Mercurial > repos > imgteam > projective_transformation_points
view projective_transformation_points.py @ 0:ed8a71e13f7b draft
planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tools/projective_transformation_points/ commit c3f4b766f03770f094fda6bda0a5882c0ebd4581
author | imgteam |
---|---|
date | Sat, 09 Feb 2019 14:45:19 -0500 |
parents | |
children | f1744c5654b9 |
line wrap: on
line source
from skimage.transform import ProjectiveTransform import numpy as np import pandas as pd import argparse def warp_coords_batch(coord_map, coords, dtype=np.float64, batch_size=1000000): tf_coords = coords.astype(np.float32) for i in range(0, (tf_coords.shape[0]//batch_size+1)): tf_coords[batch_size*i:batch_size*(i+1)] = coord_map(tf_coords[batch_size*i:batch_size*(i+1)]) return np.unique(np.round(tf_coords).astype(coords.dtype),axis=0) def transform(coords, warp_matrix, out): indices = np.array(pd.read_csv(coords, delimiter="\t")) a_matrix = np.array(pd.read_csv(warp_matrix, delimiter="\t", header=None)) trans = ProjectiveTransform(matrix=a_matrix) warped_coords = warp_coords_batch(trans, indices) df = pd.DataFrame() df['x'] = warped_coords[:,0] df['y'] = warped_coords[:,1] df.to_csv(out, index = False, sep="\t") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Transform coordinates") parser.add_argument("coords", help="Paste path to .csv with coordinates to transform (tab separated)") parser.add_argument("warp_matrix", help="Paste path to .csv that should be used for transformation (, separated)") parser.add_argument("out", help="Paste path to file in which transformed coords should be saved (tab separated)") args = parser.parse_args() transform(args.coords, args.warp_matrix, args.out)