Mercurial > repos > guerler > springsuite
view planemo/lib/python3.7/site-packages/networkx/linalg/bethehessianmatrix.py @ 1:56ad4e20f292 draft
"planemo upload commit 6eee67778febed82ddd413c3ca40b3183a3898f1"
author | guerler |
---|---|
date | Fri, 31 Jul 2020 00:32:28 -0400 |
parents | |
children |
line wrap: on
line source
# -*- coding: utf-8 -*- # Copyright (C) 2004-2019 by # Aric Hagberg <hagberg@lanl.gov> # Dan Schult <dschult@colgate.edu> # Pieter Swart <swart@lanl.gov> # Jean-Gabriel Young <jeangabriel.young@gmail.com> # All rights reserved. # BSD license. # # Authors: Jean-Gabriel Young (jeangabriel.young@gmail.com) """Bethe Hessian or deformed Laplacian matrix of graphs.""" import networkx as nx from networkx.utils import not_implemented_for __all__ = ['bethe_hessian_matrix'] @not_implemented_for('directed') @not_implemented_for('multigraph') def bethe_hessian_matrix(G, r=None, nodelist=None): r"""Returns the Bethe Hessian matrix of G. The Bethe Hessian is a family of matrices parametrized by r, defined as H(r) = (r^2 - 1) I - r A + D where A is the adjacency matrix, D is the diagonal matrix of node degrees, and I is the identify matrix. It is equal to the graph laplacian when the regularizer r = 1. The default choice of regularizer should be the ratio [2] .. math:: r_m = \left(\sum k_i \right)^{-1}\left(\sum k_i^2 \right) - 1 Parameters ---------- G : Graph A NetworkX graph r : float Regularizer parameter nodelist : list, optional The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes(). Returns ------- H : Numpy matrix The Bethe Hessian matrix of G, with paramter r. Examples -------- >>> import networkx as nx >>> k =[3, 2, 2, 1, 0] >>> G = nx.havel_hakimi_graph(k) >>> H = nx.modularity_matrix(G) See Also -------- bethe_hessian_spectrum to_numpy_matrix adjacency_matrix laplacian_matrix References ---------- .. [1] A. Saade, F. Krzakala and L. Zdeborová "Spectral clustering of graphs with the bethe hessian", Advances in Neural Information Processing Systems. 2014. .. [2] C. M. Lee, E. Levina "Estimating the number of communities in networks by spectral methods" arXiv:1507.00827, 2015. """ import scipy.sparse if nodelist is None: nodelist = list(G) if r is None: r = sum([d ** 2 for v, d in nx.degree(G)]) /\ sum([d for v, d in nx.degree(G)]) - 1 A = nx.to_scipy_sparse_matrix(G, nodelist=nodelist, format='csr') n, m = A.shape diags = A.sum(axis=1) D = scipy.sparse.spdiags(diags.flatten(), [0], m, n, format='csr') I = scipy.sparse.eye(m, n, format='csr') return (r ** 2 - 1) * I - r * A + D # fixture for pytest def setup_module(module): import pytest numpy = pytest.importorskip('numpy')