Mercurial > repos > imgteam > landmark_registration
view landmark_registration.py @ 4:aee73493bf53 draft
planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tools/landmark_registration/ commit ba383a4f617791d0c84737a179e5b4b66cecc334
author | imgteam |
---|---|
date | Mon, 18 Jul 2022 18:41:19 +0000 |
parents | 4e089a0983b1 |
children | 12997d4c5b00 |
line wrap: on
line source
""" Copyright 2017-2022 Biomedical Computer Vision Group, Heidelberg University. Distributed under the MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT """ import argparse import numpy as np import pandas as pd from scipy import spatial from scipy.linalg import lstsq from skimage.measure import ransac from skimage.transform import AffineTransform class pwlTransform(object): def __init__(self): self.triangulation = None self.affines = None def estimate(self, src, dst): self.triangulation = spatial.Delaunay(src) success = True self.affines = [] for tri in self.triangulation.simplices: affine = AffineTransform() success &= affine.estimate(src[tri, :], dst[tri, :]) self.affines.append(affine) return success def __call__(self, coords): simplex = self.triangulation.find_simplex(coords) simplex[simplex == -1] = 0 # todo: dealing with points outside the triangulation out = np.empty_like(coords, np.float64) for i in range(len(self.triangulation.simplices)): idx = simplex == i out[idx, :] = self.affines[i](coords[idx, :]) return out def landmark_registration(pts_f1, pts_f2, out_f, pts_f=None, res_th=None, max_ite=None, delimiter="\t"): points1 = pd.read_csv(pts_f1, delimiter=delimiter) points2 = pd.read_csv(pts_f2, delimiter=delimiter) src = np.concatenate([np.array(points1['x']).reshape([-1, 1]), np.array(points1['y']).reshape([-1, 1])], axis=-1) dst = np.concatenate([np.array(points2['x']).reshape([-1, 1]), np.array(points2['y']).reshape([-1, 1])], axis=-1) if res_th is not None and max_ite is not None: model_robust, inliers = ransac((src, dst), AffineTransform, min_samples=3, residual_threshold=res_th, max_trials=max_ite) pd.DataFrame(model_robust.params).to_csv(out_f, header=None, index=False, sep="\t") elif pts_f is not None: pwlt = pwlTransform() pwlt.estimate(src, dst) pts_df = pd.read_csv(pts_f, delimiter=delimiter) pts = np.concatenate([np.array(pts_df['x']).reshape([-1, 1]), np.array(pts_df['y']).reshape([-1, 1])], axis=-1) pts_pwlt = pwlt(pts) df = pd.DataFrame() df['x'] = pts_pwlt[:, 0] df['y'] = pts_pwlt[:, 1] df.to_csv(out_f, index=False, sep="\t", float_format='%.1f') else: A = np.zeros((src.size, 6)) A[0:src.shape[0], [0, 1]] = src A[0:src.shape[0], 2] = 1 A[src.shape[0]:, [3, 4]] = src A[src.shape[0]:, 5] = 1 b = dst.T.flatten().astype('float64') x = lstsq(A, b) tmat = np.eye(3) tmat[0, :] = x[0].take([0, 1, 2]) tmat[1, :] = x[0].take([3, 4, 5]) pd.DataFrame(tmat).to_csv(out_f, header=None, index=False, sep="\t") if __name__ == "__main__": parser = argparse.ArgumentParser(description="estimates the affine transformation matrix or performs piecewiese affine transformation based on landmarks") parser.add_argument("fn_lmkmov", help="Coordinates of moving landmarks (tsv file)") parser.add_argument("fn_lmkfix", help="Coordinates of fixed landmarks (tsv file)") parser.add_argument("fn_out", help="Path to the output") parser.add_argument("--pwlt", dest="fn_ptsmov", help="Coordinates of points to be transformed (tsv file)") parser.add_argument("--res_th", dest="res_th", type=float, help="Maximum distance for a data point to be classified as an inlier") parser.add_argument("--max_ite", dest="max_ite", type=int, help="Maximum number of iterations for random sample selection") args = parser.parse_args() fn_ptsmov = None if args.fn_ptsmov: fn_ptsmov = args.fn_ptsmov res_th = None if args.res_th: res_th = args.res_th max_ite = None if args.max_ite: max_ite = args.max_ite landmark_registration(args.fn_lmkmov, args.fn_lmkfix, args.fn_out, pts_f=fn_ptsmov, res_th=res_th, max_ite=max_ite)