changeset 0:4e8e2f836d0f draft default tip

planemo upload commit 232ce39054ce38be27c436a4cabec2800e14f988-dirty
author itaxotools
date Sun, 29 Jan 2023 16:25:48 +0000
parents
children
files LICENSE MolD.xml MolD_parameter_file.txt MolD_v1.4 MolD_v1.4.py MolD_v1_3_manual.pdf MolD_v1_4_manual_new_in_red.docx README.md api.py datatypes_conf.xml test-data/Example_input_alignment_Pontohedyle_COI.fas test-data/Pontohedyle_COI.fas test-data/Pontohedyle_COI_all.out test-data/Pontohedyle_COI_all_pairwise.out test-data/testout uwsgi.ini wsgi.py
diffstat 17 files changed, 2206 insertions(+), 0 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/LICENSE	Sun Jan 29 16:25:48 2023 +0000
@@ -0,0 +1,674 @@
+                    GNU GENERAL PUBLIC LICENSE
+                       Version 3, 29 June 2007
+
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
+ Everyone is permitted to copy and distribute verbatim copies
+ of this license document, but changing it is not allowed.
+
+                            Preamble
+
+  The GNU General Public License is a free, copyleft license for
+software and other kinds of works.
+
+  The licenses for most software and other practical works are designed
+to take away your freedom to share and change the works.  By contrast,
+the GNU General Public License is intended to guarantee your freedom to
+share and change all versions of a program--to make sure it remains free
+software for all its users.  We, the Free Software Foundation, use the
+GNU General Public License for most of our software; it applies also to
+any other work released this way by its authors.  You can apply it to
+your programs, too.
+
+  When we speak of free software, we are referring to freedom, not
+price.  Our General Public Licenses are designed to make sure that you
+have the freedom to distribute copies of free software (and charge for
+them if you wish), that you receive source code or can get it if you
+want it, that you can change the software or use pieces of it in new
+free programs, and that you know you can do these things.
+
+  To protect your rights, we need to prevent others from denying you
+these rights or asking you to surrender the rights.  Therefore, you have
+certain responsibilities if you distribute copies of the software, or if
+you modify it: responsibilities to respect the freedom of others.
+
+  For example, if you distribute copies of such a program, whether
+gratis or for a fee, you must pass on to the recipients the same
+freedoms that you received.  You must make sure that they, too, receive
+or can get the source code.  And you must show them these terms so they
+know their rights.
+
+  Developers that use the GNU GPL protect your rights with two steps:
+(1) assert copyright on the software, and (2) offer you this License
+giving you legal permission to copy, distribute and/or modify it.
+
+  For the developers' and authors' protection, the GPL clearly explains
+that there is no warranty for this free software.  For both users' and
+authors' sake, the GPL requires that modified versions be marked as
+changed, so that their problems will not be attributed erroneously to
+authors of previous versions.
+
+  Some devices are designed to deny users access to install or run
+modified versions of the software inside them, although the manufacturer
+can do so.  This is fundamentally incompatible with the aim of
+protecting users' freedom to change the software.  The systematic
+pattern of such abuse occurs in the area of products for individuals to
+use, which is precisely where it is most unacceptable.  Therefore, we
+have designed this version of the GPL to prohibit the practice for those
+products.  If such problems arise substantially in other domains, we
+stand ready to extend this provision to those domains in future versions
+of the GPL, as needed to protect the freedom of users.
+
+  Finally, every program is threatened constantly by software patents.
+States should not allow patents to restrict development and use of
+software on general-purpose computers, but in those that do, we wish to
+avoid the special danger that patents applied to a free program could
+make it effectively proprietary.  To prevent this, the GPL assures that
+patents cannot be used to render the program non-free.
+
+  The precise terms and conditions for copying, distribution and
+modification follow.
+
+                       TERMS AND CONDITIONS
+
+  0. Definitions.
+
+  "This License" refers to version 3 of the GNU General Public License.
+
+  "Copyright" also means copyright-like laws that apply to other kinds of
+works, such as semiconductor masks.
+
+  "The Program" refers to any copyrightable work licensed under this
+License.  Each licensee is addressed as "you".  "Licensees" and
+"recipients" may be individuals or organizations.
+
+  To "modify" a work means to copy from or adapt all or part of the work
+in a fashion requiring copyright permission, other than the making of an
+exact copy.  The resulting work is called a "modified version" of the
+earlier work or a work "based on" the earlier work.
+
+  A "covered work" means either the unmodified Program or a work based
+on the Program.
+
+  To "propagate" a work means to do anything with it that, without
+permission, would make you directly or secondarily liable for
+infringement under applicable copyright law, except executing it on a
+computer or modifying a private copy.  Propagation includes copying,
+distribution (with or without modification), making available to the
+public, and in some countries other activities as well.
+
+  To "convey" a work means any kind of propagation that enables other
+parties to make or receive copies.  Mere interaction with a user through
+a computer network, with no transfer of a copy, is not conveying.
+
+  An interactive user interface displays "Appropriate Legal Notices"
+to the extent that it includes a convenient and prominently visible
+feature that (1) displays an appropriate copyright notice, and (2)
+tells the user that there is no warranty for the work (except to the
+extent that warranties are provided), that licensees may convey the
+work under this License, and how to view a copy of this License.  If
+the interface presents a list of user commands or options, such as a
+menu, a prominent item in the list meets this criterion.
+
+  1. Source Code.
+
+  The "source code" for a work means the preferred form of the work
+for making modifications to it.  "Object code" means any non-source
+form of a work.
+
+  A "Standard Interface" means an interface that either is an official
+standard defined by a recognized standards body, or, in the case of
+interfaces specified for a particular programming language, one that
+is widely used among developers working in that language.
+
+  The "System Libraries" of an executable work include anything, other
+than the work as a whole, that (a) is included in the normal form of
+packaging a Major Component, but which is not part of that Major
+Component, and (b) serves only to enable use of the work with that
+Major Component, or to implement a Standard Interface for which an
+implementation is available to the public in source code form.  A
+"Major Component", in this context, means a major essential component
+(kernel, window system, and so on) of the specific operating system
+(if any) on which the executable work runs, or a compiler used to
+produce the work, or an object code interpreter used to run it.
+
+  The "Corresponding Source" for a work in object code form means all
+the source code needed to generate, install, and (for an executable
+work) run the object code and to modify the work, including scripts to
+control those activities.  However, it does not include the work's
+System Libraries, or general-purpose tools or generally available free
+programs which are used unmodified in performing those activities but
+which are not part of the work.  For example, Corresponding Source
+includes interface definition files associated with source files for
+the work, and the source code for shared libraries and dynamically
+linked subprograms that the work is specifically designed to require,
+such as by intimate data communication or control flow between those
+subprograms and other parts of the work.
+
+  The Corresponding Source need not include anything that users
+can regenerate automatically from other parts of the Corresponding
+Source.
+
+  The Corresponding Source for a work in source code form is that
+same work.
+
+  2. Basic Permissions.
+
+  All rights granted under this License are granted for the term of
+copyright on the Program, and are irrevocable provided the stated
+conditions are met.  This License explicitly affirms your unlimited
+permission to run the unmodified Program.  The output from running a
+covered work is covered by this License only if the output, given its
+content, constitutes a covered work.  This License acknowledges your
+rights of fair use or other equivalent, as provided by copyright law.
+
+  You may make, run and propagate covered works that you do not
+convey, without conditions so long as your license otherwise remains
+in force.  You may convey covered works to others for the sole purpose
+of having them make modifications exclusively for you, or provide you
+with facilities for running those works, provided that you comply with
+the terms of this License in conveying all material for which you do
+not control copyright.  Those thus making or running the covered works
+for you must do so exclusively on your behalf, under your direction
+and control, on terms that prohibit them from making any copies of
+your copyrighted material outside their relationship with you.
+
+  Conveying under any other circumstances is permitted solely under
+the conditions stated below.  Sublicensing is not allowed; section 10
+makes it unnecessary.
+
+  3. Protecting Users' Legal Rights From Anti-Circumvention Law.
+
+  No covered work shall be deemed part of an effective technological
+measure under any applicable law fulfilling obligations under article
+11 of the WIPO copyright treaty adopted on 20 December 1996, or
+similar laws prohibiting or restricting circumvention of such
+measures.
+
+  When you convey a covered work, you waive any legal power to forbid
+circumvention of technological measures to the extent such circumvention
+is effected by exercising rights under this License with respect to
+the covered work, and you disclaim any intention to limit operation or
+modification of the work as a means of enforcing, against the work's
+users, your or third parties' legal rights to forbid circumvention of
+technological measures.
+
+  4. Conveying Verbatim Copies.
+
+  You may convey verbatim copies of the Program's source code as you
+receive it, in any medium, provided that you conspicuously and
+appropriately publish on each copy an appropriate copyright notice;
+keep intact all notices stating that this License and any
+non-permissive terms added in accord with section 7 apply to the code;
+keep intact all notices of the absence of any warranty; and give all
+recipients a copy of this License along with the Program.
+
+  You may charge any price or no price for each copy that you convey,
+and you may offer support or warranty protection for a fee.
+
+  5. Conveying Modified Source Versions.
+
+  You may convey a work based on the Program, or the modifications to
+produce it from the Program, in the form of source code under the
+terms of section 4, provided that you also meet all of these conditions:
+
+    a) The work must carry prominent notices stating that you modified
+    it, and giving a relevant date.
+
+    b) The work must carry prominent notices stating that it is
+    released under this License and any conditions added under section
+    7.  This requirement modifies the requirement in section 4 to
+    "keep intact all notices".
+
+    c) You must license the entire work, as a whole, under this
+    License to anyone who comes into possession of a copy.  This
+    License will therefore apply, along with any applicable section 7
+    additional terms, to the whole of the work, and all its parts,
+    regardless of how they are packaged.  This License gives no
+    permission to license the work in any other way, but it does not
+    invalidate such permission if you have separately received it.
