Mercurial > repos > imgteam > anisotropic_diffusion
view anisotropic_diffusion.py @ 0:d13e26f576bc draft
planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tools/anisotropic-diffusion/ commit c3f4b766f03770f094fda6bda0a5882c0ebd4581
author | imgteam |
---|---|
date | Sat, 09 Feb 2019 14:30:00 -0500 |
parents | |
children | 17d3cfba9b5a |
line wrap: on
line source
import argparse import sys import warnings import numpy as np import skimage.io import skimage.util from medpy.filter.smoothing import anisotropic_diffusion parser = argparse.ArgumentParser() parser.add_argument('input_file', type=argparse.FileType('r'), default=sys.stdin, help='input file') parser.add_argument('out_file', type=argparse.FileType('w'), default=sys.stdin, help='out file (TIFF)') parser.add_argument('niter', type=int, help='Number of iterations', default=1) parser.add_argument('kappa', type=int, help='Conduction coefficient', default=50) parser.add_argument('gamma', type=float, help='Speed of diffusion', default=0.1) parser.add_argument('eqoption', type=int, choices=[1,2], help='Perona Malik diffusion equation', default=1) args = parser.parse_args() with warnings.catch_warnings(): warnings.simplefilter("ignore") #to ignore FutureWarning as well img_in = skimage.io.imread(args.input_file.name, plugin='tifffile') res = anisotropic_diffusion(img_in, niter=args.niter, kappa=args.kappa, gamma=args.gamma, option=args.eqoption) res[res<-1]=-1 res[res>1]=1 res = skimage.util.img_as_uint(res) #Attention: precision loss skimage.io.imsave(args.out_file.name, res, plugin='tifffile')