diff color_deconvolution.py @ 4:5bd113d38acc draft default tip

planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tree/master/tools/color_deconvolution/ commit f546b3cd5cbd3a8613cd517975c7ad1d1f83514e
author imgteam
date Thu, 06 Mar 2025 18:12:27 +0000
parents 612aa1478fe1
children
line wrap: on
line diff
--- a/color_deconvolution.py	Tue Oct 29 13:49:19 2024 +0000
+++ b/color_deconvolution.py	Thu Mar 06 18:12:27 2025 +0000
@@ -2,13 +2,23 @@
 import sys
 import warnings
 
+import giatools.io
 import numpy as np
 import skimage.color
 import skimage.io
 import skimage.util
+import tifffile
 from sklearn.decomposition import FactorAnalysis, FastICA, NMF, PCA
 
+# Stain separation matrix for H&E color deconvolution, extracted from ImageJ/FIJI
+rgb_from_he = np.array([
+    [0.64431860, 0.7166757, 0.26688856],
+    [0.09283128, 0.9545457, 0.28324000],
+    [0.63595444, 0.0010000, 0.77172660],
+])
+
 convOptions = {
+    # General color space conversion operations
     'hed2rgb': lambda img_raw: skimage.color.hed2rgb(img_raw),
     'hsv2rgb': lambda img_raw: skimage.color.hsv2rgb(img_raw),
     'lab2lch': lambda img_raw: skimage.color.lab2lch(img_raw),
@@ -28,6 +38,20 @@
     'xyz2luv': lambda img_raw: skimage.color.xyz2luv(img_raw),
     'xyz2rgb': lambda img_raw: skimage.color.xyz2rgb(img_raw),
 
+    # Color deconvolution operations
+    'hed_from_rgb': lambda img_raw: skimage.color.separate_stains(img_raw, skimage.color.hed_from_rgb),
+    'hdx_from_rgb': lambda img_raw: skimage.color.separate_stains(img_raw, skimage.color.hdx_from_rgb),
+    'fgx_from_rgb': lambda img_raw: skimage.color.separate_stains(img_raw, skimage.color.fgx_from_rgb),
+    'bex_from_rgb': lambda img_raw: skimage.color.separate_stains(img_raw, skimage.color.bex_from_rgb),
+    'rbd_from_rgb': lambda img_raw: skimage.color.separate_stains(img_raw, skimage.color.rbd_from_rgb),
+    'gdx_from_rgb': lambda img_raw: skimage.color.separate_stains(img_raw, skimage.color.gdx_from_rgb),
+    'hax_from_rgb': lambda img_raw: skimage.color.separate_stains(img_raw, skimage.color.hax_from_rgb),
+    'bro_from_rgb': lambda img_raw: skimage.color.separate_stains(img_raw, skimage.color.bro_from_rgb),
+    'bpx_from_rgb': lambda img_raw: skimage.color.separate_stains(img_raw, skimage.color.bpx_from_rgb),
+    'ahx_from_rgb': lambda img_raw: skimage.color.separate_stains(img_raw, skimage.color.ahx_from_rgb),
+    'hpx_from_rgb': lambda img_raw: skimage.color.separate_stains(img_raw, skimage.color.hpx_from_rgb),
+
+    # Recomposition operations (reverse color deconvolution)
     'rgb_from_hed': lambda img_raw: skimage.color.combine_stains(img_raw, skimage.color.rgb_from_hed),
     'rgb_from_hdx': lambda img_raw: skimage.color.combine_stains(img_raw, skimage.color.rgb_from_hdx),
     'rgb_from_fgx': lambda img_raw: skimage.color.combine_stains(img_raw, skimage.color.rgb_from_fgx),
@@ -40,18 +64,11 @@
     'rgb_from_ahx': lambda img_raw: skimage.color.combine_stains(img_raw, skimage.color.rgb_from_ahx),
     'rgb_from_hpx': lambda img_raw: skimage.color.combine_stains(img_raw, skimage.color.rgb_from_hpx),
 
