
+        """
+        return self.container.id
+
+    @abc.abstractproperty
+    def _stream_url(self):
+        """
+        Return the URL to stream this dataset.
+        """
+        pass
+
+    def get_stream(self, chunk_size=bioblend.CHUNK_SIZE):
+        """
+        Open dataset for reading and return an iterator over its contents.
+
+        :type chunk_size: int
+        :param chunk_size: read this amount of bytes at a time
+        """
+        kwargs = {'stream': True}
+        if isinstance(self, LibraryDataset):
+            kwargs['params'] = {'ld_ids%5B%5D': self.id}
+        r = self.gi.gi.make_get_request(self._stream_url, **kwargs)
+        if isinstance(self, LibraryDataset) and r.status_code == 500:
+            # compatibility with older Galaxy releases
+            kwargs['params'] = {'ldda_ids%5B%5D': self.id}
+            r = self.gi.gi.make_get_request(self._stream_url, **kwargs)
+        r.raise_for_status()
+        return r.iter_content(chunk_size)  # FIXME: client can't close r
+
+    def peek(self, chunk_size=bioblend.CHUNK_SIZE):
+        """
+        Open dataset for reading and return the first chunk.
+
+        See :meth:`.get_stream` for param info.
+        """
+        try:
+            return next(self.get_stream(chunk_size=chunk_size))
+        except StopIteration:
+            return b''
+
+    def download(self, file_object, chunk_size=bioblend.CHUNK_SIZE):
+        """
+        Open dataset for reading and save its contents to ``file_object``.
+
+        :type file_object: file
+        :param file_object: output file object
+
+        See :meth:`.get_stream` for info on other params.
+        """
+        for chunk in self.get_stream(chunk_size=chunk_size):
+            file_object.write(chunk)
+
+    def get_contents(self, chunk_size=bioblend.CHUNK_SIZE):
+        """
+        Open dataset for reading and return its **full** contents.
+
+        See :meth:`.get_stream` for param info.
+        """
+        return b''.join(self.get_stream(chunk_size=chunk_size))
+
+    def refresh(self):
+        """
+        Re-fetch the attributes pertaining to this object.
+
+        Returns: self
+        """
+        gi_client = getattr(self.gi.gi, self.container.API_MODULE)
+        ds_dict = gi_client.show_dataset(self.container.id, self.id)
+        self.__init__(ds_dict, self.container, self.gi)
+        return self
+
+    def wait(self, polling_interval=POLLING_INTERVAL, break_on_error=True):
+        """
+        Wait for this dataset to come out of the pending states.
+
+        :type polling_interval: float
+        :param polling_interval: polling interval in seconds
+
+        :type break_on_error: bool
+        :param break_on_error: if ``True``, raise a RuntimeError exception if
+          the dataset ends in the 'error' state.
+
+        .. warning::
+
+          This is a blocking operation that can take a very long time. Also,
+          note that this method does not return anything; however, this dataset
+          is refreshed (possibly multiple times) during the execution.
+        """
+        self.gi._wait_datasets([self], polling_interval=polling_interval,
+                               break_on_error=break_on_error)
+
+
+class HistoryDatasetAssociation(Dataset):
+    """
+    Maps to a Galaxy ``HistoryDatasetAssociation``.
+    """
+    BASE_ATTRS = Dataset.BASE_ATTRS + ('annotation', 'deleted', 'purged', 'tags', 'visible')
+    SRC = 'hda'
+
+    def __init__(self, ds_dict, container, gi=None):
+        super().__init__(ds_dict, container, gi=gi)
+
+    @property
+    def gi_module(self):
+        return self.gi.histories
+
+    @property
+    def _stream_url(self):
+        base_url = self.gi.gi.histories._make_url(module_id=self.container.id, contents=True)
+        return "%s/%s/display" % (base_url, self.id)
+
+    def update(self, **kwds):
+        """
+        Update this history dataset metadata. Some of the attributes that can be
+        modified are documented below.
