Mercurial > repos > immport-devteam > profile_cl
view profileCLs.py @ 1:62d8985a41e2 draft default tip
"planemo upload for repository https://github.com/ImmPortDB/immport-galaxy-tools/tree/master/flowtools/profile_cl commit 5cdc32e68f9ec685f9890902c5ecc75047248361"
author | azomics |
---|---|
date | Thu, 23 Jul 2020 08:58:29 -0400 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/env python ###################################################################### # Copyright (c) 2016 Northrop Grumman. # All rights reserved. ###################################################################### import sys import os from argparse import ArgumentParser from jinja2 import Environment, FileSystemLoader profile_key = { "1": "-", "2": "lo", "3": "+", "4": "hi" } def run_flowCL(phenotype, output_txt, output_pdf, tool): run_command = " ". join(["Rscript --slave --vanilla", tool, output_txt, phenotype]) os.system(run_command) get_graph = " ".join(["mv flowCL_results/*.pdf", output_pdf]) os.system(get_graph) return def generate_flowCL_query(list_markers, list_types): if (len(list_markers) != len(list_types)): return("pb with headers") query = [] # go through both lists, remove fsc/ssc for i in range(1, len(list_markers)): if not list_markers[i].startswith("FSC") and not list_markers[i].startswith("SSC"): query.append(list_markers[i].upper()) query.append(profile_key[list_types[i]]) # return concatenated string return("".join(query)) def translate_profiles(input_file, tool_dir, output, html_dir): os.mkdir(html_dir) tool = "/".join([tool_dir, "getOntology.R"]) html_table = "".join([html_dir, "/CLprofiles.txt"]) score_table = "".join(["cp ", input_file, " ", html_dir, "/scores.txt"]) os.system(score_table) # read profile with open(input_file, "r") as flock_profiles, open(html_table, "w") as out: headers = flock_profiles.readline() headers = headers.strip() # get all headers except for last 2 (count + percentage) markers = headers.split("\t")[:-2] counter = 0 out.write("Population\tFlowCL Query\tNb Results\tLink to PDF\t") out.write("Top Result Label\tTop Result Score\tTop Result CL\n") queries = {} # create marker query for each population for lines in flock_profiles: lines = lines.strip("\n") pop_profile = lines.split("\t")[:-2] flowcl_query = generate_flowCL_query(markers, pop_profile) counter += 1 nb_results = "0" top_label = "no_match" top_score = "NA" top_CL = "NA" pdf_link = "NA" # check if query was run before if flowcl_query not in queries: # create filenames for results & graphs txt = "".join(["flowcl_pop", str(counter).zfill(2), ".txt"]) text_result = "/".join([html_dir, txt]) graph = "".join(["flowcl_pop", str(counter).zfill(2), ".pdf"]) graph_output = "/".join([html_dir, graph]) # run flowCL for each marker profile run_flowCL(flowcl_query, text_result, graph_output, tool) # test that text file exists if not results are all NAs: if os.path.isfile(text_result): with open(text_result, "r") as res: for line in res: if line.startswith("Score"): data = line.split(") ") top_score = data[2][:-2] tot_results = len(data) - 2 nb_results = str(tot_results) if tot_results == 5: if len(data[6].split("+")) > 1: nb_results = "5+" elif line.startswith("Cell ID"): prep_link = line.split(") ")[1][:-2] cl = prep_link.replace("_", ":") link = "".join(['<a href="http://www.immport-labs.org/immport-ontology/public/home/home/', cl, '" target="_blank">']) top_CL = "".join([link, prep_link, "</a>"]) elif line.startswith("Cell Label"): top_label = line.split(") ")[1][:-2] pdf_link = "".join(['<a href="', graph, '" target="_blank">PDF</a>']) tmpflowcl_query = "".join(['<a href="', txt, '" target="_blank">', flowcl_query, '</a>']) queries[flowcl_query] = { "query": tmpflowcl_query, "results": nb_results, "pdf": pdf_link, "label": top_label, "score": top_score, "CL": top_CL } # write query results to CLprofiles.txt out.write("\t".join([pop_profile[0], queries[flowcl_query]["query"], queries[flowcl_query]["results"], queries[flowcl_query]["pdf"], queries[flowcl_query]["label"], queries[flowcl_query]["score"], queries[flowcl_query]["CL"]]) + "\n") env = Environment(loader=FileSystemLoader(tool_dir + "/templates")) template = env.get_template("profileCLs.template") real_directory = html_dir.replace("/job_working_directory", "") context = {'outputDirectory': real_directory} overview = template.render(**context) with open(output, "w") as outf: outf.write(overview) if __name__ == "__main__": parser = ArgumentParser( prog="getCLs_from_profile", description="runs flowCL on a each population defined by FLOCK.") parser.add_argument( '-i', dest="input_file", required=True, help="File location for the profile.txt from FLOCK.") parser.add_argument( '-o', dest="output", required=True, help="Name of the output html file.") parser.add_argument( '-d', dest="html_dir", required=True, help="Path to html supporting directory.") parser.add_argument( '-t', dest="tool_dir", required=True, help="Path to the tool directory") args = parser.parse_args() translate_profiles(args.input_file, args.tool_dir, args.output, args.html_dir)