Mercurial > repos > infr > impc_tools
comparison impc_tool.py @ 0:0a9cf7f52b9c draft default tip
planemo upload commit 213f6eeb03f96bb13d0ace6e0c87e2562d37f728-dirty
| author | infr |
|---|---|
| date | Wed, 22 Jun 2022 13:36:44 +0000 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:0a9cf7f52b9c |
|---|---|
| 1 import sys | |
| 2 import requests | |
| 3 import pandas as pd | |
| 4 import urllib.request as url | |
| 5 | |
| 6 impc_api_url = "https://www.gentar.org/impc-dev-api/" | |
| 7 impc_api_search_url = f"{impc_api_url}/genes" | |
| 8 impc_api_gene_bundle_url = f"{impc_api_url}/geneBundles" | |
| 9 | |
| 10 | |
| 11 def stop_err(msg): | |
| 12 sys.exit(msg) | |
| 13 | |
| 14 | |
| 15 def main(): | |
| 16 inp = str(sys.argv[1]) | |
| 17 query = str(sys.argv[3]) | |
| 18 | |
| 19 try: | |
| 20 if query == '7': | |
| 21 full_gene_table() | |
| 22 sys.exit(0) | |
| 23 | |
| 24 if str(sys.argv[5])=="txt": | |
| 25 s = str(sys.argv[6]) | |
| 26 if s == "t": | |
| 27 sep = "\t" | |
| 28 elif s == "s": | |
| 29 sep = " " | |
| 30 elif s in ",;.": | |
| 31 sep = s | |
| 32 else: | |
| 33 sys.exit("Separator not valid, please change it.") | |
| 34 inp = pd.read_csv(inp, header=None, delimiter=sep) | |
| 35 if len(inp.columns)==1: | |
| 36 inp = str(inp[0].values[0]).replace("'","") | |
| 37 else: | |
| 38 inp = inp.to_string(header=False, index=False).replace(" ",",") | |
| 39 | |
| 40 if query == '8': | |
| 41 genes_in_pipeline(inp) | |
| 42 sys.exit(0) | |
| 43 elif query == '10': # it's here but not totally implemented | |
| 44 par_pip_ma(inp) | |
| 45 sys.exit(0) | |
| 46 elif query == '11': # it's here but not totally implemented | |
| 47 par_gen(inp) | |
| 48 sys.exit(0) | |
| 49 elif query == '2' or query == "4": | |
| 50 final_list=pheno_mapping(inp) | |
| 51 else: | |
| 52 final_list=gene_mapping(inp) | |
| 53 inp= ",".join(final_list) | |
| 54 | |
| 55 | |
| 56 if query == '1': | |
| 57 get_pheno(inp) | |
| 58 sys.exit(0) | |
| 59 elif query == '2': | |
| 60 get_genes(inp) | |
| 61 sys.exit(0) | |
| 62 elif query == '3': | |
| 63 gene_set(inp) | |
| 64 sys.exit(0) | |
| 65 elif query == '4': | |
| 66 extr_img(inp) | |
| 67 sys.exit(0) | |
| 68 elif query == '5': | |
| 69 parameters(inp) | |
| 70 sys.exit(0) | |
| 71 elif query == '6': | |
| 72 sign_par(inp) | |
| 73 sys.exit(0) | |
| 74 elif query == '9': | |
| 75 sign_mp(inp) | |
| 76 sys.exit(0) | |
| 77 else: | |
| 78 stop_err("Error, non-implemented query selected: " + query) | |
| 79 except Exception as ex: | |
| 80 stop_err('Error running impc_tool.py:\n' + str(ex)) | |
| 81 | |
| 82 | |
| 83 # 1-Given a gene id, retrieve all the phenotypes related to it (id and name) | |
| 84 def get_pheno(inp): | |
| 85 head = sys.argv[4] | |
| 86 mgi_accession_id = inp | |
| 87 | |
| 88 gene_url = f"{impc_api_search_url}/{mgi_accession_id}" | |
| 89 gene_data = requests.get(gene_url).json() | |
| 90 | |
| 91 p_list = [] | |
| 92 id_list = [] | |
| 93 | |
| 94 if gene_data['significantMpTerms'] == None: | |
| 95 stop_err("No significant MP terms found for this gene") | |
| 96 else: | |