+
+        :type name: str
+        :param name: Replace history dataset name with the given string
+
+        :type genome_build: str
+        :param genome_build: Replace history dataset genome build (dbkey)
+
+        :type annotation: str
+        :param annotation: Replace history dataset annotation with given string
+
+        :type deleted: bool
+        :param deleted: Mark or unmark history dataset as deleted
+
+        :type visible: bool
+        :param visible: Mark or unmark history dataset as visible
+        """
+        res = self.gi.gi.histories.update_dataset(self.container.id, self.id, **kwds)
+        # Refresh also the history because the dataset may have been (un)deleted
+        self.container.refresh()
+        self.__init__(res, self.container, gi=self.gi)
+        return self
+
+    def delete(self, purge=False):
+        """
+        Delete this history dataset.
+
+        :type purge: bool
+        :param purge: if ``True``, also purge (permanently delete) the dataset
+
+        .. note::
+            For the purge option to work, the Galaxy instance must have the
+            ``allow_user_dataset_purge`` option set to ``true`` in the
+            ``config/galaxy.yml`` configuration file.
+        """
+        self.gi.gi.histories.delete_dataset(self.container.id, self.id, purge=purge)
+        self.container.refresh()
+        self.refresh()
+
+
+class DatasetCollection(Wrapper, metaclass=abc.ABCMeta):
+    """
+    Abstract base class for Galaxy dataset collections.
+    """
+    BASE_ATTRS = Wrapper.BASE_ATTRS + (
+        'state', 'deleted', 'collection_type'
+    )
+
+    @abc.abstractmethod
+    def __init__(self, dsc_dict, container, gi=None):
+        super().__init__(dsc_dict, gi=gi)
+        object.__setattr__(self, 'container', container)
+
+    def refresh(self):
+        """
+        Re-fetch the attributes pertaining to this object.
+
+        Returns: self
+        """
+        gi_client = getattr(self.gi.gi, self.container.API_MODULE)
+        dsc_dict = gi_client.show_dataset_collection(self.container.id, self.id)
+        self.__init__(dsc_dict, self.container, self.gi)
+        return self
+
+
+class HistoryDatasetCollectionAssociation(DatasetCollection):
+    """
+    Maps to a Galaxy ``HistoryDatasetCollectionAssociation``.
+    """
+    BASE_ATTRS = DatasetCollection.BASE_ATTRS + ('tags', 'visible', 'elements')
+    SRC = 'hdca'
+
+    def __init__(self, dsc_dict, container, gi=None):
+        super().__init__(dsc_dict, container, gi=gi)
+
+    @property
+    def gi_module(self):
+        return self.gi.histories
+
+    def delete(self):
+        """
+        Delete this dataset collection.
+        """
+        self.gi.gi.histories.delete_dataset_collection(self.container.id, self.id)
+        self.container.refresh()
+        self.refresh()
+
+
+class LibRelatedDataset(Dataset):
+    """
+    Base class for LibraryDatasetDatasetAssociation and LibraryDataset classes.
+    """
+
+    def __init__(self, ds_dict, container, gi=None):
+        super().__init__(ds_dict, container, gi=gi)
+
+    @property
+    def gi_module(self):
+        return self.gi.libraries
+
+    @property
+    def _stream_url(self):
+        base_url = self.gi.gi.libraries._make_url()
+        return "%s/datasets/download/uncompressed" % base_url
+
+
+class LibraryDatasetDatasetAssociation(LibRelatedDataset):
+    """
+    Maps to a Galaxy ``LibraryDatasetDatasetAssociation``.
+    """
+    BASE_ATTRS = LibRelatedDataset.BASE_ATTRS + ('deleted',)
+    SRC = 'ldda'
+
+
+class LibraryDataset(LibRelatedDataset):
+    """
+    Maps to a Galaxy ``LibraryDataset``.
+    """
+    SRC = 'ld'
+
+    def delete(self, purged=False):
+        """
+        Delete this library dataset.
