Mercurial > repos > imgteam > superdsm
view superdsm.xml @ 6:79ec3263686a draft default tip
planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tree/master/tools/superdsm/ commit c86a1b93cb7732f7331a981d13465653cc1a2790
author | imgteam |
---|---|
date | Wed, 24 Apr 2024 08:13:34 +0000 |
parents | 9b4830300f3a |
children |
line wrap: on
line source
<tool id="ip_superdsm" name="Perform segmentation using deformable shape models" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="20.05"> <description>with SuperDSM</description> <macros> <import>creators.xml</import> <import>tests.xml</import> <token name="@TOOL_VERSION@">0.2.0</token> <token name="@VERSION_SUFFIX@">1</token> </macros> <creator> <expand macro="creators/bmcv"/> </creator> <edam_operations> <edam_operation>operation_3443</edam_operation> </edam_operations> <xrefs> <xref type="bio.tools">superdsm</xref> <xref type="biii">superdsm</xref> </xrefs> <requirements> <requirement type="package" version="@TOOL_VERSION@">superdsm</requirement> <requirement type="package" version="0.1.1">giatools</requirement> <!-- Pin the dependencies to specific versions for reproducibility: https://github.com/BMCV/SuperDSM#dependency-version-considerations --> <requirement type="package" version="1.20">numpy</requirement> <requirement type="package" version="1.6.3">scipy</requirement> <requirement type="package" version="0.18.1">scikit-image</requirement> <requirement type="package" version="1.2.6">cvxopt</requirement> <requirement type="package" version="1.1.13">cvxpy</requirement> <requirement type="package" version="1.6.0">ray-core</requirement> <!-- 2020.0 is the last version of MKL which supports the "MKL_DEBUG_CPU_TYPE" environment variable. --> <requirement type="package" version="2020.0">mkl</requirement> <!-- Using MKL instead of other BLAS can significantly improve performance on some hardware: https://stackoverflow.com/questions/62783262/why-is-numpy-with-ryzen-threadripper-so-much-slower-than-xeon Pinning BLAS to version 1.0 is required for reproducibility: https://github.com/BMCV/SuperDSM#dependency-version-considerations --> <requirement type="package" version="1.0=mkl">blas</requirement> </requirements> <command detect_errors="aggressive"> <![CDATA[ python '$__tool_directory__/run-superdsm.py' '${dataset}' \${GALAXY_SLOTS:-4} #if 'masks' in $outputs: --do-masks 'masks.png' #end if #if 'cfg' in $outputs: --do-cfg 'cfg.tsv' #end if #if 'overlay' in $outputs: --do-overlay 'overlay.png' #if $seg_border.value % 2 == 1: #set $seg_border = "%d" % ($seg_border.value + 1) --do-overlay-border $seg_border #else: --do-overlay-border $seg_border #end if #end if #if str($config.AF_scale) != '': --AF_scale '${config.AF_scale}' #end if #if str($config.c2f_region_analysis_min_atom_radius) != '': --c2f_region_analysis_min_atom_radius '${config.c2f_region_analysis_min_atom_radius}' #end if #if str($config.c2f_region_analysis_min_norm_energy_improvement) != '': --c2f_region_analysis_min_norm_energy_improvement '${config.c2f_region_analysis_min_norm_energy_improvement}' #end if #if str($config.c2f_region_analysis_max_atom_norm_energy) != '': --c2f_region_analysis_max_atom_norm_energy '${config.c2f_region_analysis_max_atom_norm_energy}' #end if #if str($config.c2f_region_analysis_max_cluster_marker_irregularity) != '': --c2f_region_analysis_max_cluster_marker_irregularity '${config.c2f_region_analysis_max_cluster_marker_irregularity}' #end if #if str($config.dsm_alpha) != '': --dsm_alpha '${config.dsm_alpha}' #end if #if str($config.dsm_AF_alpha) != '': --dsm_AF_alpha '${config.dsm_AF_alpha}' #end if --global_energy_minimization_pruning '${global_energy_minimization_pruning}' #if str($config.global_energy_minimization_beta) != '': --global_energy_minimization_beta '${config.global_energy_minimization_beta}' #end if #if str($config.global_energy_minimization_AF_beta) != '': --global_energy_minimization_AF_beta '${config.global_energy_minimization_AF_beta}' #end if #if str($config.postprocess_mask_max_distance) != '': --postprocess_mask_max_distance '${config.postprocess_mask_max_distance}' #end if #if str($config.postprocess_mask_stdamp) != '': --postprocess_mask_stdamp '${config.postprocess_mask_stdamp}' #end if #if str($config.postprocess_max_norm_energy) != '': --postprocess_max_norm_energy '${config.postprocess_max_norm_energy}' #end if #if str($config.postprocess_min_contrast) != '': --postprocess_min_contrast '${config.postprocess_min_contrast}' #end if #if str($config.postprocess_min_object_radius) != '': --postprocess_min_object_radius '${config.postprocess_min_object_radius}' #end if ]]> </command> <environment_variables> <!