Mercurial > repos > imgteam > imagej2_enhance_contrast
diff imagej2_bunwarpj_align.py @ 0:edfc597fb180 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/image_processing/imagej2 commit b08f0e6d1546caaf627b21f8c94044285d5d5b9c-dirty"
author | imgteam |
---|---|
date | Tue, 17 Sep 2019 17:01:04 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/imagej2_bunwarpj_align.py Tue Sep 17 17:01:04 2019 -0400 @@ -0,0 +1,178 @@ +#!/usr/bin/env python +import argparse +import os +import shutil +import subprocess +import tempfile +import imagej2_base_utils + +# Parse Command Line. +parser = argparse.ArgumentParser() +parser.add_argument( '--source_image', dest='source_image', help='Source image' ) +parser.add_argument( '--source_image_format', dest='source_image_format', help='Source image format' ) +parser.add_argument( '--source_mask', dest='source_mask', default=None, help='Source mask' ) +parser.add_argument( '--source_mask_format', dest='source_mask_format', default=None, help='Source mask image format' ) +parser.add_argument( '--target_image', dest='target_image', help='Target image' ) +parser.add_argument( '--target_image_format', dest='target_image_format', help='Target image format' ) +parser.add_argument( '--target_mask', dest='target_mask', default=None, help='Target mask' ) +parser.add_argument( '--target_mask_format', dest='target_mask_format', default=None, help='Target mask image format' ) +parser.add_argument( '--min_scale_def', dest='min_scale_def', type=int, help='Initial deformation' ) +parser.add_argument( '--max_scale_def', dest='max_scale_def', type=int, help='Final deformation' ) +parser.add_argument( '--max_subsamp_fact', dest='max_subsamp_fact', type=int, help='Image sub-sample factor' ) +parser.add_argument( '--divergence_weight', dest='divergence_weight', type=float, help='Divergence weight' ) +parser.add_argument( '--curl_weight', dest='curl_weight', type=float, help='Curl weight' ) +parser.add_argument( '--image_weight', dest='image_weight', type=float, help='Image weight' ) +parser.add_argument( '--consistency_weight', dest='consistency_weight', type=float, help='Consistency weight' ) +parser.add_argument( '--landmarks_weight', dest='landmarks_weight', type=float, help='Landmarks weight' ) +parser.add_argument( '--landmarks_file', dest='landmarks_file', default=None, help='Landmarks file' ) +parser.add_argument( '--source_affine_file', dest='source_affine_file', default=None, help='Initial source affine matrix transformation' ) +parser.add_argument( '--target_affine_file', dest='target_affine_file', default=None, help='Initial target affine matrix transformation' ) +parser.add_argument( '--mono', dest='mono', default=False, help='Unidirectional registration (source to target)' ) +parser.add_argument( '--source_trans_out', dest='source_trans_out', default=None, help='Direct source transformation matrix' ) +parser.add_argument( '--target_trans_out', dest='target_trans_out', default=None, help='Inverse target transformation matrix' ) +parser.add_argument( '--source_out', help='Output source image' ) +parser.add_argument( '--source_out_datatype', help='Output registered source image format' ) +parser.add_argument( '--target_out', default=None, help='Output target image' ) +parser.add_argument( '--target_out_datatype', default=None, help='Output registered target image format' ) +parser.add_argument( '--jython_script', dest='jython_script', help='Path to the Jython script' ) + +args = parser.parse_args() + +if args.source_trans_out is not None and args.target_trans_out is not None: + save_transformation = True +else: + save_transformation = False + +tmp_dir = imagej2_base_utils.get_temp_dir() +source_image_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.source_image, args.source_image_format ) +tmp_source_out_tiff_path = imagej2_base_utils.get_temporary_image_path( tmp_dir, 'tiff' ) +tmp_source_out_path = imagej2_base_utils.get_temporary_image_path( tmp_dir, args.source_out_datatype ) +target_image_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.target_image, args.target_image_format ) +if not args.mono: + tmp_target_out_tiff_path = imagej2_base_utils.get_temporary_image_path( tmp_dir, 'tiff' ) + tmp_target_out_path = imagej2_base_utils.get_temporary_image_path( tmp_dir, args.target_out_datatype ) +if args.source_mask is not None and args.target_mask is not None: + tmp_source_mask_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.source_mask, args.source_mask_format ) + tmp_target_mask_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.target_mask, args.target_mask_format ) +if save_transformation: + # bUnwarpJ automatically names the transformation files based on the names + # of the source and target image file names. We've