+
+    d) If the work has interactive user interfaces, each must display
+    Appropriate Legal Notices; however, if the Program has interactive
+    interfaces that do not display Appropriate Legal Notices, your
+    work need not make them do so.
+
+  A compilation of a covered work with other separate and independent
+works, which are not by their nature extensions of the covered work,
+and which are not combined with it such as to form a larger program,
+in or on a volume of a storage or distribution medium, is called an
+"aggregate" if the compilation and its resulting copyright are not
+used to limit the access or legal rights of the compilation's users
+beyond what the individual works permit.  Inclusion of a covered work
+in an aggregate does not cause this License to apply to the other
+parts of the aggregate.
+
+  6. Conveying Non-Source Forms.
+
+  You may convey a covered work in object code form under the terms
+of sections 4 and 5, provided that you also convey the
+machine-readable Corresponding Source under the terms of this License,
+in one of these ways:
+
+    a) Convey the object code in, or embodied in, a physical product
+    (including a physical distribution medium), accompanied by the
+    Corresponding Source fixed on a durable physical medium
+    customarily used for software interchange.
+
+    b) Convey the object code in, or embodied in, a physical product
+    (including a physical distribution medium), accompanied by a
+    written offer, valid for at least three years and valid for as
+    long as you offer spare parts or customer support for that product
+    model, to give anyone who possesses the object code either (1) a
+    copy of the Corresponding Source for all the software in the
+    product that is covered by this License, on a durable physical
+    medium customarily used for software interchange, for a price no
+    more than your reasonable cost of physically performing this
+    conveying of source, or (2) access to copy the
+    Corresponding Source from a network server at no charge.
+
+    c) Convey individual copies of the object code with a copy of the
+    written offer to provide the Corresponding Source.  This
+    alternative is allowed only occasionally and noncommercially, and
+    only if you received the object code with such an offer, in accord
+    with subsection 6b.
+
+    d) Convey the object code by offering access from a designated
+    place (gratis or for a charge), and offer equivalent access to the
+    Corresponding Source in the same way through the same place at no
+    further charge.  You need not require recipients to copy the
+    Corresponding Source along with the object code.  If the place to
+    copy the object code is a network server, the Corresponding Source
+    may be on a different server (operated by you or a third party)
+    that supports equivalent copying facilities, provided you maintain
+    clear directions next to the object code saying where to find the
+    Corresponding Source.  Regardless of what server hosts the
+    Corresponding Source, you remain obligated to ensure that it is
+    available for as long as needed to satisfy these requirements.
+
+    e) Convey the object code using peer-to-peer transmission, provided
+    you inform other peers where the object code and Corresponding
+    Source of the work are being offered to the general public at no
+    charge under subsection 6d.
+
+  A separable portion of the object code, whose source code is excluded
+from the Corresponding Source as a System Library, need not be
+included in conveying the object code work.
+
+  A "User Product" is either (1) a "consumer product", which means any
+tangible personal property which is normally used for personal, family,
+or household purposes, or (2) anything designed or sold for incorporation
+into a dwelling.  In determining whether a product is a consumer product,
+doubtful cases shall be resolved in favor of coverage.  For a particular
+product received by a particular user, "normally used" refers to a
+typical or common use of that class of product, regardless of the status
+of the particular user or of the way in which the particular user
+actually uses, or expects or is expected to use, the product.  A product
+is a consumer product regardless of whether the product has substantial
+commercial, industrial or non-consumer uses, unless such uses represent
+the only significant mode of use of the product.
+
+  "Installation Information" for a User Product means any methods,
+procedures, authorization keys, or other information required to install
+and execute modified versions of a covered work in that User Product from
+a modified version of its Corresponding Source.  The information must
+suffice to ensure that the continued functioning of the modified object
+code is in no case prevented or interfered with solely because
+modification has been made.
+
+  If you convey an object code work under this section in, or with, or
+specifically for use in, a User Product, and the conveying occurs as
+part of a transaction in which the right of possession and use of the
+User Product is transferred to the recipient in perpetuity or for a
+fixed term (regardless of how the transaction is characterized), the
+Corresponding Source conveyed under this section must be accompanied
+by the Installation Information.  But this requirement does not apply
+if neither you nor any third party retains the ability to install
+modified object code on the User Product (for example, the work has
+been installed in ROM).
+
+  The requirement to provide Installation Information does not include a
+requirement to continue to provide support service, warranty, or updates
+for a work that has been modified or installed by the recipient, or for
+the User Product in which it has been modified or installed.  Access to a
+network may be denied when the modification itself materially and
+adversely affects the operation of the network or violates the rules and
+protocols for communication across the network.
+
+  Corresponding Source conveyed, and Installation Information provided,
+in accord with this section must be in a format that is publicly
+documented (and with an implementation available to the public in
+source code form), and must require no special password or key for
+unpacking, reading or copying.
+
+  7. Additional Terms.
+
+  "Additional permissions" are terms that supplement the terms of this
+License by making exceptions from one or more of its conditions.
+Additional permissions that are applicable to the entire Program shall
+be treated as though they were included in this License, to the extent
+that they are valid under applicable law.  If additional permissions
+apply only to part of the Program, that part may be used separately
+under those permissions, but the entire Program remains governed by
+this License without regard to the additional permissions.
+
+  When you convey a copy of a covered work, you may at your option
+remove any additional permissions from that copy, or from any part of
+it.  (Additional permissions may be written to require their own
+removal in certain cases when you modify the work.)  You may place
+additional permissions on material, added by you to a covered work,
+for which you have or can give appropriate copyright permission.
+
+  Notwithstanding any other provision of this License, for material you
+add to a covered work, you may (if authorized by the copyright holders of
+that material) supplement the terms of this License with terms:
+
+    a) Disclaiming warranty or limiting liability differently from the
+    terms of sections 15 and 16 of this License; or
+
+    b) Requiring preservation of specified reasonable legal notices or
+    author attributions in that material or in the Appropriate Legal
+    Notices displayed by works containing it; or
+
+    c) Prohibiting misrepresentation of the origin of that material, or
+    requiring that modified versions of such material be marked in
+    reasonable ways as different from the original version; or
+
+    d) Limiting the use for publicity purposes of names of licensors or
+    authors of the material; or
+
+    e) Declining to grant rights under trademark law for use of some
+    trade names, trademarks, or service marks; or
+
+    f) Requiring indemnification of licensors and authors of that
+    material by anyone who conveys the material (or modified versions of
+    it) with contractual assumptions of liability to the recipient, for
+    any liability that these contractual assumptions directly impose on
+    those licensors and authors.
+
+  All other non-permissive additional terms are considered "further
+restrictions" within the meaning of section 10.  If the Program as you
+received it, or any part of it, contains a notice stating that it is
+governed by this License along with a term that is a further
+restriction, you may remove that term.  If a license document contains
+a further restriction but permits relicensing or conveying under this
+License, you may add to a covered work material governed by the terms
+of that license document, provided that the further restriction does
+not survive such relicensing or conveying.
+
+  If you add terms to a covered work in accord with this section, you
+must place, in the relevant source files, a statement of the
+additional terms that apply to those files, or a notice indicating
+where to find the applicable terms.
+
+  Additional terms, permissive or non-permissive, may be stated in the
+form of a separately written license, or stated as exceptions;
+the above requirements apply either way.
+
+  8. Termination.
+
+  You may not propagate or modify a covered work except as expressly
+provided under this License.  Any attempt otherwise to propagate or
+modify it is void, and will automatically terminate your rights under
+this License (including any patent licenses granted under the third
+paragraph of section 11).
+
+  However, if you cease all violation of this License, then your
+license from a particular copyright holder is reinstated (a)
+provisionally, unless and until the copyright holder explicitly and
+finally terminates your license, and (b) permanently, if the copyright
+holder fails to notify you of the violation by some reasonable means
+prior to 60 days after the cessation.
+
+  Moreover, your license from a particular copyright holder is
+reinstated permanently if the copyright holder notifies you of the
+violation by some reasonable means, this is the first time you have
+received notice of violation of this License (for any work) from that
+copyright holder, and you cure the violation prior to 30 days after
+your receipt of the notice.
+
+  Termination of your rights under this section does not terminate the
+licenses of parties who have received copies or rights from you under
+this License.  If your rights have been terminated and not permanently
+reinstated, you do not qualify to receive new licenses for the same
+material under section 10.
+
+  9. Acceptance Not Required for Having Copies.
+
+  You are not required to accept this License in order to receive or
+run a copy of the Program.  Ancillary propagation of a covered work
+occurring solely as a consequence of using peer-to-peer transmission
+to receive a copy likewise does not require acceptance.  However,
+nothing other than this License grants you permission to propagate or
+modify any covered work.  These actions infringe copyright if you do
+not accept this License.  Therefore, by modifying or propagating a
+covered work, you indicate your acceptance of this License to do so.
+
+  10. Automatic Licensing of Downstream Recipients.
+
+  Each time you convey a covered work, the recipient automatically
+receives a license from the original licensors, to run, modify and
+propagate that work, subject to this License.  You are not responsible
+for enforcing compliance by third parties with this License.
+
+  An "entity transaction" is a transaction transferring control of an
+organization, or substantially all assets of one, or subdividing an
+organization, or merging organizations.  If propagation of a covered
+work results from an entity transaction, each party to that
+transaction who receives a copy of the work also receives whatever
+licenses to the work the party's predecessor in interest had or could
+give under the previous paragraph, plus a right to possession of the
+Corresponding Source of the work from the predecessor in interest, if
+the predecessor has it or can get it with reasonable efforts.