+
+        :type purged: bool
+        :param purged: if ``True``, also purge (permanently delete) the dataset
+        """
+        self.gi.gi.libraries.delete_library_dataset(
+            self.container.id, self.id, purged=purged)
+        self.container.refresh()
+        self.refresh()
+
+    def update(self, **kwds):
+        """
+        Update this library dataset metadata. Some of the attributes that can be
+        modified are documented below.
+
+        :type name: str
+        :param name: Replace history dataset name with the given string
+
+        :type genome_build: str
+        :param genome_build: Replace history dataset genome build (dbkey)
+        """
+        res = self.gi.gi.libraries.update_library_dataset(self.id, **kwds)
+        self.container.refresh()
+        self.__init__(res, self.container, gi=self.gi)
+        return self
+
+
+class ContentInfo(Wrapper, metaclass=abc.ABCMeta):
+    """
+    Instances of this class wrap dictionaries obtained by getting
+    ``/api/{histories,libraries}/<ID>/contents`` from Galaxy.
+    """
+    BASE_ATTRS = Wrapper.BASE_ATTRS + ('type',)
+
+    @abc.abstractmethod
+    def __init__(self, info_dict, gi=None):
+        super().__init__(info_dict, gi=gi)
+
+
+class LibraryContentInfo(ContentInfo):
+    """
+    Instances of this class wrap dictionaries obtained by getting
+    ``/api/libraries/<ID>/contents`` from Galaxy.
+    """
+    def __init__(self, info_dict, gi=None):
+        super().__init__(info_dict, gi=gi)
+
+    @property
+    def gi_module(self):
+        return self.gi.libraries
+
+
+class HistoryContentInfo(ContentInfo):
+    """
+    Instances of this class wrap dictionaries obtained by getting
+    ``/api/histories/<ID>/contents`` from Galaxy.
+    """
+    BASE_ATTRS = ContentInfo.BASE_ATTRS + ('deleted', 'state', 'visible')
+
+    def __init__(self, info_dict, gi=None):
+        super().__init__(info_dict, gi=gi)
+
+    @property
+    def gi_module(self):
+        return self.gi.histories
+
+
+class DatasetContainer(Wrapper, metaclass=abc.ABCMeta):
+    """
+    Abstract base class for dataset containers (histories and libraries).
+    """
+    BASE_ATTRS = Wrapper.BASE_ATTRS + ('deleted',)
+
+    @abc.abstractmethod
+    def __init__(self, c_dict, content_infos=None, gi=None):
+        """
+        :type content_infos: list of :class:`ContentInfo`
+        :param content_infos: info objects for the container's contents
+        """
+        super().__init__(c_dict, gi=gi)
+        if content_infos is None:
+            content_infos = []
+        object.__setattr__(self, 'content_infos', content_infos)
+
+    @property
+    def dataset_ids(self):
+        """
+        Return the ids of the contained datasets.
+        """
+        return [_.id for _ in self.content_infos if _.type == 'file']
+
+    def preview(self):
+        getf = self.gi_module.get_previews
+        # self.state could be stale: check both regular and deleted containers
+        try:
+            p = [_ for _ in getf() if _.id == self.id][0]
+        except IndexError:
+            try:
+                p = [_ for _ in getf(deleted=True) if _.id == self.id][0]
+            except IndexError:
+                raise ValueError('no object for id %s' % self.id)
+        return p
+
+    def refresh(self):
+        """
+        Re-fetch the attributes pertaining to this object.
+
+        Returns: self
+        """
+        fresh = self.gi_module.get(self.id)
+        self.__init__(
+            fresh.wrapped, content_infos=fresh.content_infos, gi=self.gi)
+        return self
+
+    def get_dataset(self, ds_id):
+        """
+        Retrieve the dataset corresponding to the given id.
+
+        :type ds_id: str
+        :param ds_id: dataset id
+
+        :rtype: :class:`~.HistoryDatasetAssociation` or
+          :class:`~.LibraryDataset`
+        :return: the dataset corresponding to ``ds_id``
+        """
+        gi_client = getattr(self.gi.gi, self.API_MODULE)
+        ds_dict = gi_client.show_dataset(self.id, ds_id)
+        return self.DS_TYPE(ds_dict, self, gi=self.gi)
+
+    def get_datasets(self, name=None):
+        """
+        Get all datasets contained inside this dataset container.