| 97 for x in gene_data['significantMpTerms']: | |
| 98 p_list.append(x['mpTermId']) | |
| 99 id_list.append(x['mpTermName']) | |
| 100 | |
| 101 df = pd.DataFrame() | |
| 102 df['MP term name'] = p_list | |
| 103 df['MP term id'] = id_list | |
| 104 | |
| 105 if head == 'True': | |
| 106 df.to_csv(sys.argv[2], header=True, index=False, sep="\t", index_label=False) | |
| 107 else: | |
| 108 df.to_csv(sys.argv[2], header=False, index=False, sep="\t", index_label=False) | |
| 109 | |
| 110 | |
| 111 # 3-Extract all genes having a particular phenotype or a set of phenotypes (e.g. relevant to a disease) | |
| 112 def get_genes(inp): | |
| 113 head = sys.argv[4] | |
| 114 target_mp_terms = inp | |
| 115 | |
| 116 ## All the data is paginated using the page and size parameters, by default the endpoint returns the first 20 hits | |
| 117 gene_by_phenotypes_query = f"{impc_api_search_url}/search/findAllBySignificantMpTermIdsContains?mpTermIds={target_mp_terms}&page=0&size=20" | |
| 118 genes_with_clinical_chemistry_phenotypes = requests.get(gene_by_phenotypes_query).json() | |
| 119 print(f"Genes with {target_mp_terms}: {genes_with_clinical_chemistry_phenotypes['page']['totalElements']}") | |
| 120 list_of_genes = pd.DataFrame(columns=['Gene accession id', 'Gene name', 'Gene bundle url']) | |
| 121 acc = [] | |
| 122 name = [] | |
| 123 url = [] | |
| 124 | |
| 125 for gene in genes_with_clinical_chemistry_phenotypes['_embedded']['genes']: | |
| 126 acc.append(gene['mgiAccessionId']) | |
| 127 name.append(gene['markerName']) | |
| 128 url.append(gene['_links']['geneBundle']['href']) | |
| 129 | |
| 130 list_of_genes['Gene accession id'] = acc | |
| 131 list_of_genes['Gene name'] = name | |
| 132 list_of_genes['Gene bundle url'] = url | |
| 133 | |
| 134 if head == 'True': | |
| 135 list_of_genes.to_csv(sys.argv[2], header=True, index=False, sep="\t", index_label=False) | |
| 136 else: | |
| 137 list_of_genes.to_csv(sys.argv[2], header=False, index=False, sep="\t", index_label=False) | |
| 138 | |
| 139 # 4. Extract all phenotypes which are present in a particular gene set (e.g. genes together in a pathway) | |
| 140 | |
| 141 def gene_set(inp): | |
| 142 head = sys.argv[4] | |
| 143 target_genes = inp | |
| 144 | |
| 145 genes_in_gene_list_query = f"{impc_api_search_url}/search/findAllByMgiAccessionIdIn?mgiAccessionIds={target_genes}" | |
| 146 | |
| 147 genes_in_gene_list = requests.get(genes_in_gene_list_query).json() | |
| 148 list_of_mp_terms_vs_gene_index = {} | |
| 149 | |
| 150 for gene in genes_in_gene_list['_embedded']['genes']: | |
| 151 mp_terms = gene['significantMpTerms'] | |
| 152 gene_acc_id = gene["mgiAccessionId"] | |
| 153 if mp_terms is None: | |
| 154 continue | |
| 155 for mp_term_name in mp_terms: | |
| 156 if mp_term_name['mpTermId'] not in list_of_mp_terms_vs_gene_index: | |
| 157 list_of_mp_terms_vs_gene_index[mp_term_name['mpTermId']] = {"mp_term": mp_term_name['mpTermId'], "mp_name": mp_term_name['mpTermName'], "genes": []} | |
| 158 list_of_mp_terms_vs_gene_index[mp_term_name['mpTermId']]["genes"].append(gene_acc_id) | |