+
+  You may not impose any further restrictions on the exercise of the
+rights granted or affirmed under this License.  For example, you may
+not impose a license fee, royalty, or other charge for exercise of
+rights granted under this License, and you may not initiate litigation
+(including a cross-claim or counterclaim in a lawsuit) alleging that
+any patent claim is infringed by making, using, selling, offering for
+sale, or importing the Program or any portion of it.
+
+  11. Patents.
+
+  A "contributor" is a copyright holder who authorizes use under this
+License of the Program or a work on which the Program is based.  The
+work thus licensed is called the contributor's "contributor version".
+
+  A contributor's "essential patent claims" are all patent claims
+owned or controlled by the contributor, whether already acquired or
+hereafter acquired, that would be infringed by some manner, permitted
+by this License, of making, using, or selling its contributor version,
+but do not include claims that would be infringed only as a
+consequence of further modification of the contributor version.  For
+purposes of this definition, "control" includes the right to grant
+patent sublicenses in a manner consistent with the requirements of
+this License.
+
+  Each contributor grants you a non-exclusive, worldwide, royalty-free
+patent license under the contributor's essential patent claims, to
+make, use, sell, offer for sale, import and otherwise run, modify and
+propagate the contents of its contributor version.
+
+  In the following three paragraphs, a "patent license" is any express
+agreement or commitment, however denominated, not to enforce a patent
+(such as an express permission to practice a patent or covenant not to
+sue for patent infringement).  To "grant" such a patent license to a
+party means to make such an agreement or commitment not to enforce a
+patent against the party.
+
+  If you convey a covered work, knowingly relying on a patent license,
+and the Corresponding Source of the work is not available for anyone
+to copy, free of charge and under the terms of this License, through a
+publicly available network server or other readily accessible means,
+then you must either (1) cause the Corresponding Source to be so
+available, or (2) arrange to deprive yourself of the benefit of the
+patent license for this particular work, or (3) arrange, in a manner
+consistent with the requirements of this License, to extend the patent
+license to downstream recipients.  "Knowingly relying" means you have
+actual knowledge that, but for the patent license, your conveying the
+covered work in a country, or your recipient's use of the covered work
+in a country, would infringe one or more identifiable patents in that
+country that you have reason to believe are valid.
+
+  If, pursuant to or in connection with a single transaction or
+arrangement, you convey, or propagate by procuring conveyance of, a
+covered work, and grant a patent license to some of the parties
+receiving the covered work authorizing them to use, propagate, modify
+or convey a specific copy of the covered work, then the patent license
+you grant is automatically extended to all recipients of the covered
+work and works based on it.
+
+  A patent license is "discriminatory" if it does not include within
+the scope of its coverage, prohibits the exercise of, or is
+conditioned on the non-exercise of one or more of the rights that are
+specifically granted under this License.  You may not convey a covered
+work if you are a party to an arrangement with a third party that is
+in the business of distributing software, under which you make payment
+to the third party based on the extent of your activity of conveying
+the work, and under which the third party grants, to any of the
+parties who would receive the covered work from you, a discriminatory
+patent license (a) in connection with copies of the covered work
+conveyed by you (or copies made from those copies), or (b) primarily
+for and in connection with specific products or compilations that
+contain the covered work, unless you entered into that arrangement,
+or that patent license was granted, prior to 28 March 2007.
+
+  Nothing in this License shall be construed as excluding or limiting
+any implied license or other defenses to infringement that may
+otherwise be available to you under applicable patent law.
+
+  12. No Surrender of Others' Freedom.
+
+  If conditions are imposed on you (whether by court order, agreement or
+otherwise) that contradict the conditions of this License, they do not
+excuse you from the conditions of this License.  If you cannot convey a
+covered work so as to satisfy simultaneously your obligations under this
+License and any other pertinent obligations, then as a consequence you may
+not convey it at all.  For example, if you agree to terms that obligate you
+to collect a royalty for further conveying from those to whom you convey
+the Program, the only way you could satisfy both those terms and this
+License would be to refrain entirely from conveying the Program.
+
+  13. Use with the GNU Affero General Public License.
+
+  Notwithstanding any other provision of this License, you have
+permission to link or combine any covered work with a work licensed
+under version 3 of the GNU Affero General Public License into a single
+combined work, and to convey the resulting work.  The terms of this
+License will continue to apply to the part which is the covered work,
+but the special requirements of the GNU Affero General Public License,
+section 13, concerning interaction through a network will apply to the
+combination as such.
+
+  14. Revised Versions of this License.
+
+  The Free Software Foundation may publish revised and/or new versions of
+the GNU General Public License from time to time.  Such new versions will
+be similar in spirit to the present version, but may differ in detail to
+address new problems or concerns.
+
+  Each version is given a distinguishing version number.  If the
+Program specifies that a certain numbered version of the GNU General
+Public License "or any later version" applies to it, you have the
+option of following the terms and conditions either of that numbered
+version or of any later version published by the Free Software
+Foundation.  If the Program does not specify a version number of the
+GNU General Public License, you may choose any version ever published
+by the Free Software Foundation.
+
+  If the Program specifies that a proxy can decide which future
+versions of the GNU General Public License can be used, that proxy's
+public statement of acceptance of a version permanently authorizes you
+to choose that version for the Program.
+
+  Later license versions may give you additional or different
+permissions.  However, no additional obligations are imposed on any
+author or copyright holder as a result of your choosing to follow a
+later version.
+
+  15. Disclaimer of Warranty.
+
+  THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
+APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
+HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
+OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
+THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
+IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
+ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
+
+  16. Limitation of Liability.
+
+  IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
+WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
+THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
+GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
+USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
+DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
+PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
+EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
+SUCH DAMAGES.
+
+  17. Interpretation of Sections 15 and 16.
+
+  If the disclaimer of warranty and limitation of liability provided
+above cannot be given local legal effect according to their terms,
+reviewing courts shall apply local law that most closely approximates
+an absolute waiver of all civil liability in connection with the
+Program, unless a warranty or assumption of liability accompanies a
+copy of the Program in return for a fee.
+
+                     END OF TERMS AND CONDITIONS
+
+            How to Apply These Terms to Your New Programs
+
+  If you develop a new program, and you want it to be of the greatest
+possible use to the public, the best way to achieve this is to make it
+free software which everyone can redistribute and change under these terms.
+
+  To do so, attach the following notices to the program.  It is safest
+to attach them to the start of each source file to most effectively
+state the exclusion of warranty; and each file should have at least
+the "copyright" line and a pointer to where the full notice is found.
+
+    <one line to give the program's name and a brief idea of what it does.>
+    Copyright (C) <year>  <name of author>
+
+    This program is free software: you can redistribute it and/or modify
+    it under the terms of the GNU General Public License as published by
+    the Free Software Foundation, either version 3 of the License, or
+    (at your option) any later version.
+
+    This program is distributed in the hope that it will be useful,
+    but WITHOUT ANY WARRANTY; without even the implied warranty of
+    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+    GNU General Public License for more details.
+
+    You should have received a copy of the GNU General Public License
+    along with this program.  If not, see <https://www.gnu.org/licenses/>.
+
+Also add information on how to contact you by electronic and paper mail.
+
+  If the program does terminal interaction, make it output a short
+notice like this when it starts in an interactive mode:
+
+    <program>  Copyright (C) <year>  <name of author>
+    This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
+    This is free software, and you are welcome to redistribute it
+    under certain conditions; type `show c' for details.
+
+The hypothetical commands `show w' and `show c' should show the appropriate
+parts of the General Public License.  Of course, your program's commands
+might be different; for a GUI interface, you would use an "about box".
+
+  You should also get your employer (if you work as a programmer) or school,
+if any, to sign a "copyright disclaimer" for the program, if necessary.
+For more information on this, and how to apply and follow the GNU GPL, see
+<https://www.gnu.org/licenses/>.
+
+  The GNU General Public License does not permit incorporating your program
+into proprietary programs.  If your program is a subroutine library, you
+may consider it more useful to permit linking proprietary applications with
+the library.  If this is what you want to do, use the GNU Lesser General
+Public License instead of this License.  But first, please read
+<https://www.gnu.org/licenses/why-not-lgpl.html>.
