view planemo/lib/python3.7/site-packages/networkx/algorithms/isolate.py @ 1:56ad4e20f292 draft

"planemo upload commit 6eee67778febed82ddd413c3ca40b3183a3898f1"
author guerler
date Fri, 31 Jul 2020 00:32:28 -0400
parents
children
line wrap: on
line source

# -*- encoding: utf-8 -*-
#    Copyright 2015 NetworkX developers.
#    Copyright (C) 2004-2019 by
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.
"""
Functions for identifying isolate (degree zero) nodes.
"""
import networkx as nx

__author__ = """\n""".join(['Drew Conway <drew.conway@nyu.edu>',
                            'Aric Hagberg <hagberg@lanl.gov>'])

__all__ = ['is_isolate', 'isolates', 'number_of_isolates']


def is_isolate(G, n):
    """Determines whether a node is an isolate.

    An *isolate* is a node with no neighbors (that is, with degree
    zero). For directed graphs, this means no in-neighbors and no
    out-neighbors.

    Parameters
    ----------
    G : NetworkX graph

    n : node
        A node in `G`.

    Returns
    -------
    is_isolate : bool
       True if and only if `n` has no neighbors.

    Examples
    --------
    >>> G=nx.Graph()
    >>> G.add_edge(1,2)
    >>> G.add_node(3)
    >>> nx.is_isolate(G,2)
    False
    >>> nx.is_isolate(G,3)
    True
    """
    return G.degree(n) == 0


def isolates(G):
    """Iterator over isolates in the graph.

    An *isolate* is a node with no neighbors (that is, with degree
    zero). For directed graphs, this means no in-neighbors and no
    out-neighbors.

    Parameters
    ----------
    G : NetworkX graph

    Returns
    -------
    iterator
        An iterator over the isolates of `G`.

    Examples
    --------
    To get a list of all isolates of a graph, use the :class:`list`
    constructor::

        >>> G = nx.Graph()
        >>> G.add_edge(1, 2)
        >>> G.add_node(3)
        >>> list(nx.isolates(G))
        [3]

    To remove all isolates in the graph, first create a list of the
    isolates, then use :meth:`Graph.remove_nodes_from`::

        >>> G.remove_nodes_from(list(nx.isolates(G)))
        >>> list(G)
        [1, 2]

    For digraphs, isolates have zero in-degree and zero out_degre::

        >>> G = nx.DiGraph([(0, 1), (1, 2)])
        >>> G.add_node(3)
        >>> list(nx.isolates(G))
        [3]

    """
    return (n for n, d in G.degree() if d == 0)


def number_of_isolates(G):
    """Returns the number of isolates in the graph.

    An *isolate* is a node with no neighbors (that is, with degree
    zero). For directed graphs, this means no in-neighbors and no
    out-neighbors.

    Parameters
    ----------
    G : NetworkX graph

    Returns
    -------
    int
        The number of degree zero nodes in the graph `G`.

    """
    # TODO This can be parallelized.
    return sum(1 for v in isolates(G))