| 159 genes_by_mp_term = list(list_of_mp_terms_vs_gene_index.values()) | |
| 160 | |
| 161 df = pd.DataFrame() | |
| 162 terms = [] | |
| 163 names = [] | |
| 164 genes = [] | |
| 165 for i in genes_by_mp_term: | |
| 166 terms.append(i['mp_term']) | |
| 167 names.append(i['mp_name']) | |
| 168 genes.append(",".join(i['genes'])) | |
| 169 | |
| 170 df['mp_term'] = terms | |
| 171 df['mp_name'] = names | |
| 172 df['genes'] = genes | |
| 173 | |
| 174 if head == 'True': | |
| 175 df.to_csv(sys.argv[2], header=True, index=False, sep="\t", index_label=False) | |
| 176 else: | |
| 177 df.to_csv(sys.argv[2], header=False, index=False, sep="\t", index_label=False) | |
| 178 | |
| 179 # 7. Extract images with a particular phenotype or a set of phenotypes | |
| 180 | |
| 181 | |
| 182 def extr_img(inp): | |
| 183 head = sys.argv[4] | |
| 184 target_mp_terms = inp # ['MP:0002110', 'MP:0000559'] | |
| 185 | |
| 186 ## All the data is paginated using the page and size parameters, by default the endpoint returns the first 20 hits | |
| 187 gene_by_phenotypes_query = f"{impc_api_search_url}/search/findAllBySignificantMpTermIdsContains?mpTermIds={target_mp_terms}&page=0&size=20" | |
| 188 genes_with_morphology_mps = requests.get(gene_by_phenotypes_query).json() | |
| 189 list_of_gene_bundle_urls = [gene["_links"]["geneBundle"]['href'] for gene in | |
| 190 genes_with_morphology_mps['_embedded']['genes']] | |
| 191 | |
| 192 gene_bundles = [] | |
| 193 for gene_bundle_url in list_of_gene_bundle_urls: | |
| 194 gene_bundle = requests.get(gene_bundle_url).json() | |
| 195 gene_bundles.append(gene_bundle) | |
| 196 | |
| 197 images_with_morphology_mps = [] | |
| 198 | |
| 199 ## Doing just the first 20 and filtering out fields on the images | |
| 200 display_fields = ['geneSymbol', 'parameterName', 'biologicalSampleGroup', 'colonyId', 'zygosity', 'sex', | |
| 201 'downloadUrl', 'externalSampleId', 'thumbnailUrl'] | |
| 202 | |
| 203 | |
| 204 for gene_bundle in gene_bundles[:20]: | |
| 205 if len(gene_bundle) == 4: | |
| 206 continue | |
| 207 if gene_bundle["geneImages"] is not None: | |
| 208 images = gene_bundle["geneImages"] | |
| 209 for image in images: | |
| 210 display_image = {k: v for k, v in image.items() if k in display_fields} | |
| 211 images_with_morphology_mps.append(display_image) | |
| 212 | |
| 213 images_table = [] | |
| 214 print(f"Images related to phenotype {target_mp_terms}: {len(images_with_morphology_mps)}") | |
| 215 ## Displaying just the first 20 images | |
| 216 for i in images_with_morphology_mps[:20]: | |
| 217 row = [f"<img src='{i['thumbnailUrl']}' />"] + list(i.values()) | |
| 218 images_table.append(row) | |
| 219 | |
| 220 df = pd.DataFrame() | |
| 221 externalSampleId = [] | |
| 222 geneSymbol = [] | |
| 223 biologicalSampleGroup = [] | |
| 224 sex = [] | |
| 225 colonyId = [] | |
| 226 zygosity = [] | |
| 227 parameterName = [] | |
| 228 downloadUrl = [] | |
| 229 thumbnailUrl = [] | |
| 230 | |
| 231 for i in images_table: | |
| 232 externalSampleId.append(i[1]) | |
| 233 geneSymbol.append(i[2]) | |
| 234 biologicalSampleGroup.append(i[3]) | |