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/MolD.xml	Sun Jan 29 16:25:48 2023 +0000
@@ -0,0 +1,155 @@
+<tool id="MolD" name="MolD" version="0.1.0+galaxy0" python_template_version="3.5" profile="21.05">
+    <description>DNA diagnoses for pre-defined taxa</description>
+    <requirements>
+    </requirements>
+    <command detect_errors="exit_code"><![CDATA[
+      echo -e "INPUT_FILE=$input1 \n
+               OUTPUT_FILE=$output1 \n
+               qTAXA= 
+               #if $pattern !="*" and not $pattern_merged 
+                P:$pattern \n
+               #elif $pattern_merged
+                 P+:$pattern  \n
+               #elif $morethanN > 0
+                  >$morethanN \n
+               #else
+                 $select_taxa.taxa_select   \n
+               #end if
+                Taxon_rank=$rank \n
+                Gaps_as_chars=$gaps \n
+                Cutoff=$adv_opt.cutoff \n
+                NumberN=$adv_opt.numn \n
+                Number_of_iterations=$adv_opt.numi \n
+                MaxLen1=$adv_opt.maxlen1 \n
+                MaxLen2=$adv_opt.maxlen2 \n
+               #if $adv_opt.iref=="NO"
+                 Iref=$adv_opt.iref \n
+               #elif $adv_opt.iref_mode
+                 Iref=$adv_opt.iref, in  \n
+               #else
+                 Iref=$adv_opt.iref, ex  \n
+               #end if
+                Pdiff=$adv_opt.pdiff \n
+                PrSeq=$adv_opt.PrSeq \n
+                NMaxSeq=$adv_opt.nmaxseq \n
+                Scoring=$adv_opt.scoring \n" >params.txt &&
+
+       $__tool_directory__/MolD_v1.4 -i params.txt >$output2
+      
+    ]]></command>
+
+    <inputs>
+      <param  type="data" name="input1" label="Source file" format="fasta" />
+      <section name="select_taxa" title="See taxa for selection">
+        <param name="taxa_select" type="select" display="checkboxes" multiple="true" checked="true" label="Choose taxa to diagnose">
+          <options from_dataset="input1" startswith=">" >
+             <column name="name" index="0"/>
+             <column name="value" index="0"/>
+             <filter type="multiple_splitter" column="0" separator="|"/>
+             <filter column="0" type="regexp" value=">" keep="false" />
+              <filter column="0" type="sort_by" />
+              <filter type="unique_value" name="unique_taxon" column="0"/>
+           </options>
+        </param>
+      </section>
+      <param name="morethanN" type="integer" label="N of sequences" value="0" help="Only taxa with more than N sequences are to be diagnosed (overrides selection!)" />
+      <param name="pattern"  type="text" label="Pattern" value="*" help="Only taxa with certain pattern in the taxon name are to be diagnosed (overrides selection!)" />
+      <param name="pattern_merged"  type="boolean" checked="false" label="Merge"  help="Merge taxa with above pattern before diagnosis"/>
+     <param name="rank"  type="boolean" checked="true" label="Taxon Rank" truevalue="1" falsevalue="2" help="Set taxon rank: if species true(1), if above species false(2)"/>
+      <param name="gaps"  type="boolean" label="Gaps as chars"  help="Code gaps as characters: yes or no"/>
+        <section name="adv_opt" title="Advanced parameters for pDNC recovery">
+          <param name="cutoff"  type="text" label="Cutoff" value="100" help="Set number of the informative positions to be considered (default 100) or use '> + integer' to set desired cutoff value (for example '> 1')" />
+         <param name="numn" type="integer" label="Number N" value="5" help="Set how many ambiguously called nucleotides are allowed (default 5)" />
+          <param name="numi" type="integer" label="Number i" value="10000" help="Set number recursions of MolD (default 10000)" />
+         <param name="maxlen1" type="integer" label="MaxLen1" value="12" help="Set maximum length for the raw pDNCs (defailt 12)" />
+         <param name="maxlen2" type="integer" label="MaxLen2" value="7" help="Set maximum length for the refined pDNCs (default 7)" />
+         <param name="iref"  type="text" label="Index reference" value="NO" help="Set a sequence to be used as a reference for site indexing (default NO)" />
+         <param name="iref_mode"  type="boolean" checked="true" label="Index mode"  help="Yes, if seqence will be used for diagnoses calculations or No if seq is to be used for indexin only"/>
+         <param name="pdiff"   type="integer" optional="true" label="PDiff" value="" help="Set percent difference between original and modified sequence (default 1 for species-level taxa, 3 for for supraspecific taxa)" />    
+         <param name="PrSeq" type="float" optional="true" label="PrSeq" value="" help="Set proportion of sequences in the dataset to be modified (default 0.5 for species-level, and 0.1 for supraspecific taxa)." />
+         <param name="nmaxseq" type="integer" label="NMaxSeq" value="10" help="Set max number of sequences per taxon to modify (default 10)" />
+         <param  type="select" name="scoring" label="Scoring" help="Set threshold of sDNC rating(default moderate 75)">
+           <option value="lousy">Lousy (66)</option>
+           <option value="moderate" selected="true">Moderate (75)</option>
+           <option value="stringent" >Stringent (90)</option>
+           <option value="very stringent">Very stringent (95)</option>
+         </param>
+      </section>
+    </inputs>
+
+    <outputs>
+      <data name="output1" label="MolD: ${os.path.splitext($input1.name)[0]}.html" format="html"/>
+      <data name="output2" label="MolD: ${os.path.splitext($input1.name)[0]}.txt" format="txt"/>
+    </outputs>
+    <tests>
+      <test>
+          <param name="input1" value="Example_input_alignment_Pontohedyle_COI.fas"/>
+          <param name="taxa_select" value="milaschewitchii,neridae"/>
+          <output name="output2">
+            <assert_contents>
+              <has_text text="milaschewitchii"/>
+            </assert_contents> 
+          </output>
+      </test>
+  </tests>
+  
+    <help><![CDATA[
+**About MolD**
+
+*A program to identify robust sets of diagnostic sites for pre-defined taxa from DNA sequences, using a tree independent algorithm to retrieve diagnostic nucleotide 
+characters.*
+
+*This Galaxy version implements MolD 1.4, developed 2022.* 
+*MolD was written in Python by Alexander Fedosov.*
+*The Galaxy wrapper was developed by F. Fischell in the framework of the iTaxoTools project in 2022/2023. Only tested for fasta alignment files. Transition and seed parameters are not currently supported. Tamura-Nei distance calculation is either really slow or broken, we recommend not using it.*
+
+Standalone executables with graphical user interface of the newest version of MolD are available for Windows and Mac from:
+
+http://itaxotools.org/
+
+https://github.com/iTaxoTools/iTaxoTools-Executables/releases
+
+For detailed instructions on the use of MolD and interpretation of results, see the iTaxoTools manual available at:
+
+http://itaxotools.org/
+
+
+
+**MolD 1.4**
+
+This program is tailored for seamlessly recovering DNA-based diagnoses from large DNA datasets and is capable of identifying diagnostic combinations of nucleotides (DNCs) in addition to single (pure) diagnostic sites, enabling users to base DNA diagnoses on a minimal number of diagnostic sites necessary for a reliable differentiation of taxa, rather than providing a long list of such sites. 
+The MolD algorithm assembles DNA diagnoses that fulfill pre-defined criteria of reliability, which is achieved by repeatedly scoring diagnostic nucleotide combinations against datasets of in silico mutated sequences. 
+Version 
+
+Version 1.4 has several improved functionalities, in particular the output files produced are better documented and more easy to interpret for unexperienced users. 
+
+*Note: several new features of the version 1.4 od MolD are not yet implemented in the Galaxy version; in particular the option to output lists of pairwise diagnostic sites among nucleotides is missing:*
+
+
+**Input files**
+
+Input is a fasta file of aligned sequence files (for best performance of the program, without missing data and indels)  where each entry starts with the identifier line, and one or more lines of nucleotide sequence. Identifier line starts with ‘>’ and must contain two parts, separated by a pipe (‘|’) symbol. The first part is a free-style sequence identifier. The names of the taxa to be diagnosed correspond to the second element, i.e., the taxon identifier: >SequenceID####|taxon. The taxon identifier corresponds to the name of the species, genus etc to which you assign this sequence. 
+For more details, see the iTaxoTools manual and example files for MolD at http://itaxotools.org/
+
+**Settings**
+
+1. Specify the taxon rank of your query taxa. In most cases these will correspond to species or species-level OTUs. If your specified taxa instead correspond to supraspecific units such as  genera or species groups, it is useful to change the setting accordingly to "supraspecific taxa" (in the parameter file: 1 for species, 2 for supraspecific taxa). The specified taxon rank will influence the maximum divergence allowed when simulating sequences in the last step in MolD. 
+
+2. Specify if gaps should be coded as characters or as missing data. If specifying “Yes”, dashes (‘-‘) in the alignment are transformed into ‘D’ characters and these treated as independent character states. If specifying “No” dashes are treated as missing data (‘N’). 
+
+3. For advanced settings, see the iTaxoTools manual at http://itaxotools.org/
+
+**Output**
+The  output file summarizes the main output of the MolD algorithm. After recapitulating the main parameter settings, it provides for each of the taxa selected for the analysis, and basoic information for each taxon. Most importantly, the file includes for each taxon a final "robust Diagnostic Nucleotide Combination" (rDNC) as well as a diagnosis text that can be copy-pasted into the respective section of a research paper for the purpose of diagnosing a taxon. Note that the rDNC is a diagnostic combination of positions, i.e., only the combination of the listed positions will provide a robust diagnosis (while each position on its own might or might not be universally diagnostic).
+
+
+    ]]></help>
+      <citations>
+        <citation type="doi">
+          10.1101/838151
+        </citation>
+        <citation type="doi">
+            10.11646/megataxa.6.2.1 
+        </citation>
+      </citations>
+</tool>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/MolD_parameter_file.txt	Sun Jan 29 16:25:48 2023 +0000
@@ -0,0 +1,73 @@
+#############SET INPUT AND OUTPUT FILES (INCLUDING COMPLETE PATH)
+INPUT_FILE=D:\MOLD3\Pontohedyle_COI.fas
+OUTPUT_FILE=D:\MOLD3\Pontohedyle_COI.txt
+
+# Code gaps as characters: 'yes' or 'no'
+Gaps_as_chars=no
+
+#############SET TAXON PARAMETERS (NO DEFAULTS, no parameters entered will lead to an error).
+# Set list of the focus taxa (enter a comma separated list)
+# to combine several taxa in the list and diagnosed pooled records as a single taxon, put '+' between the pooled taxa names
+# to diagnose all taxa, enter 'ALL'
+# to diagnose all taxa with more than N sequences available (where N is a natural number), enter '>N'
+# to diagnose only taxa, with certain pattern in the taxon name, enter 'P:pattern'
+# to pool all records with with certain pattern in the taxon name together, and diagnose as single taxon, enter 'P+:pattern'
+# to obtain sets of diagnostic sites for taxa pairs, enter:
+#   allVSall - for all possible pairwise comparisons in the dataset
+#   taxon1VSall - for pairwise comparisons of taxon1 with all other taxa in the dataset
+#   taxon1VStaxon2 - for pairwise comparison of taxa taxon 1 and taxon2
+
+#qTAXA=all, allVSall
+qTAXA= neridae, wiggi, verrucosa, neridae+wiggi+verrucosa, neridaeVSwiggiVSverrucosa
+#qTAXA= neridaeVSwiggiVSverrucosa
+
+# Set taxon rank: if species - 1, if above species - 2.
