Mercurial > repos > imgteam > binary2labelimage
diff 2d_split_binaryimage_by_watershed.py @ 5:7f8102bdbfa1 draft default tip
planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tree/master/tools/binary2labelimage/ commit 48df7d9c58fb88e472caeb4d4a1e14170d79b643
author | imgteam |
---|---|
date | Mon, 12 May 2025 08:15:44 +0000 |
parents | 984358e43242 |
children |
line wrap: on
line diff
--- a/2d_split_binaryimage_by_watershed.py Tue Nov 14 08:27:27 2023 +0000 +++ b/2d_split_binaryimage_by_watershed.py Mon May 12 08:15:44 2025 +0000 @@ -1,11 +1,12 @@ import argparse import sys +import numpy as np import skimage.io import skimage.util from scipy import ndimage as ndi from skimage.feature import peak_local_max -from skimage.morphology import watershed +from skimage.segmentation import watershed if __name__ == "__main__": @@ -17,11 +18,15 @@ img_in = skimage.io.imread(args.input_file.name) distance = ndi.distance_transform_edt(img_in) - local_maxi = peak_local_max(distance, - indices=False, - min_distance=args.min_distance, - labels=img_in) - markers = ndi.label(local_maxi)[0] + + local_max_indices = peak_local_max( + distance, + min_distance=args.min_distance, + labels=img_in, + ) + local_max_mask = np.zeros(img_in.shape, dtype=bool) + local_max_mask[tuple(local_max_indices.T)] = True + markers = ndi.label(local_max_mask)[0] res = watershed(-distance, markers, mask=img_in) res = skimage.util.img_as_uint(res)