Mercurial > repos > imgteam > spot_detection_2d
diff spot_detection_2d.py @ 1:859dd1c11ac0 draft
"planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tree/master/tools/spot_detection_2d/ commit 9f103372d66ae7e3c5c385bd444b2a80e51cdae6"
author | imgteam |
---|---|
date | Sat, 19 Feb 2022 20:43:29 +0000 |
parents | d78372040976 |
children | 4645b356bf3b |
line wrap: on
line diff
--- a/spot_detection_2d.py Wed Jul 21 19:59:00 2021 +0000 +++ b/spot_detection_2d.py Sat Feb 19 20:43:29 2022 +0000 @@ -13,7 +13,7 @@ import numpy as np import pandas as pd from skimage.feature import peak_local_max -from skimage.filters import gaussian +from skimage.filters import gaussian, laplace def getbr(xy, img, nb, firstn): @@ -27,7 +27,9 @@ return br -def spot_detection(fn_in, fn_out, frame_1st=1, frame_end=0, typ_br='smoothed', th=10, ssig=1, bd=10): +def spot_detection(fn_in, fn_out, frame_1st=1, frame_end=0, + typ_filter='Gauss', ssig=1, th=10, + typ_br='smoothed', bd=10): ims_ori = imageio.mimread(fn_in, format='TIFF') ims_smd = np.zeros((len(ims_ori), ims_ori[0].shape[0], ims_ori[0].shape[1]), dtype='float64') if frame_end == 0 or frame_end > len(ims_ori): @@ -40,6 +42,9 @@ txyb_all = np.array([]).reshape(0, 4) for i in range(frame_1st - 1, frame_end): tmp = np.copy(ims_smd[i, :, :]) + if typ_filter == 'LoG': + tmp = laplace(tmp) + tmp[tmp < th * ims_smd_max / 100] = 0 coords = peak_local_max(tmp, min_distance=1) idx_to_del = np.where((coords[:, 0] <= bd) | (coords[:, 0] >= tmp.shape[0] - bd) | @@ -66,21 +71,18 @@ if __name__ == "__main__": - parser = argparse.ArgumentParser(description="Spot detection based on local maxima") + parser = argparse.ArgumentParser(description="Spot detection") parser.add_argument("fn_in", help="Name of input image sequence (stack)") parser.add_argument("fn_out", help="Name of output file to save the coordinates and intensities of detected spots") parser.add_argument("frame_1st", type=int, help="Index for the starting frame to detect spots (1 for first frame of the stack)") parser.add_argument("frame_end", type=int, help="Index for the last frame to detect spots (0 for the last frame of the stack)") + parser.add_argument("filter", help="Detection filter") + parser.add_argument("ssig", type=float, help="Sigma of the Gaussian for noise suppression") + parser.add_argument("thres", type=float, help="Percentage of the global maximal for thresholding candidate spots") parser.add_argument("typ_intens", help="smoothed or robust (for measuring the intensities of spots)") - parser.add_argument("thres", type=float, help="Percentage of the global maximal intensity for thresholding candidate spots") - parser.add_argument("ssig", type=float, help="Sigma of the Gaussian filter for noise suppression") parser.add_argument("bndy", type=int, help="Number of pixels (Spots close to image boundaries will be ignored)") args = parser.parse_args() - spot_detection(args.fn_in, - args.fn_out, - frame_1st=args.frame_1st, - frame_end=args.frame_end, - typ_br=args.typ_intens, - th=args.thres, - ssig=args.ssig, - bd=args.bndy) + spot_detection(args.fn_in, args.fn_out, + frame_1st=args.frame_1st, frame_end=args.frame_end, + typ_filter=args.filter, ssig=args.ssig, th=args.thres, + typ_br=args.typ_intens, bd=args.bndy)