| 235 sex.append(i[4]) | |
| 236 colonyId.append(i[5]) | |
| 237 zygosity.append(i[6]) | |
| 238 parameterName.append(i[7]) | |
| 239 downloadUrl.append(i[8]) | |
| 240 thumbnailUrl.append(i[9]) | |
| 241 | |
| 242 df['externalSampleId'] = externalSampleId | |
| 243 df['geneSymbol'] = geneSymbol | |
| 244 df['biologicalSampleGroup'] = biologicalSampleGroup | |
| 245 df['sex'] = sex | |
| 246 df['colonyId'] = colonyId | |
| 247 df['zygosity'] = zygosity | |
| 248 df['parameterName'] = parameterName | |
| 249 df['downloadUrl'] = downloadUrl | |
| 250 df['thumbnailUrl'] = thumbnailUrl | |
| 251 | |
| 252 if head == 'True': | |
| 253 df.to_csv(sys.argv[2], header=True, index=False, sep="\t", index_label=False) | |
| 254 else: | |
| 255 df.to_csv(sys.argv[2], header=False, index=False, sep="\t", index_label=False) | |
| 256 | |
| 257 # 11- Which parameters have been measured for a particular knockout EASY | |
| 258 | |
| 259 | |
| 260 def parameters(inp): | |
| 261 head = sys.argv[4] | |
| 262 knockout = inp # "MGI:104636" | |
| 263 gene_info = requests.get(impc_api_search_url + "/" + knockout).json() | |
| 264 | |
| 265 if gene_info['phenotypingDataAvailable']: | |
| 266 geneBundle = requests.get(gene_info['_links']['geneBundle']['href']).json() | |
| 267 gen_imgs = geneBundle['geneImages'] | |
| 268 par_list = [] | |
| 269 l = {} | |
| 270 for i in gen_imgs: | |
| 271 l = {"Parameter Name": i['parameterName']} | |
| 272 if l not in par_list: | |
| 273 par_list.append(l) | |
| 274 df = pd.DataFrame() | |
| 275 l = [] | |
| 276 | |
| 277 for i in par_list: | |
| 278 l.append(i['Parameter Name']) | |
| 279 | |
| 280 df['Parameter'] = l | |
| 281 if head == 'True': | |
| 282 df.to_csv(sys.argv[2], header=True, index=False, sep="\t", index_label=False) | |
| 283 else: | |
| 284 df.to_csv(sys.argv[2], header=False, index=False, sep="\t", index_label=False) | |
| 285 | |
| 286 else: | |
| 287 stop_err("No parameters available for this knockout gene") | |
| 288 | |
| 289 | |
| 290 # 12- Which parameters identified a significant finding for a particular knockout line (colony) EASY | |
| 291 def sign_par(inp): | |
| 292 head = sys.argv[4] | |
| 293 knockout = inp # "MGI:104636" | |
| 294 | |
| 295 gene_info = requests.get(f"{impc_api_url}statisticalResults/search/findAllByMarkerAccessionIdIsAndSignificantTrue?mgiAccessionId=" + knockout).json() | |
| 296 gene_stats = gene_info['_embedded']['statisticalResults'] | |
| 297 | |
| 298 if len(gene_stats) == 0: | |
| 299 stop_err("No statistically relevant parameters found for this knockout gene") | |
| 300 else: | |
| 301 df = pd.DataFrame() | |
| 302 n = [] | |
| 303 p = [] | |
| 304 for g in gene_stats: | |
| 305 n.append(g['parameterName']) | |
| 306 p.append(g['pvalue']) | |
| 307 | |
| 308 df['Parameter name'] = n | |
| 309 df['p-value'] = p | |
| 310 if head == 'True': | |
| 311 df.to_csv(sys.argv[2], header=True, index=False, sep="\t", index_label=False) | |
| 312 else: | |
| 313 df.to_csv(sys.argv[2], header=False, index=False, sep="\t", index_label=False) | |
| 314 | |
| 315 | |