+
+Taxon_rank=1
+
+#############SET ADVANCED PARAMETERS FOR pDNC RECOVERY.
+# If you don't want to set them, don't enter anything after '='
+# Set number of the informative positions to be considered, integer (default 100)
+# By entering '>0' all informative positions will be selected.
+
+Cutoff=>1
+
+# Set how many ambiguously called nucleotides are allowed (default 25).
+
+NumberN=100
+# Set number recursions of MolD (default 10000).
+
+Number_of_iterations=10000
+
+# Set maximum length for the raw pDNCs (defailt 12).
+
+MaxLen1=12
+
+# Set maximum length for the refined pDNCs (default 7).
+
+MaxLen2=5
+
+# Set a sequence to be used as a reference for site indexing (1st position will correspond to the beginning of this sequence.
+# Default - indexing starts from the beginning of the alignment. So, alignment is expected to be trimmed on the left to match the beginning of the reference sequence (if the reference is provided).
+# Leave as is, or enter sequence <identifier>,in (if seq will be used for diagnoses calculations), or <identifier>,ex if seq is to be used for indexin only.
+
+Iref=NO
+
+############ SET PARAMETERS OF ARTIFICIAL DATASETS (only sDNSs).
+# Set percent difference between original and modified sequence (default 1 for species-level taxa, 3 for for supraspecific taxa).
+
+Pdiff=1
+
+# Set max number of sequences per taxon to modify (default 10).
+
+NMaxSeq=10
+
+# Set rDNC scoring threshold (default stringent).
+# 100 artificial datasets are created to score the sDNC. If the sDNC remains diagnostic in  requested (defined by value of threshold),
+# or higher number of artificial datasets in two consequtive runs, then sDNC is output. The threshold values are like:
+# lousy: 66
+# moderate: 75
+# stringent: 90
+# very_stringent: 95
+
+Scoring=moderate
Binary file MolD_v1.4 has changed
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/MolD_v1.4.py	Sun Jan 29 16:25:48 2023 +0000
@@ -0,0 +1,740 @@
+"""
+This script compiles rDNC-based DNA diagnoses for a pre-defined taxa in a dataset. This is the MAIN WORKING VERSION v1.4
+This version already implements the new functionalities:
+- automatic trimming of the alignment to match the median sequence length (should seq len distribution and provided NumberN settings require that)
+- expanded qCLADEs setting
+- diagnoses in pairwise comparisons of taxa.
+- selection of a reference sequence for indexing DNCs
+
+THIS version LACKS SPART compatibility
+
+"""
+import os, sys
+import random
+import argparse
+from io import StringIO
+######################################################################## FUNCTIONS
+#***STEP 1 - SORTING ENTRIES BY CLADE AND IDENTIFYING NUCLEOTIDE POSITIONS SHARED WITHIN CLADE
+def Step1(raw_records):
+    Clades=[]
+    for i in range(len(raw_records)):
+        Clade=raw_records[i][1]
+        if Clade not in Clades:
+            Clades.append(Clade)
+    clade_sorted_seqs = {}
+    for letter in Clades:
+        clade_sorted_seqs[letter]=[]
+        for i in range(len(raw_records)):
+            if raw_records[i][1]==letter:
+                clade_sorted_seqs[letter].append(raw_records[i][2])
+    shared_positions={}
+    for key in clade_sorted_seqs:
+        sh_pos=[]
+        for i in range(len(clade_sorted_seqs[key][0])):
+            shared_nucleotide = True
+            csm = clade_sorted_seqs[key][0][i] #candidate shared nucleotide
+            for j in range(1, len(clade_sorted_seqs[key])):
+                if clade_sorted_seqs[key][j][i] != csm:
+                    shared_nucleotide = False
+                    break
+            if shared_nucleotide == True and csm != 'N':
+                sh_pos.append(i)
+        shared_positions[key]=sh_pos
+    return Clades, clade_sorted_seqs, shared_positions
+
+#***STEP 2 COMPILING COMPARISON LISTS FOR CLADES AND IDENTIFYING VARIABLE POSITIONS AND N PRIORITY POSITIONS WITH LARGEST CUTOFFS
+def C_VP_PP(clade_sorted_seqs, clade, shared_positions, CUTOFF):# complist_variable_positions_priority_positions; Arguments: dictionary, string, dictionary
+    CShN={}#a dictionary keys - clade shared positions, values - nucleotides at those positions
+    for pos in shared_positions[clade]:
+        CShN[pos] = clade_sorted_seqs[clade][0][pos]#creates a dictionary shared position : nucleotide
+    complist=[]
+    for key in clade_sorted_seqs:
+        if key != clade:
+            complist = complist + clade_sorted_seqs[key]#creates a list of all other sequences for comparison
+    cutoffs = {}
+    pures = []####! newline
+    for key in CShN:
+        newcomplist = []
+        for k in complist:
+            if k[key] == CShN[key]:
+                newcomplist.append(k)
+            else: continue
+        cutoffs[key] = len(complist) - len(newcomplist)
+        if len(newcomplist) == 0:####! newline
+            pures.append(key)####! newline
+    CPP = []
+    for key in sorted(cutoffs, key = cutoffs.get, reverse = True):
+        CPP.append(key)
+    if CUTOFF[0] == '>':#VERYNEW
+        Clade_priority_positions = {pos:CShN[pos] for pos in CPP if cutoffs[pos] > int(CUTOFF[1:])}#VERYNEW
+    else:#VERYNEW
+        Clade_priority_positions = {}
+        for position in CPP[:int(CUTOFF)]:#Here you define how many of the clade shared combinations are used in subsequent search
+            Clade_priority_positions[position] = CShN[position]
+    return complist, Clade_priority_positions, cutoffs, pures####! pures added
+
+#***STEPS 3 RANDOM SEARCH ACROSS PRIORITY POSITIONS TO FIND RAW DIAGNOSTIC COMBINATIONS AND TO SUBSEQUENTLY REFINE THEM
+def random_position(somelist, checklist):#gives a random index (integer) of the specified range, and returns indexed somelist element if it is not present in the checklist 
+    while True:
+        i = random.randint(0, len(somelist) - 1)
+        if somelist[i] not in checklist:
+            return somelist[i]
+            break
+        else:
+            continue
+
+def step_reduction_complist(clade, complist, CPP, checked_ind):#checks randomly selected positions of CladeSharedNucleotides with sequences of other clades, until a diagnostic combination of nucleotides for a selected clade is found.
+    if len(complist) == 0:
+        return checked_ind
+    elif len(checked_ind) == len(CPP):
+        return checked_ind
+    else:
+        newcomplist = []
+        pos = random_position(list(CPP.keys()), checked_ind)
+        for j in complist:
+            if j[pos] == CPP[pos] or j[pos] == 'N':#VERYNEW
+                newcomplist.append(j)
+            else: continue
+        new_checked_ind = checked_ind + [pos]
+        return step_reduction_complist(clade, newcomplist, CPP, new_checked_ind)
+
+def ConditionD(newcomb, complist, CPP):#The function checks the 'Condition D' - i.e. whither any given combination of nucleotide positions is diagnostic for the selected clade
+    ContD = False
+    for i in newcomb:
+        newcomplist = []
+        for m in complist:
+            if m[i] == CPP[i]:
+                newcomplist.append(m)
+            else: continue
+        complist = newcomplist
+    if len(complist) == 0:
+        ContD = True
+    return ContD
+
+def RemoveRedundantPositions(raw_comb, complist, CPP):# The function removes positions from the raw combinations one by one, and then checks whether new combination fulfills the condition D, thus recursively reducing the diagnostic combination.