-    'hed_from_rgb': lambda img_raw: skimage.color.separate_stains(img_raw, skimage.color.hed_from_rgb),
-    'hdx_from_rgb': lambda img_raw: skimage.color.separate_stains(img_raw, skimage.color.hdx_from_rgb),
-    'fgx_from_rgb': lambda img_raw: skimage.color.separate_stains(img_raw, skimage.color.fgx_from_rgb),
-    'bex_from_rgb': lambda img_raw: skimage.color.separate_stains(img_raw, skimage.color.bex_from_rgb),
-    'rbd_from_rgb': lambda img_raw: skimage.color.separate_stains(img_raw, skimage.color.rbd_from_rgb),
-    'gdx_from_rgb': lambda img_raw: skimage.color.separate_stains(img_raw, skimage.color.gdx_from_rgb),
-    'hax_from_rgb': lambda img_raw: skimage.color.separate_stains(img_raw, skimage.color.hax_from_rgb),
-    'bro_from_rgb': lambda img_raw: skimage.color.separate_stains(img_raw, skimage.color.bro_from_rgb),
-    'bpx_from_rgb': lambda img_raw: skimage.color.separate_stains(img_raw, skimage.color.bpx_from_rgb),
-    'ahx_from_rgb': lambda img_raw: skimage.color.separate_stains(img_raw, skimage.color.ahx_from_rgb),
-    'hpx_from_rgb': lambda img_raw: skimage.color.separate_stains(img_raw, skimage.color.hpx_from_rgb),
+    # Custom color deconvolution and recomposition operations
+    'rgb_from_he': lambda img_raw: skimage.color.combine_stains(img_raw, rgb_from_he),
+    'he_from_rgb': lambda img_raw: skimage.color.separate_stains(img_raw, np.linalg.inv(rgb_from_he)),
 
+    # Unsupervised machine learning-based operations
     'pca': lambda img_raw: np.reshape(PCA(n_components=3).fit_transform(np.reshape(img_raw, [-1, img_raw.shape[2]])),
                                       [img_raw.shape[0], img_raw.shape[1], -1]),
     'nmf': lambda img_raw: np.reshape(NMF(n_components=3, init='nndsvda').fit_transform(np.reshape(img_raw, [-1, img_raw.shape[2]])),
@@ -66,14 +83,33 @@
 parser.add_argument('input_file', type=argparse.FileType('r'), default=sys.stdin, help='input file')
 parser.add_argument('out_file', type=argparse.FileType('w'), default=sys.stdin, help='out file (TIFF)')
 parser.add_argument('conv_type', choices=convOptions.keys(), help='conversion type')
+parser.add_argument('--isolate_channel', type=int, help='set all other channels to zero (1-3)', default=0)
 args = parser.parse_args()
 
-img_in = skimage.io.imread(args.input_file.name)[:, :, 0:3]
-res = convOptions[args.conv_type](img_in)
-res[res < -1] = -1
-res[res > +1] = +1
+# Read and normalize the input image as TZYXC
+img_in = giatools.io.imread(args.input_file.name)
+
+# Verify input image
+assert img_in.shape[0] == 1, f'Image must have 1 frame (it has {img_in.shape[0]} frames)'
+assert img_in.shape[1] == 1, f'Image must have 1 slice (it has {img_in.shape[1]} slices)'
+assert img_in.shape[4] == 3, f'Image must have 3 channels (it has {img_in.shape[4]} channels)'
+
+# Normalize the image from TZYXC to YXC
+img_in = img_in.squeeze()
+assert img_in.ndim == 3
+
+# Apply channel isolation
+if args.isolate_channel:
+    for ch in range(3):
+        if ch + 1 != args.isolate_channel:
+            img_in[:, :, ch] = 0
+
+result = convOptions[args.conv_type](img_in)
+
+# It is sufficient to store 32bit floating point data, the precision loss is tolerable
+if result.dtype == np.float64:
+    result = result.astype(np.float32)
 
 with warnings.catch_warnings():
     warnings.simplefilter('ignore')
-    res = skimage.util.img_as_uint(res)  # Attention: precision loss
-    skimage.io.imsave(args.out_file.name, res, plugin='tifffile')
+    tifffile.imwrite(args.out_file.name, result)