| 316 # 13- List of genes names and ID measured in a pipeline | |
| 317 def genes_in_pipeline(inp): | |
| 318 head = sys.argv[4] | |
| 319 pip = inp | |
| 320 | |
| 321 g_in_p_query = f"{impc_api_search_url}/search/findAllByTestedPipelineId?pipelineId={pip}&page=0&size=1000" | |
| 322 genes_in_pip = requests.get(g_in_p_query).json() | |
| 323 pages = genes_in_pip['page']['totalPages'] | |
| 324 max_elem = genes_in_pip['page']['totalElements'] | |
| 325 | |
| 326 print(f"Genes with {pip}: {genes_in_pip['page']['totalElements']}") | |
| 327 d ={ } | |
| 328 list_d = [] | |
| 329 list_of_genes = pd.DataFrame(columns=['Gene accession id', 'Gene name']) | |
| 330 acc = [] | |
| 331 name = [] | |
| 332 | |
| 333 if max_elem > 1000: | |
| 334 g_in_p_query = genes_in_pip['_embedded']['genes'] | |
| 335 for i in range(1,pages): | |
| 336 gl = requests.get(f'{impc_api_search_url}/search/findAllByTestedPipelineId?pipelineId={pip}&page={i}&size=1000').json()['_embedded']['genes'] | |
| 337 g_in_p_query += gl | |
| 338 else: | |
| 339 g_in_p_query = genes_in_pip['_embedded']['genes'] | |
| 340 | |
| 341 for g in g_in_p_query: | |
| 342 d = {"Gene Accession ID": g['mgiAccessionId'], "Gene Name": g['markerName']} | |
| 343 list_d.append(d) | |
| 344 | |
| 345 for i in list_d: | |
| 346 acc.append(i['Gene Accession ID']) | |
| 347 name.append(i['Gene Name']) | |
| 348 | |
| 349 list_of_genes['Gene accession id'] = acc | |
| 350 list_of_genes['Gene name'] = name | |
| 351 | |
| 352 if head == 'True': | |
| 353 list_of_genes.to_csv(sys.argv[2], header=True, index=False, sep="\t", index_label=False) | |
| 354 else: | |
| 355 list_of_genes.to_csv(sys.argv[2], header=False, index=False, sep="\t", index_label=False) | |
| 356 | |
| 357 | |
| 358 # 14- Extract all genes and corresponding phenotypes related to a particular organ system(eg: significatMPTerm) | |
| 359 def sign_mp(inp): | |
| 360 head = sys.argv[4] | |
| 361 mp_term = inp # ['MP:0005391'] | |
| 362 | |
| 363 gene_by_mpterm_query = f"{impc_api_search_url}/search/findAllBySignificantMpTermIdsContains?mpTermIds={mp_term}&size=1000" | |
| 364 genes_with_mpterm = requests.get(gene_by_mpterm_query).json() | |
| 365 | |
| 366 pages = genes_with_mpterm['page']['totalPages'] | |
| 367 genes_info = genes_with_mpterm['_embedded']['genes'] | |
| 368 | |
| 369 for pn in range(1,pages): | |
| 370 pq = f"{impc_api_search_url}/search/findAllBySignificantMpTermIdsContains?mpTermIds={mp_term}&page={pn}&size=1000" | |
| 371 g = requests.get(pq).json()['_embedded']['genes'] | |
| 372 genes_info += g | |
| 373 | |
| 374 list_d=[] | |
| 375 d={} | |
| 376 for g in genes_info: | |
| 377 names=[] | |
| 378 ids=[] | |
| 379 for s in g['significantMpTerms']: | |
| 380 names.append(s['mpTermName']) | |
| 381 ids.append(s['mpTermId']) | |
| 382 d={'Gene':g['mgiAccessionId'], 'mpTermId': ids, 'mpTermName':names} | |
| 383 list_d.append(d) | |
| 384 | |
| 385 | |
| 386 g = [] | |
| 387 ids = [] | |
| 388 names = [] | |
| 389 for i in list_d: | |
| 390 g.append(i['Gene']) | |
| 391 ids.append(i['mpTermId']) | |
| 392 names.append(i['mpTermName']) | |
| 393 | |
