Mercurial > repos > imgteam > imagej2_shadows
comparison imagej2_find_maxima_jython_script.py @ 1:c8bb47840c8d draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/image_processing/imagej2 commit 2afb24f3c81d625312186750a714d702363012b5"
author | imgteam |
---|---|
date | Mon, 28 Sep 2020 16:51:33 +0000 |
parents | 7baf811ed973 |
children | f3c9192bd0b9 |
comparison
equal
deleted
inserted
replaced
0:7baf811ed973 | 1:c8bb47840c8d |
---|---|
1 import sys | 1 import sys |
2 import jython_utils | 2 |
3 from ij import ImagePlus, IJ | 3 from ij import IJ, ImagePlus |
4 from ij.plugin.filter import Analyzer, MaximumFinder | 4 from ij.plugin.filter import Analyzer, MaximumFinder |
5 from ij.process import ImageProcessor | 5 from ij.process import ImageProcessor |
6 from jarray import array | |
7 | 6 |
8 # Fiji Jython interpreter implements Python 2.5 which does not | 7 # Fiji Jython interpreter implements Python 2.5 which does not |
9 # provide support for argparse. | 8 # provide support for argparse. |
10 error_log = sys.argv[ -10 ] | 9 error_log = sys.argv[-10] |
11 input = sys.argv[ -9 ] | 10 input_file = sys.argv[-9] |
12 scale_when_converting = jython_utils.asbool( sys.argv[ -8 ] ) | 11 scale_when_converting = sys.argv[-8] == 'yes' |
13 weighted_rgb_conversions = jython_utils.asbool( sys.argv[ -7 ] ) | 12 weighted_rgb_conversions = sys.argv[-7] == 'yes' |
14 noise_tolerance = int( sys.argv[ -6 ] ) | 13 noise_tolerance = int(sys.argv[-6]) |
15 output_type = sys.argv[ -5 ] | 14 output_type = sys.argv[-5] |
16 exclude_edge_maxima = jython_utils.asbool( sys.argv[ -4 ] ) | 15 exclude_edge_maxima = sys.argv[-4] == 'yes' |
17 light_background = jython_utils.asbool( sys.argv[ -3 ] ) | 16 light_background = sys.argv[-3] |
18 tmp_output_path = sys.argv[ -2 ] | 17 tmp_output_path = sys.argv[-2] |
19 output_datatype = sys.argv[ -1 ] | 18 output_datatype = sys.argv[-1] |
20 | 19 |
21 # Open the input image file. | 20 # Open the input image file. |
22 input_image_plus = IJ.openImage( input ) | 21 input_image_plus = IJ.openImage(input_file) |
23 | 22 |
24 # Create a copy of the image. | 23 # Create a copy of the image. |
25 input_image_plus_copy = input_image_plus.duplicate() | 24 input_image_plus_copy = input_image_plus.duplicate() |
26 image_processor_copy = input_image_plus_copy.getProcessor() | 25 image_processor_copy = input_image_plus_copy.getProcessor() |
27 bit_depth = image_processor_copy.getBitDepth() | 26 bit_depth = image_processor_copy.getBitDepth() |
28 analyzer = Analyzer( input_image_plus_copy ) | 27 analyzer = Analyzer(input_image_plus_copy) |
29 | 28 |
30 try: | 29 # Set the conversion options. |
31 # Set the conversion options. | 30 options = [] |
32 options = [] | 31 # The following 2 options are applicable only to RGB images. |
33 # The following 2 options are applicable only to RGB images. | 32 if bit_depth == 24: |
34 if bit_depth == 24: | 33 if scale_when_converting: |
35 if scale_when_converting: | 34 options.append("scale") |
36 option.append( "scale" ) | 35 if weighted_rgb_conversions: |
37 if weighted_rgb_conversions: | 36 options.append("weighted") |
38 options.append( "weighted" ) | 37 # Perform conversion - must happen even if no options are set. |
39 # Perform conversion - must happen even if no options are set. | 38 IJ.run(input_image_plus_copy, "Conversions...", "%s" % " ".join(options)) |
40 IJ.run( input_image_plus_copy, "Conversions...", "%s" % " ".join( options ) ) | 39 if output_type in ['List', 'Count']: |
41 if output_type in [ 'List', 'Count' ]: | 40 # W're generating a tabular file for the output. |
42 # W're generating a tabular file for the output. | 41 # Set the Find Maxima options. |
43 # Set the Find Maxima options. | 42 options = ['noise=%d' % noise_tolerance] |
44 options = [ 'noise=%d' % noise_tolerance ] | 43 if output_type.find('_') > 0: |
45 if output_type.find( '_' ) > 0: | 44 output_type_str = 'output=[%s]' % output_type.replace('_', ' ') |
46 output_type_str = 'output=[%s]' % output_type.replace( '_', ' ' ) | |
47 else: | |