+
+        :type name: str
+        :param name: return only datasets with this name
+
+        :rtype: list of :class:`~.HistoryDatasetAssociation` or list of
+          :class:`~.LibraryDataset`
+        :return: datasets with the given name contained inside this
+          container
+
+        .. note::
+
+          when filtering library datasets by name, specify their full
+          paths starting from the library's root folder, e.g.,
+          ``/seqdata/reads.fastq``.  Full paths are available through
+          the ``content_infos`` attribute of
+          :class:`~.Library` objects.
+        """
+        if name is None:
+            ds_ids = self.dataset_ids
+        else:
+            ds_ids = [_.id for _ in self.content_infos if _.name == name]
+        return [self.get_dataset(_) for _ in ds_ids]
+
+
+class History(DatasetContainer):
+    """
+    Maps to a Galaxy history.
+    """
+    BASE_ATTRS = DatasetContainer.BASE_ATTRS + ('annotation', 'published', 'state', 'state_ids', 'state_details', 'tags')
+    DS_TYPE = HistoryDatasetAssociation
+    DSC_TYPE = HistoryDatasetCollectionAssociation
+    CONTENT_INFO_TYPE = HistoryContentInfo
+    API_MODULE = 'histories'
+
+    def __init__(self, hist_dict, content_infos=None, gi=None):
+        super().__init__(hist_dict, content_infos=content_infos, gi=gi)
+
+    @property
+    def gi_module(self):
+        return self.gi.histories
+
+    def update(self, **kwds):
+        """
+        Update history metadata information. Some of the attributes that can be
+        modified are documented below.
+
+        :type name: str
+        :param name: Replace history name with the given string
+
+        :type annotation: str
+        :param annotation: Replace history annotation with the given string
+
+        :type deleted: bool
+        :param deleted: Mark or unmark history as deleted
+
+        :type purged: bool
+        :param purged: If True, mark history as purged (permanently deleted).
+
+        :type published: bool
+        :param published: Mark or unmark history as published
+
+        :type importable: bool
+        :param importable: Mark or unmark history as importable
+
+        :type tags: list
+        :param tags: Replace history tags with the given list
+        """
+        # TODO: wouldn't it be better if name and annotation were attributes?
+        self.gi.gi.histories.update_history(self.id, **kwds)
+        self.refresh()
+        return self
+
+    def delete(self, purge=False):
+        """
+        Delete this history.
+
+        :type purge: bool
+        :param purge: if ``True``, also purge (permanently delete) the history
+
+        .. note::
+          For the purge option to work, the Galaxy instance must have the
+          ``allow_user_dataset_purge`` option set to ``true`` in the
+          ``config/galaxy.yml`` configuration file.
+        """
+        self.gi.histories.delete(id_=self.id, purge=purge)
+        self.refresh()
+        self.unmap()
+
+    def import_dataset(self, lds):
+        """
+        Import a dataset into the history from a library.
+
+        :type lds: :class:`~.LibraryDataset`
+        :param lds: the library dataset to import
+
+        :rtype: :class:`~.HistoryDatasetAssociation`
+        :return: the imported history dataset
+        """
+        if not self.is_mapped:
+            raise RuntimeError('history is not mapped to a Galaxy object')
+        if not isinstance(lds, LibraryDataset):
+            raise TypeError('lds is not a LibraryDataset')
+        res = self.gi.gi.histories.upload_dataset_from_library(self.id, lds.id)
+        if not isinstance(res, Mapping):
+            raise RuntimeError(
+                'upload_dataset_from_library: unexpected reply: %r' % res)
+        self.refresh()
+        return self.get_dataset(res['id'])
+
+    def upload_file(self, path, **kwargs):
+        """
+        Upload the file specified by ``path`` to this history.
+
+        :type path: str
+        :param path: path of the file to upload
+
+        See :meth:`~bioblend.galaxy.tools.ToolClient.upload_file` for
+        the optional parameters.