defined symlinks to + # temporary files with valid image extensions since ImageJ does not handle + # the Galaxy "dataset.dat" file extensions. + source_file_name = imagej2_base_utils.get_file_name_without_extension( tmp_source_out_tiff_path ) + tmp_source_out_transf_path = os.path.join( tmp_dir, '%s_transf.txt' % source_file_name ) + target_file_name = imagej2_base_utils.get_file_name_without_extension( tmp_target_out_tiff_path ) + tmp_target_out_transf_path = os.path.join( tmp_dir, '%s_transf.txt' % target_file_name ) + +# Define command response buffers. +tmp_out = tempfile.NamedTemporaryFile().name +tmp_stdout = open( tmp_out, 'wb' ) +tmp_err = tempfile.NamedTemporaryFile().name +tmp_stderr = open( tmp_err, 'wb' ) + +# Build the command line to align the two images. +cmd = imagej2_base_utils.get_base_cmd_bunwarpj( None ) +if cmd is None: + imagej2_base_utils.stop_err( "bUnwarpJ not found!" ) +cmd += ' -align' +# Target is sent before source. +cmd += ' %s' % target_image_path +if args.target_mask is None: + target_mask_str = ' NULL' +else: + target_mask_str = ' %s' % tmp_target_mask_path +cmd += target_mask_str +cmd += ' %s' % source_image_path +if args.source_mask is None: + source_mask_str = ' NULL' +else: + source_mask_str = ' %s' % tmp_source_mask_path +cmd += source_mask_str +cmd += ' %d' % args.min_scale_def +cmd += ' %d' % args.max_scale_def +cmd += ' %d' % args.max_subsamp_fact +cmd += ' %.1f' % args.divergence_weight +cmd += ' %.1f' % args.curl_weight +cmd += ' %.1f' % args.image_weight +cmd += ' %.1f' % args.consistency_weight +# Source is produced before target. +cmd += ' %s' % tmp_source_out_tiff_path +if not args.mono: + cmd += ' %s' % tmp_target_out_tiff_path +if args.landmarks_file is not None: + # We have to create a temporary file with a .txt extension here so that + # bUnwarpJ will not ignore the Galaxy "dataset.dat" file. + tmp_landmarks_file_path = imagej2_base_utils.get_input_image_path( tmp_dir, + args.landmarks_file, + 'txt' ) + cmd += ' -landmarks' + cmd += ' %.1f' % args.landmarks_weight + cmd += ' %s' % tmp_landmarks_file_path +if args.source_affine_file is not None and args.target_affine_file is not None: + # Target is sent before source. + cmd += ' -affine' + cmd += ' %s' % args.target_affine_file + cmd += ' %s' % args.source_affine_file +if args.mono: + cmd += ' -mono' +if save_transformation: + cmd += ' -save_transformation' + +# Align the two images using bUnwarpJ. +proc = subprocess.Popen( args=cmd, stderr=tmp_stderr, stdout=tmp_stdout, shell=True ) +rc = proc.wait() +if rc != 0: + error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout ) + imagej2_base_utils.stop_err( error_message ) + +# bUnwarpJ produces tiff image stacks consisting of 3 slices which can be viewed in ImageJ. +# The 3 slices are:: 1) the registered image, 2) the target image and 3) the black/white +# warp image. Galaxy supports only single-layered images, so we'll convert the images so they +# can be viewed in Galaxy. + +# Define command response buffers. +tmp_out = tempfile.NamedTemporaryFile().name +tmp_stdout = open( tmp_out, 'wb' ) +tmp_err = tempfile.NamedTemporaryFile().name +tmp_stderr = open( tmp_err, 'wb' ) + +# Build the command line to handle the multi-slice tiff images. +cmd = imagej2_base_utils.get_base_command_imagej2( None, jython_script=args.jython_script ) +if cmd is None: + imagej2_base_utils.stop_err( "ImageJ not found!" ) +if args.mono: + # bUnwarpJ will produce only a registered source image. + cmd += ' %s %s %s %s' % ( tmp_source_out_tiff_path, + args.source_out_datatype, + tmp_source_out_path, + args.mono ) +else: + # bUnwarpJ will produce registered source and target images. + cmd += ' %s %s %s %s %s %s %s' % ( tmp_source_out_tiff_path, + args.source_out_datatype, + tmp_source_out_path, + tmp_target_out_tiff_path, + args.target_out_datatype, + tmp_target_out_path, + args.mono ) + +# Merge the multi-slice tiff layers into an image that can be viewed in Galaxy. +proc = subprocess.Popen( args=cmd, stderr=tmp_stderr, stdout=tmp_stdout, shell=True ) +rc = proc.wait() +if rc != 0: + error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout ) + imagej2_base_utils.stop_err( error_message ) + +# Save the Registered Source Image to the output dataset. +shutil.move( tmp_source_out_path, args.source_out ) +if not args.mono: + # Move the Registered Target Image to the output dataset. + shutil.move( tmp_target_out_path, args.target_out ) + +# If requested, save matrix transformations as additional datasets. +if save_transformation: + shutil.move( tmp_source_out_transf_path, args.source_trans_out ) + if not args.mono: + shutil.move( tmp_target_out_transf_path, args.target_trans_out ) + +imagej2_base_utils.cleanup_before_exit( tmp_dir )