Mercurial > repos > imgteam > projective_transformation_points
comparison projective_transformation_points.py @ 1:f1744c5654b9 draft
planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tools/projective_transformation_points/ commit 201f4231192bc368b14e72bb1314b9a97b8db8d0
author | imgteam |
---|---|
date | Wed, 27 Mar 2019 14:54:32 -0400 |
parents | ed8a71e13f7b |
children | 0d2707c82d29 |
comparison
equal
deleted
inserted
replaced
0:ed8a71e13f7b | 1:f1744c5654b9 |
---|---|
3 import pandas as pd | 3 import pandas as pd |
4 import argparse | 4 import argparse |
5 | 5 |
6 | 6 |
7 def warp_coords_batch(coord_map, coords, dtype=np.float64, batch_size=1000000): | 7 def warp_coords_batch(coord_map, coords, dtype=np.float64, batch_size=1000000): |
8 tf_coords = coords.astype(np.float32) | 8 tf_coords = coords.astype(np.float32)[:, ::-1] |
9 | 9 |
10 for i in range(0, (tf_coords.shape[0]//batch_size+1)): | 10 for i in range(0, (tf_coords.shape[0]//batch_size)+1): |
11 tf_coords[batch_size*i:batch_size*(i+1)] = coord_map(tf_coords[batch_size*i:batch_size*(i+1)]) | 11 tf_coords[batch_size*i:batch_size*(i+1)] = coord_map(tf_coords[batch_size*i:batch_size*(i+1)]) |
12 | 12 |
13 return np.unique(np.round(tf_coords).astype(coords.dtype),axis=0) | 13 return np.unique(np.round(tf_coords).astype(coords.dtype),axis=0)[:, ::-1] |
14 | 14 |
15 | 15 |
16 def transform(coords, warp_matrix, out): | 16 def transform(coords, warp_matrix, out): |
17 indices = np.array(pd.read_csv(coords, delimiter="\t")) | 17 indices = np.array(pd.read_csv(coords, delimiter="\t")) |
18 a_matrix = np.array(pd.read_csv(warp_matrix, delimiter="\t", header=None)) | 18 a_matrix = np.array(pd.read_csv(warp_matrix, delimiter="\t", header=None)) |