+    red_possible = False
+    for j in raw_comb:
+        newcomb = [k for k in raw_comb if k != j]
+        if ConditionD(newcomb, complist, CPP) == True:
+            red_possible = True
+            return RemoveRedundantPositions(newcomb, complist, CPP)
+        else: pass
+    if red_possible == False:
+        return raw_comb
+
+#PUTS EVERYTHING TOGETHER - 20000 ROUNDS OF RANDOM SEARCH FOLLOWED BY REFINING OF 500 SHORTEST COMBINATIONS
+def Diagnostic_combinations(qCLADE, complist, CPP, n1, maxlen1, maxlen2):
+    Achecked_ind = []
+    bestlists = []
+    n = n1
+    while n>0:#STEP3 proposes raw diagnostic combinations
+        raw_comb = step_reduction_complist(qCLADE, complist, CPP, Achecked_ind)
+        if len(raw_comb) <= maxlen1:
+            refined_comb = RemoveRedundantPositions(raw_comb, complist, CPP)
+            if len(refined_comb) <= maxlen2 and sorted(refined_comb) not in bestlists:
+                bestlists.append(sorted(refined_comb))
+        n=n-1
+    bestlists.sort(key=len)
+    return bestlists
+
+#***STEP 4 ANALYSIS OF OUTPUT rDNCs
+def IndependentKey(diagnostic_combinations):#PRESENTLY NOT INVOLVED - returns independent diagnostic nucleotide combinations, and identifies key nucleotide positions
+    independent_combinations = []
+    selected_positions = []
+    for i in range(len(diagnostic_combinations)):
+        if len(selected_positions) == 0:
+            for j in range(0, i):
+                if len(set(diagnostic_combinations[i]) & set(diagnostic_combinations[j])) == 0 and len(set(diagnostic_combinations[i]) & set(selected_positions)) == 0:
+                    independent_combinations.append(diagnostic_combinations[i])
+                    independent_combinations.append(diagnostic_combinations[j])
+                    for k in range(len(diagnostic_combinations[i])):
+                        selected_positions.append(diagnostic_combinations[i][k])
+                    for l in range(len(diagnostic_combinations[j])):
+                        selected_positions.append(diagnostic_combinations[j][l])
+        else:
+            if len(set(diagnostic_combinations[i]) & set(selected_positions)) == 0:
+                independent_combinations.append(diagnostic_combinations[i])
+                for k in range(len(diagnostic_combinations[i])):
+                    selected_positions.append(diagnostic_combinations[i][k])
+    independent_combinations.sort(key=len)
+    key_positions = []
+    for pos in diagnostic_combinations[0]:
+        KP = True
+        for combination in diagnostic_combinations[1:]:
+            if pos not in combination:
+                KP = False
+                break
+            else: continue
+        if KP == True:
+            key_positions.append(pos)
+    return independent_combinations, key_positions
+
+#SPECIFIC FUNCTIONS FOR THE rDNCs
+def PositionArrays(Motifs):#VERYNEW ALL FUNCTION NEW
+    PositionArrays = []
+    VarPosList = []
+    for i in range(len(Motifs[0])):
+        Const = True
+        array = [Motifs[0][i]]
+        for j in range(len(Motifs[1:])):
+            if Motifs[j][i] != 'N':
+                if Motifs[j][i] != array[-1]:
+                    Const = False
+                array.append(Motifs[j][i])
+        PositionArrays.append(array)
+        if Const == False:
+            VarPosList.append(i)
+    return PositionArrays, VarPosList
+
+def random_sequence_new(SEQ, PositionArrays, VarPosList, Pdiff):#VERYNEW FUNCTION REVISED
+    #print(["ROUND", len(SEQ)*Pdiff/100, round(len(SEQ)*Pdiff/100)])
+    n = round(len(SEQ)*Pdiff/100)
+    N = random.sample(list(range(1, n)), 1)[0]
+    PosToChange = random.sample([p for p in VarPosList if SEQ[p] != 'D'], N)#this is a new definition to keep alignment gaps unchanged
+    NEWSEQ = ''
+    for i in range(len(SEQ)):
+        if i not in PosToChange:
+            NEWSEQ = NEWSEQ + SEQ[i]
+        else:
+            newarray = [j for j in PositionArrays[i] if j != SEQ[i]]
+            newbase = random.sample(newarray, 1)[0]
+            NEWSEQ = NEWSEQ + newbase
+    return NEWSEQ
+
+def GenerateBarcode_new(Diagnostic_combinations, length):#VERYNEW FUNCTION REVISED - This function calculates diagnostic combinations and assembles a barcode of desired length for a query taxon. First all single position DNCs are added, then based on the frequency of a nucleotide position in the DNCs of the 2 positions, and then based on the frequency of a position in longer DNCs
+    len1 = []
+    len2 = []
+    lenmore = []
+    for comb in Diagnostic_combinations:
+        if len(comb) == len(Diagnostic_combinations[0]):
+            for i in comb:
+                len1.append(i)
+        elif len(comb) == len(Diagnostic_combinations[0])+1:
+            for j in comb:
+                len2.append(j)
+        else:
+            for k in comb:
+                lenmore.append(k)
+    if len(Diagnostic_combinations[0]) == 1:
+        Setin = len1
+    else:
+        Setin = []
+        for pos in sorted(len1, key=len1.count, reverse = True):
+            if not pos in Setin:
+                Setin.append(pos)
+    for pos1 in sorted(len2, key=len2.count, reverse = True):
+        if not pos1 in Setin:
+            Setin.append(pos1)
+    for pos2 in sorted(lenmore, key=lenmore.count, reverse = True):
+        if not pos2 in Setin:
+            Setin.append(pos2)
+    return Setin[:length]
+
+def Screwed_dataset_new(raw_records, nseq_per_clade_to_screw, PositionArrays, VarPosList, Percent_difference, Taxon, Cutoff):#VERYNEW FUNCTION REVISED
+    clades=[]
+    for i in range(len(raw_records)):
+        Clade=raw_records[i][1]
+        if Clade not in clades:
+            clades.append(Clade)
+    clade_sorted_seqs = {}
+    for letter in clades:
+        clade_sorted_seqs[letter]=[]
+        for i in range(len(raw_records)):
+            if raw_records[i][1]==letter:
+                clade_sorted_seqs[letter].append(raw_records[i][2])
+    
+    for clade in clades:
+        seqlist = clade_sorted_seqs[clade]
+        newseqs = []
+        if len(seqlist) > nseq_per_clade_to_screw:
+            iSTS = random.sample(list(range(len(seqlist))), nseq_per_clade_to_screw)
+            for k in range(len(seqlist)):
+                if k in iSTS:
+                    newseq = random_sequence_new(seqlist[k], PositionArrays, VarPosList, Percent_difference)
+                else:
+                    newseq = seqlist[k]
+                newseqs.append(newseq)
+        elif len(clade_sorted_seqs[clade]) == nseq_per_clade_to_screw:
+            for k in range(len(seqlist)):
+                newseq = random_sequence_new(seqlist[k], PositionArrays, VarPosList, Percent_difference)
+                newseqs.append(newseq)
+        else:
+            for i in range(nseq_per_clade_to_screw):
+                seq = random.sample(seqlist, 1)[0]
+                newseq = random_sequence_new(seq, PositionArrays, VarPosList, Percent_difference)
+                newseqs.append(newseq)
+        clade_sorted_seqs[clade] = newseqs
+    
+    shared_positions={}
+    for key in clade_sorted_seqs:
+        sh_pos=[]
+        for i in range(len(clade_sorted_seqs[key][0])):
+            shared_nucleotide = True
+            csm = clade_sorted_seqs[key][0][i] #candidate shared nucleotide
+            for j in range(1, len(clade_sorted_seqs[key])):
+                if clade_sorted_seqs[key][j][i] != csm:
+                    shared_nucleotide = False
+                    break
+            if shared_nucleotide == True and csm != 'N':
+                sh_pos.append(i)
+        shared_positions[key]=sh_pos
+    
+    x,y,z,pures = C_VP_PP(clade_sorted_seqs, Taxon, shared_positions, Cutoff)#STEP2####
+    return x, y
+
+#NEWFUNCYIONS
+def medianSeqLen(listofseqs):#OCT2022
+    seqlens = [i.count('A')+i.count('C')+i.count('G')+i.count('T') for i in listofseqs]
+    medlen = sorted(seqlens)[int(len(seqlens)/2)]
+    medseq = listofseqs[seqlens.index(medlen)]
+    start = min([medseq.find('A'),medseq.find('C'),medseq.find('G'),medseq.count('T')])
+    if not 'N' in medseq[start:]:
+        end = len(medseq)
+    else:
+        for i in range(start, len(medseq), 1):
+            if medseq[i:].count('N') == len(medseq[i:]):
+                end = i
+                break
+    return medlen, start, end
+
+def getAllPairs(taxalist):
+    uniquetaxapairs = []
+    stl = sorted(list(set(taxalist)))
+    for i in range(len(stl)):
+        for j in range(i+1, len(stl)):
+            uniquetaxapairs.append([stl[i],stl[j]])
+    return uniquetaxapairs
+        
+
+################################################READ IN PARAMETER FILE AND DATA FILE
+
+def get_args(): #arguments needed to give to this script
+    parser = argparse.ArgumentParser(description="run MolD")
+    required = parser.add_argument_group("required arguments")
+    required.add_argument("-i", help="textfile with parameters of the analysis", required=True)
+    return parser.parse_args()
+
+def mainprocessing(gapsaschars=None, taxalist=None, taxonrank=None, cutoff=None, numnucl=None, numiter=None, maxlenraw=None, maxlenrefined=None, iref=None, pdiff=None, nmax=None, thresh=None, tmpfname=None, origfname=None):
+    ParDict = {}
+    if not(all([gapsaschars, taxalist, taxonrank, cutoff, numnucl, numiter, maxlenraw, maxlenrefined, iref, pdiff, nmax, thresh, tmpfname])):
+        args = get_args()
+        with open(args.i) as params:
+            for line in params:
+                line = line.strip()
+                if line.startswith('#'):
+                    pass
+                else:
+                    if len(line.split('=')) == 2 and len(line.split('=')[1]) != 0:
+                        ParDict[line.split('=')[0]] = line.split('=')[1].replace(' ', '')#VERYNEW
+    else:
+        ParDict['Gaps_as_chars'] = gapsaschars
+        ParDict['qTAXA'] = taxalist
+        ParDict['Taxon_rank'] = taxonrank
+        ParDict['INPUT_FILE'] = tmpfname
