Mercurial > repos > imgteam > 2d_feature_extraction
view 2d_feature_extraction.py @ 6:5bc8cdc17fd0 draft default tip
planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tree/master/tools/2d_feature_extraction/ commit c86a1b93cb7732f7331a981d13465653cc1a2790
author | imgteam |
---|---|
date | Wed, 24 Apr 2024 08:11:39 +0000 |
parents | 2436a8807ad1 |
children |
line wrap: on
line source
import argparse import giatools.io import numpy as np import pandas as pd import skimage.feature import skimage.measure import skimage.morphology import skimage.segmentation if __name__ == '__main__': parser = argparse.ArgumentParser(description='Extract image features') # TODO create factory for boilerplate code features = parser.add_argument_group('compute features') features.add_argument('--all', dest='all_features', action='store_true') features.add_argument('--label', dest='add_label', action='store_true') features.add_argument('--patches', dest='add_roi_patches', action='store_true') features.add_argument('--max_intensity', dest='max_intensity', action='store_true') features.add_argument('--mean_intensity', dest='mean_intensity', action='store_true') features.add_argument('--min_intensity', dest='min_intensity', action='store_true') features.add_argument('--moments_hu', dest='moments_hu', action='store_true') features.add_argument('--centroid', dest='centroid', action='store_true') features.add_argument('--bbox', dest='bbox', action='store_true') features.add_argument('--area', dest='area', action='store_true') features.add_argument('--filled_area', dest='filled_area', action='store_true') features.add_argument('--convex_area', dest='convex_area', action='store_true') features.add_argument('--perimeter', dest='perimeter', action='store_true') features.add_argument('--extent', dest='extent', action='store_true') features.add_argument('--eccentricity', dest='eccentricity', action='store_true') features.add_argument('--equivalent_diameter', dest='equivalent_diameter', action='store_true') features.add_argument('--euler_number', dest='euler_number', action='store_true') features.add_argument('--inertia_tensor_eigvals', dest='inertia_tensor_eigvals', action='store_true') features.add_argument('--major_axis_length', dest='major_axis_length', action='store_true') features.add_argument('--minor_axis_length', dest='minor_axis_length', action='store_true') features.add_argument('--orientation', dest='orientation', action='store_true') features.add_argument('--solidity', dest='solidity', action='store_true') features.add_argument('--moments', dest='moments', action='store_true') features.add_argument('--convexity', dest='convexity', action='store_true') parser.add_argument('--label_file_binary', dest='label_file_binary', action='store_true') parser.add_argument('--raw', dest='raw_file', type=argparse.FileType('r'), help='Original input file', required=False) parser.add_argument('label_file', type=argparse.FileType('r'), help='Label input file') parser.add_argument('output_file', type=argparse.FileType('w'), help='Tabular output file') args = parser.parse_args() label_file_binary = args.label_file_binary label_file = args.label_file.name out_file = args.output_file.name add_patch = args.add_roi_patches raw_image = None if args.raw_file is not None: raw_image = giatools.io.imread(args.raw_file.name) raw_label_image = giatools.io.imread(label_file) df = pd.DataFrame() if label_file_binary: raw_label_image = skimage.measure.label(raw_label_image) regions = skimage.measure.regionprops(raw_label_image, intensity_image=raw_image) df['it'] = np.arange(len(regions)) if add_patch: df['image'] = df['it'].map(lambda ait: regions[ait].image.astype(np.float).tolist()) df['intensity_image'] = df['it'].map(lambda ait: regions[ait].intensity_image.astype(np.float).tolist()) # TODO no matrix features, but split in own rows? if args.add_label or args.all_features: df['label'] = df['it'].map(lambda ait: regions[ait].label) if raw_image is not None: if args.max_intensity or args.all_features: df['max_intensity'] = df['it'].map(lambda ait: regions[ait].max_intensity) if args.mean_intensity or args.all_features: df['mean_intensity'] = df['it'].map(lambda ait: regions[ait].mean_intensity) if args.min_intensity or args.all_features: df['min_intensity'] = df['it'].map(lambda ait: regions[ait].min_intensity) if args.moments_hu or args.all_features: df['moments_hu'] = df['it'].map(lambda ait: regions[ait].moments_hu) if args.centroid or args.all_features: df['centroid'] = df['it'].map(lambda ait: regions[ait].centroid) if args.bbox or args.all_features: df['bbox'] = df['it'].map(lambda ait: regions[ait].bbox) if args.area or args.all_features: df['area'] = df['it'].map(lambda ait: regions[ait].area) if args.filled_area or args.all_features: df['filled_area'] = df['it'].map(lambda ait: regions[ait].filled_area) if args.convex_area or args.all_features: df['convex_area'] = df['it'].map(lambda ait: regions[ait].convex_area) if args.perimeter or args.all_features: df['perimeter'] = df['it'].map(lambda ait: regions[ait].perimeter) if args.extent or args.all_features: df['extent'] = df['it'].map(lambda ait: regions[ait].extent) if args.eccentricity or args.all_features: df['eccentricity'] = df['it'].map(lambda ait: regions[ait].eccentricity) if args.equivalent_diameter or args.all_features: df['equivalent_diameter'] = df['it'].map(lambda ait: regions[ait].equivalent_diameter) if args.euler_number or args.all_features: df['euler_number'] = df['it'].map(lambda ait: regions[ait].euler_number) if args.inertia_tensor_eigvals or args.all_features: df['inertia_tensor_eigvals'] = df['it'].map(lambda ait: regions[ait].inertia_tensor_eigvals) if args.major_axis_length or args.all_features: df['major_axis_length'] = df['it'].map(lambda ait: regions[ait].major_axis_length) if args.minor_axis_length or args.all_features: df['minor_axis_length'] = df['it'].map(lambda ait: regions[ait].minor_axis_length) if args.orientation or args.all_features: df['orientation'] = df['it'].map(lambda ait: regions[ait].orientation) if args.solidity or args.all_features: df['solidity'] = df['it'].map(lambda ait: regions[ait].solidity) if args.moments or args.all_features: df['moments'] = df['it'].map(lambda ait: regions[ait].moments) if args.convexity or args.all_features: perimeter = df['it'].map(lambda ait: regions[ait].perimeter) area = df['it'].map(lambda ait: regions[ait].area) df['convexity'] = area / (perimeter * perimeter) del df['it'] df.to_csv(out_file, sep='\t', lineterminator='\n', index=False)