| 394 df = pd.DataFrame() | |
| 395 df['Gene Id']=g | |
| 396 df['Significant MP terms Ids']=ids | |
| 397 df['Significant MP terms Names']=names | |
| 398 | |
| 399 if head == 'True': | |
| 400 df.to_csv(sys.argv[2], header=True, index=False, sep="\t", index_label=False) | |
| 401 else: | |
| 402 df.to_csv(sys.argv[2], header=False, index=False, sep="\t", index_label=False) | |
| 403 | |
| 404 | |
| 405 # 16- Full table of genes and all identified phenotypes | |
| 406 | |
| 407 def full_gene_table(): | |
| 408 head = sys.argv[4] | |
| 409 gene_list = requests.get(impc_api_search_url + '?page=0&size=1000').json() | |
| 410 pages = gene_list['page']['totalPages'] | |
| 411 genes_info = gene_list['_embedded']['genes'] | |
| 412 | |
| 413 for pn in range(1,pages): | |
| 414 gp = requests.get(impc_api_search_url + f'?page={pn}&size=1000').json()['_embedded']['genes'] | |
| 415 genes_info += gp | |
| 416 | |
| 417 d = {} | |
| 418 list_d=[] | |
| 419 | |
| 420 for i in genes_info: | |
| 421 l = [] | |
| 422 if i['significantMpTerms'] is None: | |
| 423 d={"Gene": i['mgiAccessionId'], "Identified phenotypes": "None"} | |
| 424 else: | |
| 425 d = {"Gene": i['mgiAccessionId'], "Identified phenotypes": [sub['mpTermId'] for sub in i['significantMpTerms']]} | |
| 426 list_d.append(d) | |
| 427 | |
| 428 df = pd.DataFrame() | |
| 429 g = [] | |
| 430 p = [] | |
| 431 for i in list_d: | |
| 432 g.append(i['Gene']) | |
| 433 p.append(i['Identified phenotypes']) | |
| 434 | |
| 435 df['MGI id'] = g | |
| 436 df['MP term list'] = p | |
| 437 | |
| 438 for i in range(0, len(df)): | |
| 439 if df['MP term list'][i] != "None": | |
| 440 df['MP term list'][i] = str(df['MP term list'][i])[1:-1].replace("'", "") | |
| 441 | |
| 442 if str(sys.argv[1]) == 'True': | |
| 443 if head == 'True': | |
| 444 df.to_csv(sys.argv[2], header=True, index=False, sep="\t", index_label=False) | |
| 445 else: | |
| 446 df.to_csv(sys.argv[2], header=False, index=False, sep="\t", index_label=False) | |
| 447 else: | |
| 448 df = df[df['MP term list'] != "None"] | |
| 449 df.reset_index(drop=True, inplace=True) | |
| 450 if head == 'True': | |
| 451 df.to_csv(sys.argv[2], header=True, index=False, sep="\t", index_label=False) | |
| 452 else: | |
| 453 df.to_csv(sys.argv[2], header=False, index=False, sep="\t", index_label=False) | |
| 454 | |
| 455 # Old method, chech which is faster | |
| 456 # max_elem = gene_list['page']['totalElements'] | |
| 457 # d = {} | |
| 458 # list_d = [] | |
| 459 # for i in range(0, pages): | |
| 460 # gl = requests.get(impc_api_search_url + '?page=' + str(i) + '&size=' + str(max_elem)).json() | |
| 461 # for g in gl['_embedded']['genes']: | |
| 462 # if g['significantMpTerms'] is None: | |
| 463 # d = {"Gene": g['mgiAccessionId'], "Identified phenotypes": "None"} | |
| 464 # else: | |
| 465 # d = {"Gene": g['mgiAccessionId'], "Identified phenotypes": [ sub['mpTermId'] for sub in g['significantMpTerms'] ]} | |
| 466 # list_d.append(d) | |
| 467 | |
| 468 | |
| 469 | |
| 470 | |
| 471 # 18- Extract measurements and analysis for a parameter or pipeline | |
| 472 | |
