Mercurial > repos > imgteam > superdsm
view run-superdsm.py @ 4:dc5f72f6b1e9 draft
planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tree/master/tools/superdsm/ commit b0b09d6788778541d1c0b89ca96101fc57d60e22
author | imgteam |
---|---|
date | Mon, 12 Feb 2024 14:58:45 +0000 |
parents | 7fd8dba15bd3 |
children | 79ec3263686a |
line wrap: on
line source
""" Copyright 2023 Leonid Kostrykin, Biomedical Computer Vision Group, Heidelberg University. Distributed under the MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT """ import argparse import csv import imghdr import os import pathlib import shutil import tempfile hyperparameters = [ ('AF_scale', float), ('c2f-region-analysis/min_atom_radius', float), ('c2f-region-analysis/min_norm_energy_improvement', float), ('c2f-region-analysis/max_atom_norm_energy', float), ('c2f-region-analysis/max_cluster_marker_irregularity', float), ('dsm/alpha', float), ('dsm/AF_alpha', float), ('global-energy-minimization/pruning', str), ('global-energy-minimization/beta', float), ('global-energy-minimization/AF_beta', float), ('postprocess/mask_max_distance', int), ('postprocess/mask_stdamp', float), ('postprocess/max_norm_energy', float), ('postprocess/min_contrast', float), ('postprocess/min_object_radius', float), ] def get_param_name(key): return key.replace('/', '_').replace('-', '_') def create_config(args): cfg = superdsm.config.Config() for key, _ in hyperparameters: value = getattr(args, get_param_name(key)) if value is not None: cfg[key] = value return cfg def flatten_dict(d, sep='/'): result = {} for key, val in d.items(): if isinstance(val, dict): for sub_key, sub_val in flatten_dict(val, sep=sep).items(): result[f'{key}{sep}{sub_key}'] = sub_val else: result[key] = val return result if __name__ == "__main__": parser = argparse.ArgumentParser(description='Segmentation of cell nuclei in 2-D fluorescence microscopy images') parser.add_argument('image', type=str, help='Path to the input image') parser.add_argument('slots', type=int) parser.add_argument('--do-masks', type=str, default=None, help='Path to the file containing the segmentation masks') parser.add_argument('--do-cfg', type=str, default=None, help='Path to the file containing the configuration') parser.add_argument('--do-overlay', type=str, default=None, help='Path to the file containing the overlay of the segmentation results') parser.add_argument('--do-overlay-border', type=int) for key, ptype in hyperparameters: parser.add_argument('--' + get_param_name(key), type=ptype, default=None) args = parser.parse_args() if args.slots >= 2: num_threads_per_process = 2 num_processes = args.slots // num_threads_per_process else: num_threads_per_process = 1 num_processes = 1 os.environ['MKL_NUM_THREADS'] = str(num_threads_per_process) os.environ['OPENBLAS_NUM_THREADS'] = str(num_threads_per_process) import ray import superdsm.automation import superdsm.io import superdsm.render ray.init(num_cpus=num_processes, log_to_driver=True) with tempfile.TemporaryDirectory() as tmpdirname: tmpdir = pathlib.Path(tmpdirname) img_ext = imghdr.what(args.image) img_filepath = tmpdir / f'input.{img_ext}' shutil.copy(str(args.image), img_filepath) pipeline = superdsm.pipeline.create_default_pipeline() cfg = create_config(args) img = superdsm.io.imread(img_filepath) # Create configuration if it is required: if args.do_cfg or args.do_overlay or args.do_masks: cfg, _ = superdsm.automation.create_config(pipeline, cfg, img) # Perform segmentation if it is required: if args.do_overlay or args.do_masks: print('Performing segmentation') data, cfg, _ = pipeline.process_image(img, cfg) # Write configuration used for segmentation, or the automatically created one, otherwise: if args.do_cfg: print(f'Writing config to: {args.do_cfg}') with open(args.do_cfg, 'w') as fp: tsv_out = csv.writer(fp, delimiter='\t') tsv_out.writerow(['Hyperparameter', 'Value']) rows = sorted(flatten_dict(cfg.entries).items(), key=lambda item: item[0]) for key, value in rows: tsv_out.writerow([key, value]) # Write the overlay image: if args.do_overlay: print(f'Writing overlay to: {args.do_overlay}') overlay = superdsm.render.render_result_over_image(data, border_width=args.do_overlay_border, normalize_img=False) superdsm.io.imwrite(args.do_overlay, overlay) # Write the label map: if args.do_masks: print(f'Writing masks to: {args.do_masks}') masks = superdsm.render.rasterize_labels(data) superdsm.io.imwrite(args.do_masks, masks)