+
+        :rtype: :class:`~.HistoryDatasetAssociation`
+        :return: the uploaded dataset
+        """
+        out_dict = self.gi.gi.tools.upload_file(path, self.id, **kwargs)
+        self.refresh()
+        return self.get_dataset(out_dict['outputs'][0]['id'])
+
+    upload_dataset = upload_file
+
+    def upload_from_ftp(self, path, **kwargs):
+        """
+        Upload the file specified by ``path`` from the user's FTP directory to
+        this history.
+
+        :type path: str
+        :param path: path of the file in the user's FTP directory
+
+        See :meth:`~bioblend.galaxy.tools.ToolClient.upload_file` for
+        the optional parameters.
+
+        :rtype: :class:`~.HistoryDatasetAssociation`
+        :return: the uploaded dataset
+        """
+        out_dict = self.gi.gi.tools.upload_from_ftp(path, self.id, **kwargs)
+        self.refresh()
+        return self.get_dataset(out_dict['outputs'][0]['id'])
+
+    def paste_content(self, content, **kwargs):
+        """
+        Upload a string to a new dataset in this history.
+
+        :type content: str
+        :param content: content of the new dataset to upload
+
+        See :meth:`~bioblend.galaxy.tools.ToolClient.upload_file` for
+        the optional parameters (except file_name).
+
+        :rtype: :class:`~.HistoryDatasetAssociation`
+        :return: the uploaded dataset
+        """
+        out_dict = self.gi.gi.tools.paste_content(content, self.id, **kwargs)
+        self.refresh()
+        return self.get_dataset(out_dict['outputs'][0]['id'])
+
+    def export(self, gzip=True, include_hidden=False, include_deleted=False,
+               wait=False, maxwait=None):
+        """
+        Start a job to create an export archive for this history.  See
+        :meth:`~bioblend.galaxy.histories.HistoryClient.export_history`
+        for parameter and return value info.
+        """
+        return self.gi.gi.histories.export_history(
+            self.id, gzip=gzip, include_hidden=include_hidden,
+            include_deleted=include_deleted, wait=wait, maxwait=maxwait)
+
+    def download(self, jeha_id, outf, chunk_size=bioblend.CHUNK_SIZE):
+        """
+        Download an export archive for this history.  Use :meth:`export`
+        to create an export and get the required ``jeha_id``.  See
+        :meth:`~bioblend.galaxy.histories.HistoryClient.download_history`
+        for parameter and return value info.
+        """
+        return self.gi.gi.histories.download_history(
+            self.id, jeha_id, outf, chunk_size=chunk_size)
+
+    def create_dataset_collection(self, collection_description):
+        """
+        Create a new dataset collection in the history by providing a collection description.
+
+        :type collection_description: bioblend.galaxy.dataset_collections.CollectionDescription
+        :param collection_description: a description of the dataset collection
+
+        :rtype: :class:`~.HistoryDatasetCollectionAssociation`
+        :return: the new dataset collection
+        """
+        dataset_collection = self.gi.gi.histories.create_dataset_collection(self.id, collection_description)
+        self.refresh()
+        return self.get_dataset_collection(dataset_collection['id'])
+
+    def get_dataset_collection(self, dsc_id):
+        """
+        Retrieve the dataset collection corresponding to the given id.
+
+        :type dsc_id: str
+        :param dsc_id: dataset collection id
+
+        :rtype: :class:`~.HistoryDatasetCollectionAssociation`
+        :return: the dataset collection corresponding to ``dsc_id``
+        """
+        dsc_dict = self.gi.gi.histories.show_dataset_collection(self.id, dsc_id)
+        return self.DSC_TYPE(dsc_dict, self, gi=self.gi)
+
+
+class Library(DatasetContainer):
+    """
+    Maps to a Galaxy library.