| 473 def par_pip_ma(inp): | |
| 474 head = sys.argv[4] | |
| 475 id = inp | |
| 476 | |
| 477 if id[0:4] == "IMPC": | |
| 478 par = True | |
| 479 ma_query = f"{impc_api_search_url}/search/findAllByTestedParameterId?parameterId={id}&page=0&size=1000" | |
| 480 else: | |
| 481 ma_query = f"{impc_api_search_url}/search/findAllByTestedPipelineId?pipelineId={id}&page=0&size=1000" | |
| 482 par = False | |
| 483 | |
| 484 ma_in_pip = requests.get(ma_query).json() | |
| 485 pages = ma_in_pip['page']['totalPages'] | |
| 486 max_elem = ma_in_pip['page']['totalElements'] | |
| 487 | |
| 488 print(f"Genes with {id}: {ma_in_pip['page']['totalElements']}") | |
| 489 d = {} | |
| 490 list_d = [] | |
| 491 list_of_genes = pd.DataFrame(columns=['Measurements', 'Analysis']) | |
| 492 mes = [] | |
| 493 an = [] | |
| 494 | |
| 495 if max_elem > 1000: | |
| 496 | |
| 497 ma_in_pip = ma_in_pip['_embedded']['genes'] | |
| 498 for pn in range(1, pages): | |
| 499 if par: | |
| 500 pip = requests.get(f"{impc_api_search_url}/search/findAllByTestedParameterId?parameterId={id}&page={pn}&size=1000").json()['_embedded']['genes'] | |
| 501 else: | |
| 502 pip = requests.get(f"{impc_api_search_url}/search/findAllByTestedPipelineId?pipelineId={id}&page={pn}&size=1000").json()['_embedded']['genes'] | |
| 503 ma_in_pip += pip | |
| 504 | |
| 505 else: | |
| 506 ma_in_pip = ma_in_pip['_embedded']['genes'] | |
| 507 | |
| 508 for g in ma_in_pip: | |
| 509 d = {"Measurements": g[''], "Analysis": g['']} | |
| 510 list_d.append(d) | |
| 511 | |
| 512 for i in list_d: | |
| 513 mes.append(i['']) | |
| 514 an.append(i['']) | |
| 515 | |
| 516 list_of_genes['Analysis'] = an | |
| 517 list_of_genes['Measurements'] = mes | |
| 518 | |
| 519 if head == 'True': | |
| 520 list_of_genes.to_csv(sys.argv[2], header=True, index=False, sep="\t", index_label=False) | |
| 521 else: | |
| 522 list_of_genes.to_csv(sys.argv[2], header=False, index=False, sep="\t", index_label=False) | |
| 523 | |
| 524 | |
| 525 # 19- Get all genes and measured values for a particular parameter | |
| 526 def par_gen(inp): | |
| 527 head = sys.argv[4] | |
| 528 id = inp | |
| 529 | |
| 530 pa_query = f"{impc_api_search_url}/search/findAllByTestedParameterId?parameterId={id}&page=0&size=1000" | |
| 531 | |
| 532 gm_par = requests.get(pa_query).json() | |
| 533 pages = gm_par['page']['totalPages'] | |
| 534 max_elem = gm_par['page']['totalElements'] | |
| 535 | |
| 536 print(f"Genes with {id}: {gm_par['page']['totalElements']}") | |
| 537 d = {} | |
| 538 list_d = [] | |
| 539 list_of_genes = pd.DataFrame(columns=['Genes', 'Measured Values']) | |
| 540 gen = [] | |
| 541 mes = [] | |
| 542 | |
| 543 if max_elem > 1000: | |
| 544 | |
| 545 gm_par = gm_par['_embedded']['genes'] | |
| 546 | |
| 547 for pn in range(1, pages): | |
| 548 pip = requests.get(f"{impc_api_search_url}/search/findAllByTestedParameterId?parameterId={id}&page={pn}&size=1000").json()['_embedded']['genes'] | |
| 549 gm_par += pip | |
| 550 | |
| 551 else: | |
| 552 gm_par = gm_par['_embedded']['genes'] | |
| 553 | |
| 554 | |
| 555 for g in gm_par: | |
