diff landmark_registration.py @ 2:4e089a0983b1 draft

"planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tools/landmark_registration/ commit 927b78d47c31714776ccdf3d16f26c3779298abb"
author imgteam
date Sun, 20 Feb 2022 15:46:58 +0000
parents b0503eec7bd6
children aee73493bf53
line wrap: on
line diff
--- a/landmark_registration.py	Fri Feb 22 19:04:47 2019 -0500
+++ b/landmark_registration.py	Sun Feb 20 15:46:58 2022 +0000
@@ -1,27 +1,65 @@
-from skimage.measure import ransac
-from skimage.transform import AffineTransform
-import pandas as pd
-import numpy as np
+"""
+Copyright 2017-2022 Biomedical Computer Vision Group, Heidelberg University.
+
+Distributed under the MIT license.
+See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
+
+"""
+
 import argparse
 
-def landmark_registration(points_file1, points_file2, out_file, residual_threshold=2, max_trials=100, delimiter="\t"):
-    points1 = pd.read_csv(points_file1, delimiter=delimiter)
-    points2 = pd.read_csv(points_file2, delimiter=delimiter)
+import numpy as np
+import pandas as pd
+from scipy.linalg import lstsq
+from skimage.measure import ransac
+from skimage.transform import AffineTransform
+
+
+def landmark_registration(pts_f1, pts_f2, out_f, res_th=None, max_ite=None, delimiter="\t"):
+
+    points1 = pd.read_csv(pts_f1, delimiter=delimiter)
+    points2 = pd.read_csv(pts_f2, delimiter=delimiter)
+
+    src = np.concatenate([np.array(points1['x']).reshape([-1, 1]),
+                          np.array(points1['y']).reshape([-1, 1])],
+                         axis=-1)
+    dst = np.concatenate([np.array(points2['x']).reshape([-1, 1]),
+                          np.array(points2['y']).reshape([-1, 1])],
+                         axis=-1)
 
-    src = np.concatenate([np.array(points1['x']).reshape([-1,1]), np.array(points1['y']).reshape([-1,1])], axis=-1)
-    dst = np.concatenate([np.array(points2['x']).reshape([-1,1]), np.array(points2['y']).reshape([-1,1])], axis=-1)
+    if res_th is not None and max_ite is not None:
+        model_robust, inliers = ransac((src, dst), AffineTransform, min_samples=3, residual_threshold=res_th, max_trials=max_ite)
+        pd.DataFrame(model_robust.params).to_csv(out_f, header=None, index=False, sep="\t")
 
-    model = AffineTransform()
-    model_robust, inliers = ransac((src, dst), AffineTransform, min_samples=3,
-                                   residual_threshold=residual_threshold, max_trials=max_trials)
-    pd.DataFrame(model_robust.params).to_csv(out_file, header=None, index=False, sep="\t")
+    else:
+        A = np.zeros((src.size, 6))
+        A[0:src.shape[0], [0, 1]] = src
+        A[0:src.shape[0], 2] = 1
+        A[src.shape[0]:, [3, 4]] = src
+        A[src.shape[0]:, 5] = 1
+        b = dst.T.flatten().astype('float64')
+        x = lstsq(A, b)
+
+        tmat = np.eye(3)
+        tmat[0, :] = x[0].take([0, 1, 2])
+        tmat[1, :] = x[0].take([3, 4, 5])
+        pd.DataFrame(tmat).to_csv(out_f, header=None, index=False, sep="\t")
+
 
 if __name__ == "__main__":
-    parser = argparse.ArgumentParser(description="Estimate transformation from points")
-    parser.add_argument("points_file1", help="Paste path to src points")
-    parser.add_argument("points_file2", help="Paste path to dst points")
-    parser.add_argument("warp_matrix", help="Paste path to warp_matrix.csv that should be used for transformation")
-    parser.add_argument("--residual_threshold", dest="residual_threshold", help="Maximum distance for a data point to be classified as an inlier.", type=float, default=2)
-    parser.add_argument("--max_trials", dest="max_trials", help="Maximum number of iterations for random sample selection.", type=int, default=100)
+    parser = argparse.ArgumentParser(description="Estimate affine transformation matrix based on landmark coordinates")
+    parser.add_argument("fn_pts1", help="Coordinates of SRC landmarks (tsv file)")
+    parser.add_argument("fn_pts2", help="Coordinates of DST landmarks (tsv file)")
+    parser.add_argument("fn_tmat", help="Path the output (transformation matrix)")
+    parser.add_argument("--res_th", dest="res_th", type=float, help="Maximum distance for a data point to be classified as an inlier")
+    parser.add_argument("--max_ite", dest="max_ite", type=int, help="Maximum number of iterations for random sample selection")
     args = parser.parse_args()
-    landmark_registration(args.points_file1, args.points_file2, args.warp_matrix, residual_threshold=args.residual_threshold, max_trials=args.max_trials)
+
+    res_th = None
+    if args.res_th:
+        res_th = args.res_th
+    max_ite = None
+    if args.max_ite:
+        max_ite = args.max_ite
+
+    landmark_registration(args.fn_pts1, args.fn_pts2, args.fn_tmat, res_th=res_th, max_ite=max_ite)