+    """
+    BASE_ATTRS = DatasetContainer.BASE_ATTRS + ('description', 'synopsis')
+    DS_TYPE = LibraryDataset
+    CONTENT_INFO_TYPE = LibraryContentInfo
+    API_MODULE = 'libraries'
+
+    def __init__(self, lib_dict, content_infos=None, gi=None):
+        super().__init__(lib_dict, content_infos=content_infos, gi=gi)
+
+    @property
+    def gi_module(self):
+        return self.gi.libraries
+
+    @property
+    def folder_ids(self):
+        """
+        Return the ids of the contained folders.
+        """
+        return [_.id for _ in self.content_infos if _.type == 'folder']
+
+    def delete(self):
+        """
+        Delete this library.
+        """
+        self.gi.libraries.delete(id_=self.id)
+        self.refresh()
+        self.unmap()
+
+    def _pre_upload(self, folder):
+        """
+        Return the id of the given folder, after sanity checking.
+        """
+        if not self.is_mapped:
+            raise RuntimeError('library is not mapped to a Galaxy object')
+        return None if folder is None else folder.id
+
+    def upload_data(self, data, folder=None, **kwargs):
+        """
+        Upload data to this library.
+
+        :type data: str
+        :param data: dataset contents
+
+        :type folder: :class:`~.Folder`
+        :param folder: a folder object, or ``None`` to upload to the root folder
+
+        :rtype: :class:`~.LibraryDataset`
+        :return: the dataset object that represents the uploaded content
+
+        Optional keyword arguments: ``file_type``, ``dbkey``.
+        """
+        fid = self._pre_upload(folder)
+        res = self.gi.gi.libraries.upload_file_contents(
+            self.id, data, folder_id=fid, **kwargs)
+        self.refresh()
+        return self.get_dataset(res[0]['id'])
+
+    def upload_from_url(self, url, folder=None, **kwargs):
+        """
+        Upload data to this library from the given URL.
+
+        :type url: str
+        :param url: URL from which data should be read
+
+        See :meth:`.upload_data` for info on other params.
+        """
+        fid = self._pre_upload(folder)
+        res = self.gi.gi.libraries.upload_file_from_url(
+            self.id, url, folder_id=fid, **kwargs)
+        self.refresh()
+        return self.get_dataset(res[0]['id'])
+
+    def upload_from_local(self, path, folder=None, **kwargs):
+        """
+        Upload data to this library from a local file.
+
+        :type path: str
+        :param path: local file path from which data should be read
+
+        See :meth:`.upload_data` for info on other params.
+        """
+        fid = self._pre_upload(folder)
+        res = self.gi.gi.libraries.upload_file_from_local_path(
+            self.id, path, folder_id=fid, **kwargs)
+        self.refresh()
+        return self.get_dataset(res[0]['id'])
+
+    def upload_from_galaxy_fs(self, paths, folder=None, link_data_only=None, **kwargs):
+        """
+        Upload data to this library from filesystem paths on the server.
+
+        .. note::
+          For this method to work, the Galaxy instance must have the
+          ``allow_path_paste`` option set to ``true`` in the
+          ``config/galaxy.yml`` configuration file.
+
+        :type paths: str or :class:`~collections.abc.Iterable` of str
+        :param paths: server-side file paths from which data should be read
+
+        :type link_data_only: str
+        :param link_data_only: either 'copy_files' (default) or
+          'link_to_files'. Setting to 'link_to_files' symlinks instead of
+          copying the files
+
+        :rtype: list of :class:`~.LibraryDataset`
+        :return: the dataset objects that represent the uploaded content
+
+        See :meth:`.upload_data` for info on other params.
+        """
+        fid = self._pre_upload(folder)
+        if isinstance(paths, str):
+            paths = (paths,)
+        paths = '\n'.join(paths)
+        res = self.gi.gi.libraries.upload_from_galaxy_filesystem(
+            self.id, paths, folder_id=fid, link_data_only=link_data_only,
+            **kwargs)
+        if res is None:
+            raise RuntimeError('upload_from_galaxy_filesystem: no reply')
+        if not isinstance(res, Sequence):
+            raise RuntimeError(
+                'upload_from_galaxy_filesystem: unexpected reply: %r' % res)
+        new_datasets = [
+            self.get_dataset(ds_info['id']) for ds_info in res
+        ]
+        self.refresh()
+        return new_datasets
+
+    def copy_from_dataset(self, hda, folder=None, message=''):
+        """
+        Copy a history dataset into this library.