+        ParDict['ORIG_FNAME'] = origfname# I do not understand this ORIG_FNAME, it throws an error with the command line
+        ParDict['Cutoff'] = cutoff
+        ParDict['NumberN'] = numnucl
+        ParDict['Number_of_iterations'] = numiter
+        ParDict['MaxLen1'] = maxlenraw
+        ParDict['MaxLen2'] = maxlenrefined
+        ParDict['Iref'] = iref
+        ParDict['Pdiff'] = pdiff
+        #ParDict['PrSeq'] = prseq
+        ParDict['NMaxSeq'] = nmax
+        ParDict['Scoring'] = thresh
+        ParDict['OUTPUT_FILE'] = "str"        
+    print(ParDict)
+    ############################################# #VERYNEW HOW GAPS ARE TREATED
+    #REQUIRES A NEW FIELD IN THE GUI
+    if ParDict['Gaps_as_chars'] == 'yes':
+        gaps2D = True#VERYNEW
+    else:#VERYNEW
+        gaps2D = False#VERYNEW
+    
+    ############################################ DATA FILE
+    checkread = open(ParDict['INPUT_FILE'], 'r')
+    firstline = checkread.readline()
+    checkread.close()
+    imported=[]#set up a new list with species and identifiers
+    if '>' in firstline:
+        f = open(ParDict['INPUT_FILE'], 'r') 
+        for line in f:#VERYNEW - THE DATA READING FROM ALIGNMENT FILE IS ALL REVISED UNTIL f.close()
+            line=line.rstrip()
+            if line.startswith('>'):
+                data = line[1:].split('|')
+                if len(data) != 2:
+                    print('Check number of entries in', data[0])
+                    #break
+                data.append('')
+                imported.append(data)
+            else:
+                if gaps2D == True:#
+                    DNA = line.upper().replace('-', 'D').replace('R', 'N').replace('Y', 'N').replace('S','N').replace('W','N').replace('M','N').replace('K','N')#VERYNEW
+                else:
+                    DNA = line.upper().replace('-', 'N').replace('R', 'N').replace('Y', 'N').replace('S','N').replace('W','N').replace('M','N').replace('K','N')#VERYNEW
+                imported[-1][-1] = imported[-1][-1]+DNA
+        f.close()
+    else:
+        f = open(ParDict['INPUT_FILE'], 'r') 
+        for line in f:#VERYNEW - THE DATA READING FROM ALIGNMENT FILE IS ALL REVISED UNTIL f.close()
+            line=line.rstrip()
+            data = line.split('\t')
+            if len(data) != 3:
+                print('Check number of entries in', data[0])
+            ID = data[0]
+            thetax = data[1]
+            if gaps2D == True:#
+                DNA = data[2].upper().replace('-', 'D').replace('R', 'N').replace('Y', 'N').replace('S','N').replace('W','N').replace('M','N').replace('K','N')#VERYNEW
+            else:
+                DNA = data[2].upper().replace('-', 'N').replace('R', 'N').replace('Y', 'N').replace('S','N').replace('W','N').replace('M','N').replace('K','N')#VERYNEW
+            imported.append([ID, thetax, DNA])
+        f.close()
+    
+    if 'NumberN' in list(ParDict.keys()):#How many ambiguously called nucleotides are allowed
+        NumberN = int(ParDict['NumberN'])
+    else:
+        NumberN = 5
+    
+    if len(set([len(i[2]) for i in imported])) != 1:
+        print('Alignment contains sequences of different lengths:', set([len(i[2]) for i in imported]))
+    else:
+        mlen, sstart, send = medianSeqLen([i[2] for i in imported])#OCT2022 - start
+        if mlen + NumberN < len(imported[0][2]):
+            Slice = True
+            FragmentLen = mlen
+            corr = sstart
+        else:
+            Slice = False
+            FragmentLen = len(imported[0][2])
+            sstart = 0
+            send = FragmentLen+1
+            corr = 0
+    raw_records=[]
+    for i in imported:
+        if ParDict['Iref'] != 'NO' and ParDict['Iref'].split(',')[0] == i[0] and ParDict['Iref'].split(',')[1] in ['ex', 'excl', 'out']:
+            continue
+        else:
+            if i[2][sstart:send].count('N') < NumberN and len(i[2][sstart:send]) == FragmentLen:
+                newi = [i[0], i[1], i[2][sstart:send]]
+                raw_records.append(newi)#OCT2022 - end
+    print('\n########################## PARAMETERS ######################\n')#VERYNEW
+    #print('input file:', ParDict['ORIG_FNAME']) #Outcommented ORIG_FNAME
+    print('input file:', ParDict['INPUT_FILE']) #Replacement of the line above
+    print('Coding gaps as characters:', gaps2D)
+    print('Maximum undetermined nucleotides allowed:', NumberN)
+    print('Length of the alignment:', len(imported[0][2]),'->', FragmentLen)
+    print('Indexing reference:', ParDict['Iref'].replace('NO', 'Not set').replace('in', 'included').replace('ex', 'excluded'))
+    print('Read in', len(raw_records), 'sequences')
+    
+    PosArrays, VarPosList = PositionArrays([i[2] for i in raw_records])#VERYNEW
+   
+    #############################################READ IN OTHER ANALYSIS PARAMETERS
+    ##OCT2022 - start
+    withplus = []
+    P2 = []
+    shift = True
+    if ParDict['qTAXA'][0] == '>':#THIS OPTION DIAGNOSES ALL TAXA WITH MORE THAN USER-DEFINED NUMBER OF SEQUENCES AVAILABLE
+        NumSeq = int(ParDict['qTAXA'][1:])
+        Taxarecords = [i[1] for i in raw_records]
+        qCLADEs = []
+        for j in set(Taxarecords):
+            if Taxarecords.count(j) >= NumSeq:
+                qCLADEs.append(j)
+    elif ParDict['qTAXA'].startswith('P:'):#THIS OPTION DIAGNOSES ALL TAXA CONTAINING A USER-DEFINED PATTERN IN THE NAME
+        pattern = ParDict['qTAXA'].split(':')[1]
+        Taxarecords = [i[1] for i in raw_records]
+        qCLADEs = []
+        for j in set(Taxarecords):
+            if pattern in j:
+                qCLADEs.append(j)
+    elif ParDict['qTAXA'].startswith('P+:'):#THIS OPTION POOLS ALL TAXA CONTAINING A USER-DEFINED PATTERN IN THE NAME IN ONE TAXON AND DIAGNOSES IT
+        pattern = ParDict['qTAXA'].split(':')[1]
+        Taxarecords = set([i[1] for i in raw_records if pattern in i[1]])
+        spp = '+'.join(sorted(list(Taxarecords)))
+        qCLADEs = [spp]
+        nrecords = []
+        for rec in raw_records:
+            if rec[1] in Taxarecords:
+                nrecords.append([rec[0], spp, rec[2]])
+            else:
+                nrecords.append(rec)
+        raw_records = nrecords
+    else:#THIS OPTION DIAGNOSES ALL TAXA FROM A USER-DEFINED LIST; TAXA MAY BE COMBINED BY USING '+'
+        qCLADEs = []
+        allrecs = ParDict['qTAXA'].split(',')
+        for item in allrecs:
+            if item in ['ALL', 'All', 'all']:#THIS OPTION DIAGNOSES ALL TAXA IN THE DATASET
+                qCLADEs = list(set([i[1] for i in raw_records]))
+            elif item in [i[1] for i in raw_records]:
+                qCLADEs.append(item)
+            elif '+' in item:
+                withplus.append(item)
+            elif 'VS' in item:
+                P2.append(item.split('VS'))
+            else:
+                print('UNRECOGNIZED TAXON', item)
+    #OCT2022 - end
+    print('query taxa:', len(qCLADEs+withplus), '-', str(sorted(qCLADEs)+sorted(withplus)).replace('[','').replace(']','').replace("'", ''))#1.3
+    
+    if 'Cutoff' in list(ParDict.keys()):#CUTOFF Number of the informative positions to be considered, default 100
+        Cutoff = ParDict['Cutoff']#VERYNEW
+    else:
+        Cutoff = 100
+    print('Cutoff set as:', Cutoff)
+    if 'Number_of_iterations' in list(ParDict.keys()):#Number iterations of MolD
+        N1 = int(ParDict['Number_of_iterations'])
+    else:
+        N1 = 10000
+    print('Number iterations of MolD set as:', N1)
+    
+    if 'MaxLen1' in list(ParDict.keys()):#Maximum length for the raw mDNCs
+        MaxLen1 = int(ParDict['MaxLen1'])
+    else:
+        MaxLen1 = 12
+    print('Maximum length of raw mDNCs set as:', MaxLen1)
+    
+    if 'MaxLen2' in list(ParDict.keys()):#Maximum length for the refined mDNCs
+        MaxLen2 = int(ParDict['MaxLen2'])
+    else:
+        MaxLen2 = 7
+    print('Maximum length of refined mDNCs set as:', MaxLen2)
+    
+    if 'Pdiff' in list(ParDict.keys()):#Percent difference
+        Percent_difference = float(ParDict['Pdiff'])
+    else:
+        if int(ParDict['Taxon_rank']) == 1:#read in taxon rank to configure Pdiff parameter of artificial dataset
+            Percent_difference = 1
+        else:
+            Percent_difference = 5
+    print('simulated sequences up to', Percent_difference, 'percent divergent from original ones')
+    
+    if 'NMaxSeq' in list(ParDict.keys()):#Maximum number of sequences per taxon to be modified
+        Seq_per_clade_to_screw = int(ParDict['NMaxSeq'])
+    else:
+        Seq_per_clade_to_screw = 10####!changed value
+    print('Maximum number of sequences modified per clade', Seq_per_clade_to_screw)
+    
+    if 'Scoring' in list(ParDict.keys()):
+        if ParDict['Scoring'] == 'lousy':
+            threshold = 66####!changed value
+        elif ParDict['Scoring'] == 'moderate':
+            threshold = 75####!changed value
+        elif ParDict['Scoring'] == 'stringent':
+            threshold = 90####!changed value
+        elif ParDict['Scoring'] == 'very_stringent':
+            threshold = 95####!changed value
+        else:
+            threshold = 75####!changed value
+    else:
+        threshold = 75####!changed value
+    #print(ParDict['Scoring'], 'scoring of the rDNCs; threshold in two consequtive runs:', threshold)
+    print('scoring of the rDNCs; threshold in two consequtive runs:', threshold)
+    #OCT2022 - start
+    if corr > 1 and len(ParDict['Iref'].split(',')) == 2:
+        print('\nNOTE: The alignment was trimmed automatically to match median sequences length. The analysed slice starts from the site',str(sstart+1),'and ends on the site',str(send+1),'. The site indexing in the DNCs as in the provided reference.')
+    if corr > 1 and ParDict['Iref'] == 'NO':
+        print('\nNOTE: The alignment was trimmed automatically to match median sequences length. The analysed slice starts from the site',str(sstart+1),'and ends on the site',str(send+1),'. The site indexing in the rDNC as in the untrimmed alignment.')
