Mercurial > repos > imgteam > imagej2_shadows
view imagej2_bunwarpj_align.py @ 0:7baf811ed973 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/image_processing/imagej2 commit b08f0e6d1546caaf627b21f8c94044285d5d5b9c-dirty"
author | imgteam |
---|---|
date | Tue, 17 Sep 2019 16:59:39 -0400 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/env python import argparse import os import shutil import subprocess import tempfile import imagej2_base_utils # Parse Command Line. parser = argparse.ArgumentParser() parser.add_argument( '--source_image', dest='source_image', help='Source image' ) parser.add_argument( '--source_image_format', dest='source_image_format', help='Source image format' ) parser.add_argument( '--source_mask', dest='source_mask', default=None, help='Source mask' ) parser.add_argument( '--source_mask_format', dest='source_mask_format', default=None, help='Source mask image format' ) parser.add_argument( '--target_image', dest='target_image', help='Target image' ) parser.add_argument( '--target_image_format', dest='target_image_format', help='Target image format' ) parser.add_argument( '--target_mask', dest='target_mask', default=None, help='Target mask' ) parser.add_argument( '--target_mask_format', dest='target_mask_format', default=None, help='Target mask image format' ) parser.add_argument( '--min_scale_def', dest='min_scale_def', type=int, help='Initial deformation' ) parser.add_argument( '--max_scale_def', dest='max_scale_def', type=int, help='Final deformation' ) parser.add_argument( '--max_subsamp_fact', dest='max_subsamp_fact', type=int, help='Image sub-sample factor' ) parser.add_argument( '--divergence_weight', dest='divergence_weight', type=float, help='Divergence weight' ) parser.add_argument( '--curl_weight', dest='curl_weight', type=float, help='Curl weight' ) parser.add_argument( '--image_weight', dest='image_weight', type=float, help='Image weight' ) parser.add_argument( '--consistency_weight', dest='consistency_weight', type=float, help='Consistency weight' ) parser.add_argument( '--landmarks_weight', dest='landmarks_weight', type=float, help='Landmarks weight' ) parser.add_argument( '--landmarks_file', dest='landmarks_file', default=None, help='Landmarks file' ) parser.add_argument( '--source_affine_file', dest='source_affine_file', default=None, help='Initial source affine matrix transformation' ) parser.add_argument( '--target_affine_file', dest='target_affine_file', default=None, help='Initial target affine matrix transformation' ) parser.add_argument( '--mono', dest='mono', default=False, help='Unidirectional registration (source to target)' ) parser.add_argument( '--source_trans_out', dest='source_trans_out', default=None, help='Direct source transformation matrix' ) parser.add_argument( '--target_trans_out', dest='target_trans_out', default=None, help='Inverse target transformation matrix' ) parser.add_argument( '--source_out', help='Output source image' ) parser.add_argument( '--source_out_datatype', help='Output registered source image format' ) parser.add_argument( '--target_out', default=None, help='Output target image' ) parser.add_argument( '--target_out_datatype', default=None, help='Output registered target image format' ) parser.add_argument( '--jython_script', dest='jython_script', help='Path to the Jython script' ) args = parser.parse_args() if args.source_trans_out is not None and args.target_trans_out is not None: save_transformation = True else: save_transformation = False tmp_dir = imagej2_base_utils.get_temp_dir() source_image_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.source_image, args.source_image_format ) tmp_source_out_tiff_path = imagej2_base_utils.get_temporary_image_path( tmp_dir, 'tiff' ) tmp_source_out_path = imagej2_base_utils.get_temporary_image_path( tmp_dir, args.source_out_datatype ) target_image_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.target_image, args.target_image_format ) if not args.mono: tmp_target_out_tiff_path = imagej2_base_utils.get_temporary_image_path( tmp_dir, 'tiff' ) tmp_target_out_path = imagej2_base_utils.get_temporary_image_path( tmp_dir, args.target_out_datatype ) if args.source_mask is not None and args.target_mask is not None: tmp_source_mask_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.source_mask, args.source_mask_format ) tmp_target_mask_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.target_mask, args.target_mask_format ) if save_transformation: # bUnwarpJ automatically names the transformation files based on the names # of the source and target image file names. We've defined