Mercurial > repos > immuneml > immuneml_tools
diff immuneml_train_ml_model.xml @ 0:629e7e403e19 draft
"planemo upload commit 2fed2858d4044a3897a93a5604223d1d183ceac0-dirty"
author | immuneml |
---|---|
date | Thu, 01 Jul 2021 11:36:43 +0000 |
parents | |
children | ed3932e6d616 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/immuneml_train_ml_model.xml Thu Jul 01 11:36:43 2021 +0000 @@ -0,0 +1,72 @@ +<tool id="immuneml_train_ml_model" name="Train machine learning models" version="@VERSION@.0"> + <description></description> + <macros> + <import>prod_macros.xml</import> + </macros> + <expand macro="requirements" /> + <command><![CDATA[ + + #if $iml_input + cp -r ${iml_input.extra_files_path}/result/* . && + (mv repertoires/* . &>/dev/null || :) && + rm -rf repertoires && + #end if + + #set $input_orig_names = [] + #if $data_input + #for $input in $data_input + #set input_orig_names += [str($input.element_identifier)] + ([ -e ./"$input.element_identifier" ] && echo "File '$input.element_identifier' already exists in the input folder, skipping." || ln -s $input "$input.element_identifier") && + #end for# + #end if + + cp "$yaml_input" yaml_copy && + immune-ml ./yaml_copy ${html_outfile.files_path} --tool GalaxyTrainMLModel && + mv ${html_outfile.files_path}/index.html ${html_outfile} && + mv ${html_outfile.files_path}/exported_models/*.zip ${optimal_model} && + mv ${html_outfile.files_path}/immuneML_output.zip $archive + ]]> + </command> + <inputs> + <param name="yaml_input" type="data" format="txt" label="YAML specification" multiple="false"/> + <param name="data_input" type="data" multiple="true" label="Additional files" optional="true" help="This field should include individual repertoire files, metadata files, receptor data and others."/> + <param name="iml_input" type="data" format="iml_dataset" label="Dataset input" optional="true" help="This field accepts an ImmuneML dataset, as created by the Create Dataset tool."/> + </inputs> + <outputs> + <data format="zip" name="optimal_model" label="optimal_ml_settings.zip"/> + <data format="zip" name="archive" label="Archive: ML model training"/> + <data format="html" name="html_outfile" label="Summary: ML model training"/> + </outputs> + + + <help> + <![CDATA[ + + This tool can be used to run hyperparameter optimization over several different ML settings, + which include ML models and their parameters, encodings and preprocessing steps. Nested cross-validation is used to identify the optimal combination of ML settings. + + This is a YAML-based Galaxy tool, if you prefer a button-based interface that assumes less ML knowledge, + see `Train immune receptor classifiers (easy interface) <https://galaxy.immuneml.uio.no/root?tool_id=immuneml_train_classifiers>`_ and + `Train immune repertoire classifiers (easy interface) <https://galaxy.immuneml.uio.no/root?tool_id=novice_immuneml_interface>`_. + + For more details on how to train ML models in Galaxy, see `the documentation <https://docs.immuneml.uio.no/galaxy/galaxy_train_ml_models.html>`_. + + **Tool output** + + This Galaxy tool will produce the following history elements: + + - Summary: ML model training: a HTML page that allows you to browse through all results, including prediction accuracies on + the various data splits and report results. + + - Archive: ML model training: a .zip file containing the complete output folder as it was produced by immuneML. This folder + contains the output of the TrainMLModel instruction including all trained models and their predictions, and report results. + Furthermore, the folder contains the complete YAML specification file for the immuneML run, the HTML output and a log file. + + - optimal_ml_settings.zip: a .zip file containing the raw files for the optimal trained ML settings (ML model, encoding, and + optionally preprocessing steps). This .zip file can subsequently be used as an input when `applying previously trained ML models to a new AIRR dataset in Galaxy <https://docs.immuneml.uio.no/galaxy/galaxy_apply_ml_models.html>`_. + + ]]> + + </help> + +</tool>