Mercurial > repos > imgteam > imagej2_noise
diff imagej2_find_maxima_jython_script.py @ 1:7a44772cc89f draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/image_processing/imagej2 commit 2afb24f3c81d625312186750a714d702363012b5"
author | imgteam |
---|---|
date | Mon, 28 Sep 2020 16:45:49 +0000 |
parents | 3f6599ec7d30 |
children | 756e062741dc |
line wrap: on
line diff
--- a/imagej2_find_maxima_jython_script.py Tue Sep 17 16:58:28 2019 -0400 +++ b/imagej2_find_maxima_jython_script.py Mon Sep 28 16:45:49 2020 +0000 @@ -1,94 +1,90 @@ import sys -import jython_utils -from ij import ImagePlus, IJ + +from ij import IJ, ImagePlus from ij.plugin.filter import Analyzer, MaximumFinder from ij.process import ImageProcessor -from jarray import array # Fiji Jython interpreter implements Python 2.5 which does not # provide support for argparse. -error_log = sys.argv[ -10 ] -input = sys.argv[ -9 ] -scale_when_converting = jython_utils.asbool( sys.argv[ -8 ] ) -weighted_rgb_conversions = jython_utils.asbool( sys.argv[ -7 ] ) -noise_tolerance = int( sys.argv[ -6 ] ) -output_type = sys.argv[ -5 ] -exclude_edge_maxima = jython_utils.asbool( sys.argv[ -4 ] ) -light_background = jython_utils.asbool( sys.argv[ -3 ] ) -tmp_output_path = sys.argv[ -2 ] -output_datatype = sys.argv[ -1 ] +error_log = sys.argv[-10] +input_file = sys.argv[-9] +scale_when_converting = sys.argv[-8] == 'yes' +weighted_rgb_conversions = sys.argv[-7] == 'yes' +noise_tolerance = int(sys.argv[-6]) +output_type = sys.argv[-5] +exclude_edge_maxima = sys.argv[-4] == 'yes' +light_background = sys.argv[-3] +tmp_output_path = sys.argv[-2] +output_datatype = sys.argv[-1] # Open the input image file. -input_image_plus = IJ.openImage( input ) +input_image_plus = IJ.openImage(input_file) # Create a copy of the image. input_image_plus_copy = input_image_plus.duplicate() image_processor_copy = input_image_plus_copy.getProcessor() bit_depth = image_processor_copy.getBitDepth() -analyzer = Analyzer( input_image_plus_copy ) +analyzer = Analyzer(input_image_plus_copy) -try: - # Set the conversion options. - options = [] - # The following 2 options are applicable only to RGB images. - if bit_depth == 24: - if scale_when_converting: - option.append( "scale" ) - if weighted_rgb_conversions: - options.append( "weighted" ) - # Perform conversion - must happen even if no options are set. - IJ.run( input_image_plus_copy, "Conversions...", "%s" % " ".join( options ) ) - if output_type in [ 'List', 'Count' ]: - # W're generating a tabular file for the output. - # Set the Find Maxima options. - options = [ 'noise=%d' % noise_tolerance ] - if output_type.find( '_' ) > 0: - output_type_str = 'output=[%s]' % output_type.replace( '_', ' ' ) - else: - output_type_str = 'output=%s' % output_type - options.append( output_type_str ) - if exclude_edge_maxima: - options.append( 'exclude' ) - if light_background: - options.append( 'light' ) - # Run the command. - IJ.run( input_image_plus_copy, "Find Maxima...", "%s" % " ".join( options ) ) - results_table = analyzer.getResultsTable() - results_table.saveAs( tmp_output_path ) +# Set the conversion options. +options = [] +# The following 2 options are applicable only to RGB images. +if bit_depth == 24: + if scale_when_converting: + options.append("scale") + if weighted_rgb_conversions: + options.append("weighted") +# Perform conversion - must happen even if no options are set. +IJ.run(input_image_plus_copy, "Conversions...", "%s" % " ".join(options)) +if output_type in ['List', 'Count']: + # W're generating a tabular file for the output. + # Set the Find Maxima options. + options = ['noise=%d' % noise_tolerance] + if output_type.find('_') > 0: + output_type_str = 'output=[%s]' % output_type.replace('_', ' ') else: - # Find the maxima of an image (does not find minima). - # LIMITATIONS: With output_type=Segmented_Particles - # (watershed segmentation), some segmentation lines - # may be improperly placed if local maxima are suppressed - # by the tolerance. - mf = MaximumFinder() - if output_type == 'Single_Points': - output_type_param = mf.SINGLE_POINTS - elif output_type == 'Maxima_Within_Tolerance': - output_type_param = mf.IN_TOLERANCE - elif output_type == 'Segmented_Particles': - output_type_param = mf.SEGMENTED - elif output_type == 'List': - output_type_param = mf.LIST - elif output_type == 'Count': - output_type_param = mf.COUNT - # Get a new byteProcessor with a normal (uninverted) LUT where - # the marked points are set to 255 (Background 0). Pixels outside - # of the roi of the input image_processor_copy are not set. No - # output image is created for output types POINT_SELECTION, LIST - # and COUNT. In these cases findMaxima returns null. - byte_processor = mf.findMaxima( image_processor_copy, - noise_tolerance, - ImageProcessor.NO_THRESHOLD, - output_type_param, - exclude_edge_maxima, - False ) - # Invert the image or ROI. - byte_processor.invert() - if output_type == 'Segmented_Particles' and not light_background: - # Invert the values in this image's LUT (indexed color model). - byte_processor.invertLut() - image_plus = ImagePlus( "output", byte_processor ) - IJ.saveAs( image_plus, output_datatype, tmp_output_path ) -except Exception, e: - jython_utils.handle_error( error_log, str( e ) ) + output_type_str = 'output=%s' % output_type + options.append(output_type_str) + if exclude_edge_maxima: + options.append('exclude') + if light_background: + options.append('light') + # Run the command. + IJ.run(input_image_plus_copy, "Find Maxima...", "%s" % " ".join(options)) + results_table = analyzer.getResultsTable() + results_table.saveAs(tmp_output_path) +else: + # Find the maxima of an image (does not find minima). + # LIMITATIONS: With output_type=Segmented_Particles + # (watershed segmentation), some segmentation lines + # may be improperly placed if local maxima are suppressed + # by the tolerance. + mf = MaximumFinder() + if output_type == 'Single_Points': + output_type_param = mf.SINGLE_POINTS + elif output_type == 'Maxima_Within_Tolerance': + output_type_param = mf.IN_TOLERANCE + elif output_type == 'Segmented_Particles': + output_type_param = mf.SEGMENTED + elif output_type == 'List': + output_type_param = mf.LIST + elif output_type == 'Count': + output_type_param = mf.COUNT + # Get a new byteProcessor with a normal (uninverted) LUT where + # the marked points are set to 255 (Background 0). Pixels outside + # of the roi of the input image_processor_copy are not set. No + # output image is created for output types POINT_SELECTION, LIST + # and COUNT. In these cases findMaxima returns null. + byte_processor = mf.findMaxima(image_processor_copy, + noise_tolerance, + ImageProcessor.NO_THRESHOLD, + output_type_param, + exclude_edge_maxima, + False) + # Invert the image or ROI. + byte_processor.invert() + if output_type == 'Segmented_Particles' and not light_background: + # Invert the values in this image's LUT (indexed color model). + byte_processor.invertLut() + image_plus = ImagePlus("output", byte_processor) + IJ.saveAs(image_plus, output_datatype, tmp_output_path)