+
+        :type hda: :class:`~.HistoryDatasetAssociation`
+        :param hda: history dataset to copy into the library
+
+        See :meth:`.upload_data` for info on other params.
+        """
+        fid = self._pre_upload(folder)
+        res = self.gi.gi.libraries.copy_from_dataset(
+            self.id, hda.id, folder_id=fid, message=message)
+        self.refresh()
+        return self.get_dataset(res['library_dataset_id'])
+
+    def create_folder(self, name, description=None, base_folder=None):
+        """
+        Create a folder in this library.
+
+        :type name: str
+        :param name: folder name
+
+        :type description: str
+        :param description: optional folder description
+
+        :type base_folder: :class:`~.Folder`
+        :param base_folder: parent folder, or ``None`` to create in the root
+          folder
+
+        :rtype: :class:`~.Folder`
+        :return: the folder just created
+        """
+        bfid = None if base_folder is None else base_folder.id
+        res = self.gi.gi.libraries.create_folder(
+            self.id, name, description=description, base_folder_id=bfid)
+        self.refresh()
+        return self.get_folder(res[0]['id'])
+
+    def get_folder(self, f_id):
+        """
+        Retrieve the folder corresponding to the given id.
+
+        :rtype: :class:`~.Folder`
+        :return: the folder corresponding to ``f_id``
+        """
+        f_dict = self.gi.gi.libraries.show_folder(self.id, f_id)
+        return Folder(f_dict, self, gi=self.gi)
+
+    @property
+    def root_folder(self):
+        """
+        The root folder of this library.
+
+        :rtype: :class:`~.Folder`
+        :return: the root folder of this library
+        """
+        return self.get_folder(self.gi.gi.libraries._get_root_folder_id(self.id))
+
+
+class Folder(Wrapper):
+    """
+    Maps to a folder in a Galaxy library.
+    """
+    BASE_ATTRS = Wrapper.BASE_ATTRS + ('description', 'deleted', 'item_count')
+
+    def __init__(self, f_dict, container, gi=None):
+        super().__init__(f_dict, gi=gi)
+        object.__setattr__(self, 'container', container)
+
+    @property
+    def parent(self):
+        """
+        The parent folder of this folder. The parent of the root folder is
+        ``None``.
+
+        :rtype: :class:`~.Folder`
+        :return: the parent of this folder
+        """
+        if self._cached_parent is None:
+            object.__setattr__(self,
+                               '_cached_parent',
+                               self._get_parent())
+        return self._cached_parent
+
+    def _get_parent(self):
+        """
+        Return the parent folder of this folder.
+        """
+        parent_id = self.wrapped['parent_id']
+        if parent_id is None:
+            return None
+        return self.container.get_folder(parent_id)
+
+    @property
+    def gi_module(self):
+        return self.gi.libraries
+
+    @property
+    def container_id(self):
+        """
+        Deprecated property.
+
+        Id of the folder container. Use :attr:`.container.id` instead.
+        """
+        return self.container.id
+
+    def refresh(self):
+        """
+        Re-fetch the attributes pertaining to this object.
+
+        Returns: self
+        """
+        f_dict = self.gi.gi.libraries.show_folder(self.container.id, self.id)
+        self.__init__(f_dict, self.container, gi=self.gi)
+        return self
+
+
+class Tool(Wrapper):
+    """
+    Maps to a Galaxy tool.
+    """
+    BASE_ATTRS = Wrapper.BASE_ATTRS + ('version',)
+    POLLING_INTERVAL = 10  # for output state monitoring
+
+    def __init__(self, t_dict, gi=None):
+        super().__init__(t_dict, gi=gi)
+
+    @property
+    def gi_module(self):
+        return self.gi.tools
+
+    def run(self, inputs, history, wait=False,
+            polling_interval=POLLING_INTERVAL):
+        """
+        Execute this tool in the given history with inputs from dict
+        ``inputs``.
