view landmark_registration.py @ 5:12997d4c5b00 draft

planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tools/landmark_registration/ commit 6d6a6fd04fa1d1f9a5bf1aff451e43be072c0293
author imgteam
date Wed, 03 Aug 2022 16:50:52 +0000
parents aee73493bf53
children
line wrap: on
line source

"""
Copyright 2017-2022 Biomedical Computer Vision Group & Core Facility Platform Mannheim, Heidelberg University.

Distributed under the MIT license.
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT

"""

import argparse

import numpy as np
import pandas as pd
from scipy import spatial
from scipy.linalg import lstsq
from skimage.measure import ransac
from skimage.transform import AffineTransform


class pwlTransform(object):

    def __init__(self):
        self.triangulation = None
        self.affines = None

    def estimate(self, src, dst):
        self.triangulation = spatial.Delaunay(src)
        success = True
        self.affines = []
        for tri in self.triangulation.simplices:
            affine = AffineTransform()
            success &= affine.estimate(src[tri, :], dst[tri, :])
            self.affines.append(affine)
        return success

    def __call__(self, coords):
        simplex = self.triangulation.find_simplex(coords)
        simplex[simplex == -1] = 0    # todo: dealing with points outside the triangulation
        out = np.empty_like(coords, np.float64)
        for i in range(len(self.triangulation.simplices)):
            idx = simplex == i
            out[idx, :] = self.affines[i](coords[idx, :])
        return out


def landmark_registration(pts_f1, pts_f2, out_f, pts_f=None, res_th=None, max_ite=None, delimiter="\t"):

    points1 = pd.read_csv(pts_f1, delimiter=delimiter)
    points2 = pd.read_csv(pts_f2, delimiter=delimiter)

    src = np.concatenate([np.array(points1['x']).reshape([-1, 1]),
                          np.array(points1['y']).reshape([-1, 1])],
                         axis=-1)
    dst = np.concatenate([np.array(points2['x']).reshape([-1, 1]),
                          np.array(points2['y']).reshape([-1, 1])],
                         axis=-1)

    if res_th is not None and max_ite is not None:
        model_robust, inliers = ransac((src, dst), AffineTransform, min_samples=3, residual_threshold=res_th, max_trials=max_ite)
        pd.DataFrame(model_robust.params).to_csv(out_f, header=None, index=False, sep="\t")

    elif pts_f is not None:
        pwlt = pwlTransform()
        pwlt.estimate(src, dst)

        pts_df = pd.read_csv(pts_f, delimiter=delimiter)
        pts = np.concatenate([np.array(pts_df['x']).reshape([-1, 1]),
                              np.array(pts_df['y']).reshape([-1, 1])],
                             axis=-1)
        pts_pwlt = pwlt(pts)

        df = pd.DataFrame()
        df['x'] = pts_pwlt[:, 0]
        df['y'] = pts_pwlt[:, 1]
        df.to_csv(out_f, index=False, sep="\t", float_format='%.1f')

    else:
        A = np.zeros((src.size, 6))
        A[0:src.shape[0], [0, 1]] = src
        A[0:src.shape[0], 2] = 1
        A[src.shape[0]:, [3, 4]] = src
        A[src.shape[0]:, 5] = 1
        b = dst.T.flatten().astype('float64')
        x = lstsq(A, b)

        tmat = np.eye(3)
        tmat[0, :] = x[0].take([0, 1, 2])
        tmat[1, :] = x[0].take([3, 4, 5])
        pd.DataFrame(tmat).to_csv(out_f, header=None, index=False, sep="\t")


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="estimates the affine transformation matrix or performs piecewiese affine transformation based on landmarks")
    parser.add_argument("fn_lmkmov", help="Coordinates of moving landmarks (tsv file)")
    parser.add_argument("fn_lmkfix", help="Coordinates of fixed landmarks (tsv file)")
    parser.add_argument("fn_out", help="Path to the output")
    parser.add_argument("--pwlt", dest="fn_ptsmov", help="Coordinates of points to be transformed (tsv file)")
    parser.add_argument("--res_th", dest="res_th", type=float, help="Maximum distance for a data point to be classified as an inlier")
    parser.add_argument("--max_ite", dest="max_ite", type=int, help="Maximum number of iterations for random sample selection")
    args = parser.parse_args()

    fn_ptsmov = None
    if args.fn_ptsmov:
        fn_ptsmov = args.fn_ptsmov
    res_th = None
    if args.res_th:
        res_th = args.res_th
    max_ite = None
    if args.max_ite:
        max_ite = args.max_ite

    landmark_registration(args.fn_lmkmov, args.fn_lmkfix, args.fn_out, pts_f=fn_ptsmov, res_th=res_th, max_ite=max_ite)