symlinks to # temporary files with valid image extensions since ImageJ does not handle # the Galaxy "dataset.dat" file extensions. source_file_name = imagej2_base_utils.get_file_name_without_extension( tmp_source_out_tiff_path ) tmp_source_out_transf_path = os.path.join( tmp_dir, '%s_transf.txt' % source_file_name ) target_file_name = imagej2_base_utils.get_file_name_without_extension( tmp_target_out_tiff_path ) tmp_target_out_transf_path = os.path.join( tmp_dir, '%s_transf.txt' % target_file_name ) # Define command response buffers. tmp_out = tempfile.NamedTemporaryFile().name tmp_stdout = open( tmp_out, 'wb' ) tmp_err = tempfile.NamedTemporaryFile().name tmp_stderr = open( tmp_err, 'wb' ) # Build the command line to align the two images. cmd = imagej2_base_utils.get_base_cmd_bunwarpj( None ) if cmd is None: imagej2_base_utils.stop_err( "bUnwarpJ not found!" ) cmd += ' -align' # Target is sent before source. cmd += ' %s' % target_image_path if args.target_mask is None: target_mask_str = ' NULL' else: target_mask_str = ' %s' % tmp_target_mask_path cmd += target_mask_str cmd += ' %s' % source_image_path if args.source_mask is None: source_mask_str = ' NULL' else: source_mask_str = ' %s' % tmp_source_mask_path cmd += source_mask_str cmd += ' %d' % args.min_scale_def cmd += ' %d' % args.max_scale_def cmd += ' %d' % args.max_subsamp_fact cmd += ' %.1f' % args.divergence_weight cmd += ' %.1f' % args.curl_weight cmd += ' %.1f' % args.image_weight cmd += ' %.1f' % args.consistency_weight # Source is produced before target. cmd += ' %s' % tmp_source_out_tiff_path if not args.mono: cmd += ' %s' % tmp_target_out_tiff_path if args.landmarks_file is not None: # We have to create a temporary file with a .txt extension here so that # bUnwarpJ will not ignore the Galaxy "dataset.dat" file. tmp_landmarks_file_path = imagej2_base_utils.get_input_image_path( tmp_dir, args.landmarks_file, 'txt' ) cmd += ' -landmarks' cmd += ' %.1f' % args.landmarks_weight cmd += ' %s' % tmp_landmarks_file_path if args.source_affine_file is not None and args.target_affine_file is not None: # Target is sent before source. cmd += ' -affine' cmd += ' %s' % args.target_affine_file cmd += ' %s' % args.source_affine_file if args.mono: cmd += ' -mono' if save_transformation: cmd += ' -save_transformation' # Align the two images using bUnwarpJ. proc = subprocess.Popen( args=cmd, stderr=tmp_stderr, stdout=tmp_stdout, shell=True ) rc = proc.wait() if rc != 0: error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout ) imagej2_base_utils.stop_err( error_message ) # bUnwarpJ produces tiff image stacks consisting of 3 slices which can be viewed in ImageJ. # The 3 slices are:: 1) the registered image, 2) the target image and 3) the black/white # warp image. Galaxy supports only single-layered images, so we'll convert the images so they # can be viewed in Galaxy. # Define command response buffers. tmp_out = tempfile.NamedTemporaryFile().name tmp_stdout = open( tmp_out, 'wb' ) tmp_err = tempfile.NamedTemporaryFile().name tmp_stderr = open( tmp_err, 'wb' ) # Build the command line to handle the multi-slice tiff images. cmd = imagej2_base_utils.get_base_command_imagej2( None, jython_script=args.jython_script ) if cmd is None: imagej2_base_utils.stop_err( "ImageJ not found!" ) if args.mono: # bUnwarpJ will produce only a registered source image. cmd += ' %s %s %s %s' % ( tmp_source_out_tiff_path, args.source_out_datatype, tmp_source_out_path, args.mono ) else: # bUnwarpJ will produce registered source and target images. cmd += ' %s %s %s %s %s %s %s' % ( tmp_source_out_tiff_path, args.source_out_datatype, tmp_source_out_path, tmp_target_out_tiff_path, args.target_out_datatype, tmp_target_out_path, args.mono ) # Merge the multi-slice tiff layers into an image that can be viewed in Galaxy. proc = subprocess.Popen( args=cmd, stderr=tmp_stderr, stdout=tmp_stdout, shell=True ) rc = proc.wait() if rc != 0: error_message = imagej2_base_utils.get_stderr_exception( tmp_err, tmp_stderr, tmp_out, tmp_stdout ) imagej2_base_utils.stop_err( error_message ) # Save the Registered Source Image to the output dataset. shutil.move( tmp_source_out_path, args.source_out ) if not args.mono: # Move the Registered Target Image to the output dataset. shutil.move( tmp_target_out_path, args.target_out ) # If requested, save matrix transformations as additional datasets. if save_transformation: shutil.move( tmp_source_out_transf_path, args.source_trans_out ) if not args.mono: shutil.move( tmp_target_out_transf_path, args.target_trans_out ) imagej2_base_utils.cleanup_before_exit( tmp_dir )