+
+        :type inputs: dict
+        :param inputs: dictionary of input datasets and parameters for
+          the tool (see below)
+
+        :type history: :class:`History`
+        :param history: the history where to execute the tool
+
+        :type wait: bool
+        :param wait: whether to wait while the returned datasets are
+          in a pending state
+
+        :type polling_interval: float
+        :param polling_interval: polling interval in seconds
+
+        :rtype: list of :class:`HistoryDatasetAssociation`
+        :return: list of output datasets
+
+        The ``inputs`` dict should contain input datasets and parameters
+        in the (largely undocumented) format used by the Galaxy API.
+        Some examples can be found in `Galaxy's API test suite
+        <https://github.com/galaxyproject/galaxy/blob/dev/lib/galaxy_test/api/test_tools.py>`_.
+        The value of an input dataset can also be a :class:`Dataset`
+        object, which will be automatically converted to the needed
+        format.
+        """
+        for k, v in inputs.items():
+            if isinstance(v, Dataset):
+                inputs[k] = {'src': v.SRC, 'id': v.id}
+        out_dict = self.gi.gi.tools.run_tool(history.id, self.id, inputs)
+        outputs = [history.get_dataset(_['id']) for _ in out_dict['outputs']]
+        if wait:
+            self.gi._wait_datasets(outputs, polling_interval=polling_interval)
+        return outputs
+
+
+class Job(Wrapper):
+    """
+    Maps to a Galaxy job.
+    """
+    BASE_ATTRS = ('id', 'state')
+
+    def __init__(self, j_dict, gi=None):
+        super().__init__(j_dict, gi=gi)
+
+    @property
+    def gi_module(self):
+        return self.gi.jobs
+
+
+class Preview(Wrapper, metaclass=abc.ABCMeta):
+    """
+    Abstract base class for Galaxy entity 'previews'.
+
+    Classes derived from this one model the short summaries returned
+    by global getters such as ``/api/libraries``.
+    """
+    BASE_ATTRS = Wrapper.BASE_ATTRS + ('deleted',)
+
+    @abc.abstractmethod
+    def __init__(self, pw_dict, gi=None):
+        super().__init__(pw_dict, gi=gi)
+
+
+class LibraryPreview(Preview):
+    """
+    Models Galaxy library 'previews'.
+
+    Instances of this class wrap dictionaries obtained by getting
+    ``/api/libraries`` from Galaxy.
+    """
+    def __init__(self, pw_dict, gi=None):
+        super().__init__(pw_dict, gi=gi)
+
+    @property
+    def gi_module(self):
+        return self.gi.libraries
+
+
+class HistoryPreview(Preview):
+    """
+    Models Galaxy history 'previews'.
+
+    Instances of this class wrap dictionaries obtained by getting
+    ``/api/histories`` from Galaxy.
+    """
+    BASE_ATTRS = Preview.BASE_ATTRS + ('tags',)
+
+    def __init__(self, pw_dict, gi=None):
+        super().__init__(pw_dict, gi=gi)
+
+    @property
+    def gi_module(self):
+        return self.gi.histories
+
+
+class WorkflowPreview(Preview):
+    """
+    Models Galaxy workflow 'previews'.
+
+    Instances of this class wrap dictionaries obtained by getting
+    ``/api/workflows`` from Galaxy.
+    """
+    BASE_ATTRS = Preview.BASE_ATTRS + ('published', 'tags')
+
+    def __init__(self, pw_dict, gi=None):
+        super().__init__(pw_dict, gi=gi)
+
+    @property
+    def gi_module(self):
+        return self.gi.workflows
+
+
+class JobPreview(Preview):
+    """
+    Models Galaxy job 'previews'.
+
+    Instances of this class wrap dictionaries obtained by getting
+    ``/api/jobs`` from Galaxy.
+    """
+    BASE_ATTRS = ('id', 'state')
+
+    def __init__(self, pw_dict, gi=None):
+        super().__init__(pw_dict, gi=gi)
+
+    @property
+    def gi_module(self):
+        return self.gi.jobs