Mercurial > repos > imgteam > 2d_split_binaryimage_by_watershed
view 2d_split_binaryimage_by_watershed.py @ 0:5e21d7342593 draft
planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tools/2d_split_binaryimage_by_watershed/ commit b2acc1845a25828181597fe5b6982fe116a7796d
author | imgteam |
---|---|
date | Mon, 22 Jul 2019 05:00:37 -0400 |
parents | |
children | f8f7987586b7 |
line wrap: on
line source
import argparse import sys import skimage.io from skimage.morphology import watershed from skimage.feature import peak_local_max from scipy import ndimage as ndi import skimage.util if __name__ == "__main__": parser = argparse.ArgumentParser(description='Split binaryimage by watershed') parser.add_argument('input_file', type=argparse.FileType('r'), default=sys.stdin, help='input file') parser.add_argument('out_file', type=argparse.FileType('w'), default=sys.stdin, help='out file (TIFF)') parser.add_argument('min_distance', type=int, default=100, help='Minimum distance to next object') args = parser.parse_args() img_in = skimage.io.imread(args.input_file.name) distance = ndi.distance_transform_edt(img_in) local_maxi = peak_local_max(distance, indices=False, min_distance=args.min_distance, labels=img_in) markers = ndi.label(local_maxi)[0] res = watershed(-distance, markers, mask=img_in) res = skimage.util.img_as_uint(res) skimage.io.imsave(args.out_file.name, res, plugin="tifffile")