-- This enables accelerated CPU instruction sets on AMD hardware, does nothing in Intel hardware, thus no need to change this: --> <environment_variable name="MKL_DEBUG_CPU_TYPE">5</environment_variable> </environment_variables> <inputs> <param name="dataset" type="data" format="tiff,png" label="Dataset" /> <param argument="--global_energy_minimization_pruning" type="select" label="Graph pruning for global energy minimization" help="Exact graph pruning corresponds to the original algorithm, which provably yields globally optimal results. Robust graph pruning is more greedy and has a provably bounded approximation error. Depending on the data, this can be significantly faster than exact graph pruning, without degrading the segmentation or cluster splitting performance."> <option value="exact">Exact graph pruning (Kostrykin and Rohr, TPAMI 2023)</option> <option value="isbi24" selected="true">Robust graph pruning (Kostrykin and Rohr, ISBI 2024)</option> </param> <param name="outputs" type="select" label="Tool outputs" multiple="true" optional="false" help="Note that if neither a segmentation overlay nor a label map is created, segmentation and cluster splitting will not be performed. As a consequence, hyperparameters which are determined automatically during segmentation and cluster splitting will not be reported, even if "Report all hyperparameters" is selected."> <option value="overlay" selected="true">Create a segmentation overlay</option> <option value="masks">Create a label map (e.g., for further processing)</option> <option value="cfg">Report all hyperparameters (manually set and automatically determined values)</option> </param> <param name="seg_border" type="integer" min="1" value="8" label="Width of the outlines (in pixels)" help="This parameter is only used for segmentation overlays (see above)." /> <section name="config" title="Hyperparameters" expanded="false"> <param argument="--AF_scale" optional="true" type="float" value="" min="0" label="scale Ο" help="The scale of the objects to be segmented. Leave empty to use the automatically determined value." /> <param argument="--c2f_region_analysis_min_atom_radius" optional="true" type="float" value="" min="0" label="min_atom_radius" help="No region determined by the Coarse-to-fine region analysis scheme is smaller than a circle of this radius (in terms of the surface area). Leave empty to use the automatically determined value." /> <param argument="--c2f_region_analysis_min_norm_energy_improvement" type="float" value="0.1" min="0" label="min_norm_energy_improvement" help="Each split performed during the computation of the atomic image regions must improve the normalized energy π(π) of an image region π by at least this factor. Given that an image region is split into the sub-regions πβ, πβ, the improvement of the split is defined by the fraction max{π(π)β, π(πβ)} / π(πβ βͺ πβ). Lower values of the fraction correspond to better improvements." /> <param argument="--c2f_region_analysis_max_atom_norm_energy" type="float" value="0.05" min="0" label="max_norm_energy1" help="No atomic image region π determined by the Coarse-to-fine region analysis has a normalized energy π(π) smaller than this value." /> <param argument="--c2f_region_analysis_max_cluster_marker_irregularity" type="float" value="0.2" min="0" label="max_pa_ratio" help="Threshold for the βirregularityβ of image regions. Image regions with an βirregularityβ higher than this value are masked as βemptyβ image regions and discarded from further considerations." /> <param argument="--dsm_alpha" type="float" value="" optional="true" min="0" label="regularization of the deformations πΌ" help="Governs the regularization of the deformations. Increasing this value leads to a smoother