Mercurial > repos > imgteam > projective_transformation_points
comparison projective_transformation_points.py @ 4:aaac58d83043 draft
"planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tools/projective_transformation_points/ commit 7391bb4256f49ec30cf38d9438f97e11ec25a115"
| author | imgteam |
|---|---|
| date | Wed, 23 Dec 2020 23:56:29 +0000 |
| parents | 0d2707c82d29 |
| children | 3a686b6aa7fc |
comparison
equal
deleted
inserted
replaced
| 3:a84822a0060c | 4:aaac58d83043 |
|---|---|
| 40 tf_coords[batch_size*i:batch_size*(i+1)] = coord_map(tf_coords[batch_size*i:batch_size*(i+1)]) | 40 tf_coords[batch_size*i:batch_size*(i+1)] = coord_map(tf_coords[batch_size*i:batch_size*(i+1)]) |
| 41 | 41 |
| 42 return tf_coords[:, ::-1] | 42 return tf_coords[:, ::-1] |
| 43 | 43 |
| 44 | 44 |
| 45 def transform(coords, warp_matrix, out): | 45 def transform(fn_roi_coords, fn_warp_matrix, fn_out): |
| 46 roi_coords = np.array(pd.read_csv(coords, delimiter="\t")) | 46 data = pd.read_csv(fn_roi_coords, delimiter="\t") |
| 47 trans_matrix = np.array(pd.read_csv(warp_matrix, delimiter="\t", header=None)) | 47 all_data = np.array(data) |
| 48 | |
| 49 nrows = all_data.shape[0] | |
| 50 ncols = all_data.shape[1] | |
| 51 roi_coords = all_data.take([0,1],axis=1).astype('int64') | |
| 48 | 52 |
| 49 tol = 10 | 53 tol = 10 |
| 50 moving = np.zeros(np.max(roi_coords,axis=0)+tol, dtype=np.int8) | 54 moving = np.zeros(np.max(roi_coords,axis=0)+tol, dtype=np.uint32) |
| 51 idx_roi_coords = (roi_coords[:,0]-1) * moving.shape[1] + roi_coords[:,1] - 1 | 55 idx_roi_coords = (roi_coords[:,0]-1) * moving.shape[1] + roi_coords[:,1] - 1 |
| 52 moving.flat[idx_roi_coords] = 1 | 56 moving.flat[idx_roi_coords] = np.transpose(np.arange(nrows)+1) |
| 53 | 57 |
| 58 trans_matrix = np.array(pd.read_csv(fn_warp_matrix, delimiter="\t", header=None)) | |
| 54 transP = ProjectiveTransform(matrix=trans_matrix) | 59 transP = ProjectiveTransform(matrix=trans_matrix) |
| 55 roi_coords_warped_direct = warp_coords_batch(transP, roi_coords) | 60 roi_coords_warped_direct = warp_coords_batch(transP, roi_coords) |
| 56 shape_fixed = np.round(np.max(roi_coords_warped_direct,axis=0)).astype(roi_coords.dtype)+tol | 61 shape_fixed = np.round(np.max(roi_coords_warped_direct,axis=0)).astype(roi_coords.dtype)+tol |
| 57 | 62 |
| 58 transI = ProjectiveTransform(matrix=np.linalg.inv(trans_matrix)) | 63 transI = ProjectiveTransform(matrix=np.linalg.inv(trans_matrix)) |
| 59 img_coords_warped = warp_img_coords_batch(transI, shape_fixed) | 64 img_coords_warped = warp_img_coords_batch(transI, shape_fixed) |
| 60 | 65 |
| 61 moving_warped = map_coordinates(moving, img_coords_warped, mode='constant', cval=0) | 66 moving_warped = map_coordinates(moving, img_coords_warped, order=0, mode='constant', cval=0) |
| 62 idx_roi_coords_warped = np.where(moving_warped==1) | 67 idx_roi_coords_warped = np.where(moving_warped>0) |
| 68 roi_annots_warped = moving_warped.compress((moving_warped>0).flat) | |
| 63 | 69 |
| 64 df = pd.DataFrame() | 70 df = pd.DataFrame() |
| 71 col_names = data.columns.tolist() | |
| 65 df['x'] = idx_roi_coords_warped[0] + 1 | 72 df['x'] = idx_roi_coords_warped[0] + 1 |
| 66 df['y'] = idx_roi_coords_warped[1] + 1 | 73 df['y'] = idx_roi_coords_warped[1] + 1 |
| 67 df.to_csv(out, index = False, sep="\t") | 74 if ncols>2: |
| 75 for i in range(2,ncols): | |
| 76 df[col_names[i]] = all_data[:,i].take(roi_annots_warped) | |
| 77 df.to_csv(fn_out, index = False, sep="\t") | |
| 68 | 78 |
| 69 | 79 |
| 70 if __name__ == "__main__": | 80 if __name__ == "__main__": |
| 71 parser = argparse.ArgumentParser(description="Transform coordinates") | 81 parser = argparse.ArgumentParser(description="Transform coordinates") |
| 72 parser.add_argument("coords", help="Paste path to .csv with coordinates to transform (tab separated)") | 82 parser.add_argument("coords", help="Paste path to .csv with coordinates (and labels) to transform (tab separated)") |
| 73 parser.add_argument("warp_matrix", help="Paste path to .csv that should be used for transformation (, separated)") | 83 parser.add_argument("warp_matrix", help="Paste path to .csv that should be used for transformation (tab separated)") |
| 74 parser.add_argument("out", help="Paste path to file in which transformed coords should be saved (tab separated)") | 84 parser.add_argument("out", help="Paste path to file in which transformed coords (and labels) should be saved (tab separated)") |
| 75 args = parser.parse_args() | 85 args = parser.parse_args() |
| 76 transform(args.coords, args.warp_matrix, args.out) | 86 transform(args.coords, args.warp_matrix, args.out) |