48 output_type_str = 'output=%s' % output_type | |
49 options.append( output_type_str ) | |
50 if exclude_edge_maxima: | |
51 options.append( 'exclude' ) | |
52 if light_background: | |
53 options.append( 'light' ) | |
54 # Run the command. | |
55 IJ.run( input_image_plus_copy, "Find Maxima...", "%s" % " ".join( options ) ) | |
56 results_table = analyzer.getResultsTable() | |
57 results_table.saveAs( tmp_output_path ) | |
58 else: | 45 else: |
59 # Find the maxima of an image (does not find minima). | 46 output_type_str = 'output=%s' % output_type |
60 # LIMITATIONS: With output_type=Segmented_Particles | 47 options.append(output_type_str) |
61 # (watershed segmentation), some segmentation lines | 48 if exclude_edge_maxima: |
62 # may be improperly placed if local maxima are suppressed | 49 options.append('exclude') |
63 # by the tolerance. | 50 if light_background: |
64 mf = MaximumFinder() | 51 options.append('light') |
65 if output_type == 'Single_Points': | 52 # Run the command. |
66 output_type_param = mf.SINGLE_POINTS | 53 IJ.run(input_image_plus_copy, "Find Maxima...", "%s" % " ".join(options)) |
67 elif output_type == 'Maxima_Within_Tolerance': | 54 results_table = analyzer.getResultsTable() |
68 output_type_param = mf.IN_TOLERANCE | 55 results_table.saveAs(tmp_output_path) |
69 elif output_type == 'Segmented_Particles': | 56 else: |
70 output_type_param = mf.SEGMENTED | 57 # Find the maxima of an image (does not find minima). |
71 elif output_type == 'List': | 58 # LIMITATIONS: With output_type=Segmented_Particles |
72 output_type_param = mf.LIST | 59 # (watershed segmentation), some segmentation lines |
73 elif output_type == 'Count': | 60 # may be improperly placed if local maxima are suppressed |
74 output_type_param = mf.COUNT | 61 # by the tolerance. |
75 # Get a new byteProcessor with a normal (uninverted) LUT where | 62 mf = MaximumFinder() |
76 # the marked points are set to 255 (Background 0). Pixels outside | 63 if output_type == 'Single_Points': |
77 # of the roi of the input image_processor_copy are not set. No | 64 output_type_param = mf.SINGLE_POINTS |
78 # output image is created for output types POINT_SELECTION, LIST | 65 elif output_type == 'Maxima_Within_Tolerance': |
79 # and COUNT. In these cases findMaxima returns null. | 66 output_type_param = mf.IN_TOLERANCE |
80 byte_processor = mf.findMaxima( image_processor_copy, | 67 elif output_type == 'Segmented_Particles': |
81 noise_tolerance, | 68 output_type_param = mf.SEGMENTED |
82 ImageProcessor.NO_THRESHOLD, | 69 elif output_type == 'List': |
83 output_type_param, | 70 output_type_param = mf.LIST |
84 exclude_edge_maxima, | 71 elif output_type == 'Count': |
85 False ) | 72 output_type_param = mf.COUNT |
86 # Invert the image or ROI. | 73 # Get a new byteProcessor with a normal (uninverted) LUT where |
87 byte_processor.invert() | 74 # the marked points are set to 255 (Background 0). Pixels outside |
88 if output_type == 'Segmented_Particles' and not light_background: | 75 # of the roi of the input image_processor_copy are not set. No |
89 # Invert the values in this image's LUT (indexed color model). | 76 # output image is created for output types POINT_SELECTION, LIST |
90 byte_processor.invertLut() | 77 # and COUNT. In these cases findMaxima returns null. |
91 image_plus = ImagePlus( "output", byte_processor ) | 78 byte_processor = mf.findMaxima(image_processor_copy, |
92 IJ.saveAs( image_plus, output_datatype, tmp_output_path ) | 79 noise_tolerance, |
93 except Exception, e: | 80 ImageProcessor.NO_THRESHOLD, |
94 jython_utils.handle_error( error_log, str( e ) ) | 81 output_type_param, |
82 exclude_edge_maxima, | |
83 False) | |
84 # Invert the image or ROI. | |
85 byte_processor.invert() | |
86 if output_type == 'Segmented_Particles' and not light_background: | |
87 # Invert the values in this image's LUT (indexed color model). | |
88 byte_processor.invertLut() | |
89 image_plus = ImagePlus("output", byte_processor) | |
90 IJ.saveAs(image_plus, output_datatype, tmp_output_path) |