segmentation result. Leave empty to use the automatically determined value." /> <param argument="--dsm_AF_alpha" type="float" value="0.0005" min="0" label="factor used for automatic computation of πΌ" /> <param argument="--global_energy_minimization_beta" type="float" value="" optional="true" min="0" label="sparsity π½" help="Increasing this value leads to a sparser segmentation result. Leave empty to use the automatically determined value." /> <param argument="--global_energy_minimization_AF_beta" type="float" value="0.66" min="0" label="factor used for automatic computation of π½" /> <param argument="--postprocess_mask_max_distance" type="integer" value="1" min="0" label="mask_max_distance" help="Image points within this maximum distance of the boundary of the original segmentation mask are subject to refinement in post-processing. Image points further away from the boundary are neither added to nor removed from the segmentation mask." /> <param argument="--postprocess_mask_stdamp" type="float" value="2" min="0" label="mask_stdamp" help="An image point adjacent to the boundary of the original segmentation mask is added to the segmentation mask in post-processing, if its Gaussian-smoothed intensity is sufficiently similar to the mean intensity of the mask. The image point is removed otherwise. The lower the value set, the stricter the similarity must be." /> <param argument="--postprocess_max_norm_energy" type="float" value="0.2" label="max_norm_energy2" help="Objects with a normalized energy larger than this value are discarded in post-processing." /> <param argument="--postprocess_min_contrast" type="float" value="1.35" label="min_contrast" help="A segmented object is discarded in post-processing, if the contrast as defined above is below this threshold." /> <param argument="--postprocess_min_object_radius" type="float" value="0" label="min_object_radius" help="Objects smaller than a circle of this radius are discarded in post-processing (in terms of the surface area)." /> </section> </inputs> <outputs> <data format="png" name="masks" from_work_dir="masks.png" label="${tool.name} on ${on_string}: masks"> <filter>'masks' in outputs</filter> </data> <data format="tsv" name="cfg" from_work_dir="cfg.tsv" label="${tool.name} on ${on_string}: cfg"> <filter>'cfg' in outputs</filter> </data> <data format="png" name="overlay" from_work_dir="overlay.png" label="${tool.name} on ${on_string}: overlay"> <filter>'overlay' in outputs</filter> </data> </outputs> <tests> <test expect_num_outputs="3"> <param name="dataset" value="BBBC033_C2_z28.png" /> <param name="global_energy_minimization_pruning" value="exact" /> <param name="outputs" value="overlay,masks,cfg" /> <expand macro="tests/intensity_image_diff" name="overlay" value="overlay.png" ftype="png"/> <output name="cfg" value="cfg-full.tsv" ftype="tsv" compare="diff" /> <output name="masks" ftype="png"> <assert_contents> <has_image_width width="1024"/> <has_image_height height="1344"/> <has_image_channels channels="1"/> <has_image_n_labels n="16"/><!-- 15 objects plus the background --> </assert_contents> </output> </test> <test expect_num_outputs="1"> <param name="dataset" value="BBBC033_C2_z28.png" /> <param name="global_energy_minimization_pruning" value="exact" /> <param name="outputs" value="cfg" /> <output name="cfg" value="cfg.tsv" ftype="tsv" compare="diff" /> </test> </tests> <help> **Performs segmentation of 2-D fluorescence microscopy images using deformable shape models and superadditivity.** SuperDSM is a globally optimal method for cell nuclei segmentation using deformable shape models and their inherent law of superadditivity. You can either use an individual input image (PNG, TIF) or a collection of such images. </help> <citations> <citation type="bibtex"> @inproceedings{kostrykin2024, author = {Kostrykin, L. and Rohr, K.}, title = {Robust Graph Pruning for Efficient Segmentation and Cluster Splitting of Cell Nuclei using Deformable Shape Models}, booktitle = {Proc. IEEE International Symposium on Biomedical Imaging (ISBI'24)}, pages = {accepted for presentation}, year = {2024}, } </citation> <citation type="doi">10.1109/TPAMI.2022.3185583</citation> </citations> </tool>