view imagej2_noise_jython_script.py @ 1:8c0ace7ae77c draft

"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/image_processing/imagej2 commit 2afb24f3c81d625312186750a714d702363012b5"
author imgteam
date Mon, 28 Sep 2020 16:37:26 +0000
parents 93b416f8e9e3
children 6c47d8a43207
line wrap: on
line source

import sys

from ij import IJ

# Fiji Jython interpreter implements Python 2.5 which does not
# provide support for argparse.
error_log = sys.argv[-19]
input_file = sys.argv[-18]
image_datatype = sys.argv[-17]
noise = sys.argv[-16]
standard_deviation = sys.argv[-15]
radius = sys.argv[-14]
threshold = sys.argv[-13]
which_outliers = sys.argv[-12]
randomj = sys.argv[-11]
trials = sys.argv[-10]
probability = sys.argv[-9]
# Note the spelling - so things don't get confused due to Python lambda function.
lammbda = sys.argv[-8]
order = sys.argv[-7]
mean = sys.argv[-6]
sigma = sys.argv[-5]
min = sys.argv[-4]
max = sys.argv[-3]
insertion = sys.argv[-2]
tmp_output_path = sys.argv[-1]

# Open the input image file.
image_plus = IJ.openImage(input_file)
bit_depth = image_plus.getBitDepth()
image_type = image_plus.getType()
# Create an ImagePlus object for the image.
image_plus_copy = image_plus.duplicate()
# Make a copy of the image.
image_processor_copy = image_plus_copy.getProcessor()

# Perform the analysis on the ImagePlus object.
if noise == 'add_noise':
    IJ.run(image_plus_copy, "Add Noise", "")
elif noise == 'add_specified_noise':
    IJ.run(image_plus_copy, "Add Specified Noise", "standard=&standard_deviation")
elif noise == 'salt_and_pepper':
    IJ.run(image_plus_copy, "Salt and Pepper", "")
elif noise == 'despeckle':
    IJ.run(image_plus_copy, "Despeckle", "")
elif noise == 'remove_outliers':
    IJ.run(image_plus_copy, "Remove Outliers", "radius=&radius threshold=&threshold which=&which_outliers")
elif noise == 'remove_nans':
    IJ.run(image_plus_copy, "Remove NaNs", "")
elif noise == 'rof_denoise':
    IJ.run(image_plus_copy, "ROF Denoise", "")
elif noise == 'randomj':
    if randomj == 'randomj_binomial':
        IJ.run(image_plus_copy, "RandomJ Binomial", "trials=&trials probability=&probability insertion=&insertion")
    elif randomj == 'randomj_exponential':
        IJ.run(image_plus_copy, "RandomJ Exponential", "lambda=&lammbda insertion=&insertion")
    elif randomj == 'randomj_gamma':
        IJ.run(image_plus_copy, "RandomJ Gamma", "order=&order insertion=&insertion")
    elif randomj == 'randomj_gaussian':
        IJ.run(image_plus_copy, "RandomJ Gaussian", "mean=&mean sigma=&sigma insertion=&insertion")
    elif randomj == 'randomj_poisson':
        IJ.run(image_plus_copy, "RandomJ Poisson", "mean=&mean insertion=&insertion")
    elif randomj == 'randomj_uniform':
        IJ.run(image_plus_copy, "RandomJ Uniform", "min=&min max=&max insertion=&insertion")

# Save the ImagePlus object as a new image.
IJ.saveAs(image_plus_copy, image_datatype, tmp_output_path)