| 556 d = {"Genes": g['mgiAccessionId'], "Measured Values": g['']} | |
| 557 list_d.append(d) | |
| 558 | |
| 559 for i in list_d: | |
| 560 gen.append(i['Genes']) | |
| 561 mes.append(i['Measured Values']) | |
| 562 | |
| 563 list_of_genes['Genes'] = gen | |
| 564 list_of_genes['Measured Values'] = mes | |
| 565 | |
| 566 if head == 'True': | |
| 567 list_of_genes.to_csv(sys.argv[2], header=True, index=False, sep="\t", index_label=False) | |
| 568 else: | |
| 569 list_of_genes.to_csv(sys.argv[2], header=False, index=False, sep="\t", index_label=False) | |
| 570 | |
| 571 | |
| 572 def gene_mapping(inp): | |
| 573 tmp = inp.split(",") | |
| 574 final_list = [] | |
| 575 sym_list = [] | |
| 576 for i in tmp: | |
| 577 if 'MGI:' in i: | |
| 578 final_list.append(i) | |
| 579 else: | |
| 580 sym_list.append(i) | |
| 581 del (i) | |
| 582 if len(sym_list) != 0: | |
| 583 sym_list = ",".join(sym_list) | |
| 584 biodbnet = f'https://biodbnet.abcc.ncifcrf.gov/webServices/rest.php/biodbnetRestApi.xml?method=db2db&format=row&input=genesymbol&inputValues={sym_list}&outputs=mgiid&taxonId=10090' | |
| 585 u = url.urlopen(biodbnet) | |
| 586 db = pd.read_xml(u, elems_only=True) | |
| 587 empty = True | |
| 588 discarded = [] | |
| 589 for i in db.index: | |
| 590 if db['MGIID'][i] != '-': | |
| 591 empty = False | |
| 592 final_list.append(db['MGIID'][i][4:]) | |
| 593 break | |
| 594 else: | |
| 595 discarded.append(db['MGIID'][i][4:]) | |
| 596 | |
| 597 if (len(db) == 0 and len(final_list) == 0) or (empty and len(final_list) == 0): | |
| 598 stop_err("Error: it was not possible to map the input.") | |
| 599 elif empty: | |
| 600 print("Warning: it was not possible to map any of the gene symbols entry. Only MGI entries will be used.") | |
| 601 elif len(discarded) != 0: | |
| 602 print("Warning: it was not possible to map these elements: " + ",".join(discarded) + "\n") | |
| 603 return(final_list) | |
| 604 | |
| 605 def pheno_mapping(inp): | |
| 606 tmp = inp.split(",") | |
| 607 final_list = [] | |
| 608 sym_list = [] | |
| 609 for i in tmp: | |
| 610 if 'MP:' in i: | |
| 611 final_list.append(i) | |
| 612 else: | |
| 613 sym_list.append(i) | |
| 614 del (i) | |
| 615 if len(sym_list) != 0: | |
| 616 url="https://raw.githubusercontent.com/AndreaFurlani/hp_mp_mapping_test/main/hp_mp_mapping.csv" | |
| 617 mapper = pd.read_csv(url,header=0,index_col=2) | |
| 618 empty = True | |
| 619 discarded = [] | |
| 620 for i in sym_list: | |
| 621 try: | |
| 622 final_list.append(mapper.loc[i]['mpId']) | |
| 623 empty=False | |
| 624 except KeyError: | |
| 625 discarded.append(i) | |
| 626 continue | |
| 627 if empty and len(final_list)==0: | |
| 628 stop_err("Error: it was not possible to map the input.") | |
| 629 elif empty: | |
| 630 print("Warning: it was not possible to map any of the HP term entries. Only MP entries will be used.") | |
| 631 elif len(discarded) != 0: | |
| 632 print("Warning: it was not possible to map these elements: " + ",".join(discarded) + "\n") | |
| 633 return (final_list) | |
| 634 | |
| 635 if __name__ == "__main__": | |
| 636 main() |
