Mercurial > repos > imgteam > overlay_moving_and_fixed_image
view overlay_moving_and_fixed_image.py @ 0:165a9330fc90 draft
planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tools/overlay_moving_and_fixed_image/ commit c3f4b766f03770f094fda6bda0a5882c0ebd4581
author | imgteam |
---|---|
date | Sat, 09 Feb 2019 14:39:40 -0500 |
parents | |
children | bc324ec66719 |
line wrap: on
line source
import argparse from PIL import Image import skimage.io import skimage.color from skimage.transform import ProjectiveTransform from scipy.ndimage import map_coordinates import numpy as np import pandas as pd def _stackcopy(a, b): if a.ndim == 3: a[:] = b[:, :, np.newaxis] else: a[:] = b def warp_coords_batch(coord_map, shape, dtype=np.float64, batch_size=1000000): rows, cols = shape[0], shape[1] coords_shape = [len(shape), rows, cols] if len(shape) == 3: coords_shape.append(shape[2]) coords = np.empty(coords_shape, dtype=dtype) tf_coords = np.indices((cols, rows), dtype=dtype).reshape(2, -1).T for i in range(0, (tf_coords.shape[0]//batch_size+1)): tf_coords[batch_size*i:batch_size*(i+1)] = coord_map(tf_coords[batch_size*i:batch_size*(i+1)]) tf_coords = tf_coords.T.reshape((-1, cols, rows)).swapaxes(1, 2) _stackcopy(coords[1, ...], tf_coords[0, ...]) _stackcopy(coords[0, ...], tf_coords[1, ...]) if len(shape) == 3: coords[2, ...] = range(shape[2]) return coords def transform(moving_image, fixed_image, warp_matrix): trans = ProjectiveTransform(matrix=warp_matrix) warped_coords = warp_coords_batch(trans, fixed_image.shape) return map_coordinates(moving_image, warped_coords) def overlay(moving_image, fixed_image, factor, overlay_out_path): moving_image = Image.fromarray(moving_image).convert("RGBA") fixed_image = Image.fromarray(fixed_image).convert("RGBA") overlay_out = Image.blend(moving_image, fixed_image, factor) overlay_out.save(overlay_out_path, "PNG") if __name__=="__main__": parser = argparse.ArgumentParser(description = "Overlay two images") parser.add_argument("fixed_image", help = "Path to fixed image") parser.add_argument("moving_image", help = "Path to moving image") parser.add_argument("warp_matrix", help="Paste path to warp_matrix.csv that should be used for transformation") parser.add_argument("--inverse_transform", dest='inverse_transform', action='store_true', help="Set if inverse transform should be visualized") parser.add_argument("--factor", dest = "factor", help = "Enter the factor by which images should be blended, 1.0 returns a copy of second image", type = float, default = 0.5) parser.add_argument("overlay_out", help = "Overlay output path") args = parser.parse_args() fixed_image = skimage.io.imread(args.fixed_image) moving_image = skimage.io.imread(args.moving_image) warp_matrix = pd.read_csv(args.warp_matrix, delimiter="\t", header=None) warp_matrix = np.array(warp_matrix) if args.inverse_transform: fixed_image = transform(fixed_image, moving_image, warp_matrix) else: warp_matrix = np.linalg.inv(warp_matrix) moving_image = transform(moving_image, fixed_image, warp_matrix) overlay(moving_image, fixed_image, args.factor, args.overlay_out)