Mercurial > repos > imgteam > points2labelimage
view points2label.py @ 3:de611b3b5ae8 draft default tip
planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tree/master/tools/points2labelimage/ commit 6fc9ab8db9ef72ac7ded30d7373768feeae9390d
author | imgteam |
---|---|
date | Fri, 27 Sep 2024 17:41:21 +0000 |
parents | 30ca5d5d03ec |
children |
line wrap: on
line source
import argparse import os import warnings import giatools.pandas import numpy as np import pandas as pd import scipy.ndimage as ndi import skimage.io import skimage.segmentation def rasterize(point_file, out_file, shape, has_header=False, swap_xy=False, bg_value=0, fg_value=None): img = np.full(shape, dtype=np.uint16, fill_value=bg_value) if os.path.exists(point_file) and os.path.getsize(point_file) > 0: # Read the tabular file with information from the header if has_header: df = pd.read_csv(point_file, delimiter='\t') pos_x_column = giatools.pandas.find_column(df, ['pos_x', 'POS_X']) pos_y_column = giatools.pandas.find_column(df, ['pos_y', 'POS_Y']) pos_x_list = df[pos_x_column].round().astype(int) pos_y_list = df[pos_y_column].round().astype(int) assert len(pos_x_list) == len(pos_y_list) try: radius_column = giatools.pandas.find_column(df, ['radius', 'RADIUS']) radius_list = df[radius_column] assert len(pos_x_list) == len(radius_list) except KeyError: radius_list = [0] * len(pos_x_list) try: label_column = giatools.pandas.find_column(df, ['label', 'LABEL']) label_list = df[label_column] assert len(pos_x_list) == len(label_list) except KeyError: label_list = list(range(1, len(pos_x_list) + 1)) # Read the tabular file without header else: df = pd.read_csv(point_file, header=None, delimiter='\t') pos_x_list = df[0].round().astype(int) pos_y_list = df[1].round().astype(int) assert len(pos_x_list) == len(pos_y_list) radius_list = [0] * len(pos_x_list) label_list = list(range(1, len(pos_x_list) + 1)) # Optionally swap the coordinates if swap_xy: pos_x_list, pos_y_list = pos_y_list, pos_x_list # Perform the rasterization for y, x, radius, label in zip(pos_y_list, pos_x_list, radius_list, label_list): if fg_value is not None: label = fg_value if y < 0 or x < 0 or y >= shape[0] or x >= shape[1]: raise IndexError(f'The point x={x}, y={y} exceeds the bounds of the image (width: {shape[1]}, height: {shape[0]})') # Rasterize circle and distribute overlapping image area if radius > 0: mask = np.ones(shape, dtype=bool) mask[y, x] = False mask = (ndi.distance_transform_edt(mask) <= radius) # Compute the overlap (pretend there is none if the rasterization is binary) if fg_value is None: overlap = np.logical_and(img > 0, mask) else: overlap = np.zeros(shape, dtype=bool) # Rasterize the part of the circle which is disjoint from other foreground. # # In the current implementation, the result depends on the order of the rasterized circles if somewhere # more than two circles overlap. This is probably negligable for most applications. To achieve results # that are invariant to the order, first all circles would need to be rasterized independently, and # then blended together. This, however, would either strongly increase the memory consumption, or # require a more complex implementation which exploits the sparsity of the rasterized masks. # disjoint_mask = np.logical_xor(mask, overlap) if disjoint_mask.any(): img[disjoint_mask] = label # Distribute the remaining part of the circle if overlap.any(): dist = ndi.distance_transform_edt(overlap) foreground = (img > 0) img[overlap] = 0 img = skimage.segmentation.watershed(dist, img, mask=foreground) # Rasterize point (there is no overlapping area to be distributed) else: img[y, x] = label else: raise Exception("{} is empty or does not exist.".format(point_file)) # appropriate built-in error? with warnings.catch_warnings(): warnings.simplefilter("ignore") skimage.io.imsave(out_file, img, plugin='tifffile') # otherwise we get problems with the .dat extension if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('point_file', type=argparse.FileType('r'), help='point file') parser.add_argument('out_file', type=str, help='out file (TIFF)') parser.add_argument('shapex', type=int, help='shapex') parser.add_argument('shapey', type=int, help='shapey') parser.add_argument('--has_header', dest='has_header', default=False, help='set True if point file has header') parser.add_argument('--swap_xy', dest='swap_xy', default=False, help='Swap X and Y coordinates') parser.add_argument('--binary', dest='binary', default=False, help='Produce binary image') args = parser.parse_args() rasterize( args.point_file.name, args.out_file, (args.shapey, args.shapex), has_header=args.has_header, swap_xy=args.swap_xy, fg_value=0xffff if args.binary else None, )