+    #OCT2022 - end
+    thephrase = 'The DNA diagnosis for the taxon'
+    ###################################################IMPLEMENTATION
+    #Setting up a new class just for the convenient output formatting
+    class SortedDisplayDict(dict):#this is only to get a likable formatting of the barcode
+        def __str__(self):
+            return "[" + ", ".join("%r: %r" % (key, self[key]) for key in sorted(self)) + "]"
+    
+    class SortedDisplayDictVerbose(dict):#this is only to get a likable formatting of the barcode
+        def __str__(self):
+            return ", ".join("%r %r" % (self[key],'in the site '+str(key)) for key in sorted(self)).replace("'", '').replace("A", "'A'").replace("C", "'C'").replace("G", "'G'").replace("T", "'T'")+'.'
+    
+    #Calling functions and outputing results
+    if ParDict['OUTPUT_FILE'] == "str":
+        g = StringIO()
+    else:
+        g = open(ParDict['OUTPUT_FILE'], "w")#Initiating output file
+    #VERYNEW
+    print('<h4>########################## PARAMETERS ######################</h4>', file=g)
+    #print("<p>", 'input file:', ParDict['ORIG_FNAME'], "</p>", file=g) #outcommented ORIG_FNAME
+    print("<p>", 'input file:', ParDict['INPUT_FILE'], "</p>", file=g)
+    print("<p>", 'Coding gaps as characters:', gaps2D, "</p>", file=g)
+    print("<p>", 'Maximum undetermined nucleotides allowed:', NumberN, "</p>", file=g)
+    print("<p>", 'Length of the alignment:', len(imported[0][2]),'->', FragmentLen, "</p>", file=g)
+    print("<p>", 'Indexing reference:', ParDict['Iref'].replace('NO', 'Not set').replace('in', 'included').replace('ex', 'excluded'), "</p>", file=g)#OCT2022
+    print("<p>", 'Read in', len(raw_records), 'sequences', "</p>", file=g)
+    print("<p>", 'query taxa:', len(qCLADEs+withplus), '-', str(sorted(qCLADEs)+sorted(withplus)).replace('[','').replace(']','').replace("'", ''), "</p>", file=g)#1.3
+    print("<p>", 'Cutoff set as:', Cutoff, "</p>", file=g)
+    print("<p>", 'Number iterations of MolD set as:', N1, "</p>", file=g)
+    print("<p>", 'Maximum length of raw mDNCs set as:', MaxLen1, "</p>", file=g)
+    print("<p>", 'Maximum length of refined mDNCs set as:', MaxLen2, "</p>", file=g)
+    print("<p>", 'simulated sequences up to', Percent_difference, 'percent divergent from original ones', "</p>", file=g)
+    print("<p>", 'Maximum number of sequences modified per clade', Seq_per_clade_to_screw, "</p>", file=g)
+    #print("<p>", ParDict['Scoring'], 'scoring of the rDNCs; threshold in two consequtive runs:', threshold, "</p>", file=g)
+    print("<p>", 'scoring of the rDNCs; threshold in two consequtive runs:', threshold, "</p>", file=g)
+    if corr > 1 and len(ParDict['Iref'].split(',')) == 2:
+        print('<h4>NOTE: The alignment was trimmed automatically to match median sequences length. The analysed slice starts from the site',str(sstart+1),'and ends on the site',str(send+1),'. The site indexing in the DNCs as in the provided reference.</h4>', file=g)
+    if corr > 1 and ParDict['Iref'] == 'NO':
+        print('<h4>NOTE: The alignment was trimmed automatically to match median sequences length. The analysed slice starts from the site',str(sstart+1),'and ends on the site',str(send+1),'. The site indexing in the rDNC as in the untrimmed alignment.</h4>', file=g)
+
+    print('<h4>########################### RESULTS ##########################</h4>', file=g)
+    
+    for qCLADE in sorted(qCLADEs) + sorted(withplus):#OCT2022
+        if '+' in qCLADE:
+            if shift == True:
+                old_records = raw_records
+                shift == False
+            else:
+                raw_records = old_records
+            spp = qCLADE.split('+')
+            nrecords = []
+            for rec in raw_records:
+                if rec[1] in spp:
+                    nrecords.append([rec[0], qCLADE, rec[2]])
+                else:
+                    nrecords.append(rec)
+            raw_records = nrecords
+        print('\n**************', qCLADE, '**************')
+        print('<h4>**************', qCLADE, '**************</h4>', file=g)
+        Clades, clade_sorted_seqs, shared_positions = Step1(raw_records)#STEP1
+        x,y,z,pures = C_VP_PP(clade_sorted_seqs, qCLADE, shared_positions, Cutoff)#STEP2 ####! added pures
+        newy = {key:y[key] for key in y if not key in pures} ####! newline
+        print('Sequences analyzed:', len(clade_sorted_seqs[qCLADE]))
+        print("<p>",'Sequences analyzed:', len(clade_sorted_seqs[qCLADE]), "</p>", file=g)
+        ND_combinations = [[item] for item in pures] ####! before ND_combinations were initiated as an empty list
+        print('single nucleotide mDNCs:', len(pures), '-', str(SortedDisplayDict({pos+corr : y[pos-1] for pos in [i+1 for i in pures]}))[1:-1])#OCT2022
+        print("<p>",'single nucleotide mDNCs*:',len(pures), '-', str(SortedDisplayDict({pos+corr : y[pos-1] for pos in [i+1 for i in pures]}))[1:-1], "</p>", file=g)#OCT2022
+        N = 1 ####!
+        while N > 0:#STEP3
+            try:
+                q = Diagnostic_combinations(qCLADE, x, newy, N1, MaxLen1, MaxLen2) ####! newy instead of y
+            except IndexError:
+                print(N, 'IndexError')
+                continue
+            for comb in q:
+                if not comb in ND_combinations:
+                    ND_combinations.append(comb)
+            N-=1
+        ND_combinations.sort(key=len)
+        #################################### mDNC output
+        try:
+            Nind, KeyPos = IndependentKey(ND_combinations)#STEP4
+        except IndexError:
+            print('no mDNCs recovered for', qCLADE)#VERYNEW
+            print("<p>", 'no mDNCs recovered for', "</p>", qCLADE, file=g)#VERYNEW
+            continue
+        Allpos = []#Create list of all positions involved in mDNCs
+        for comb in ND_combinations:
+            for pos in comb:
+                if not pos in Allpos:
+                    Allpos.append(pos)
+        print('\nmDNCs retrieved:', str(len(ND_combinations)) + '; Sites involved:', str(len(Allpos)) + '; Independent mDNCs:', len(Nind))#VERYNEW
+        print("<p>", 'mDNCs* retrieved:', str(len(ND_combinations)) + '; Sites involved:', str(len(Allpos)) + '; Independent mDNCs**:', len(Nind), "</p>", file=g)#VERYNEW
+        print('Shortest retrieved mDNC:', SortedDisplayDict({pos+corr : y[pos-1] for pos in [i+1 for i in ND_combinations[0]]}), '\n')#OCT2022
+        print("<p>",'Shortest retrieved mDNC*:', SortedDisplayDict({pos+corr : y[pos-1] for pos in [i+1 for i in ND_combinations[0]]}), "</p>", file=g)#OCT2022
+        ######################################################## rDNC output
+        Barcode_scores = []#Initiate a list for rDNC scores
+        npos = len(ND_combinations[0])
+        BestBarcode = 'none'####! newline
+        while npos <= min([10, len(Allpos)]):#in this loop the positions are added one-by-one to a rDNC and the rDNC is then rated on the artificially generated datasets
+            Barcode = GenerateBarcode_new(ND_combinations, npos)#Initiate a rDNC
+            Barcode_score = 0#Initiate a score to rate a rDNC
+            N = 100
+            while N > 0:
+                NComplist, NCPP = Screwed_dataset_new(raw_records, Seq_per_clade_to_screw, PosArrays, VarPosList, Percent_difference, qCLADE, Cutoff)#Create an artificial dataset VERYNEW
+                NBarcode = [i for i in Barcode if i in list(NCPP.keys())]
+                if len(Barcode) - len(NBarcode) <= 1 and ConditionD(NBarcode, NComplist, NCPP) == True:####! new condition (first) added
+                    Barcode_score +=1
+                N -=1
+            print(npos, 'rDNC_score (100):', [k+corr+1 for k in Barcode], '-', Barcode_score)#VERYNEW
+            print("<p>", npos, 'rDNC_score (100):', [k+corr+1 for k in Barcode], '-', Barcode_score, "</p>", file=g)#OCT2022
+            if Barcode_score >= threshold and len(Barcode_scores) == 1: ###1.3
+                BestBarcode = Barcode###1.3
+            if Barcode_score >= threshold and len(Barcode_scores) > 1 and Barcode_score >= max(Barcode_scores): ###1.3
+                BestBarcode = Barcode####!newline
+            Barcode_scores.append(Barcode_score)
+            if len(Barcode_scores) >= 2 and Barcode_scores[-1] >= threshold and Barcode_scores[-2] >= threshold:#Check whether the rDNC fulfills robustnes criteria 85:85:85
+                print('Final rDNC:', SortedDisplayDict({pos+corr : y[pos-1] for pos in [i+1 for i in BestBarcode]}))#OCT2022
+                print("<p>",'Final rDNC***:', SortedDisplayDict({pos+corr : y[pos-1] for pos in [i+1 for i in BestBarcode]}), "</p>", file=g)#OCT2022
+                print('\n',thephrase, qCLADE, 'is:', SortedDisplayDictVerbose({pos+corr : y[pos-1] for pos in [i+1 for i in BestBarcode]}))#OCT2022
+                print("<p>", thephrase, qCLADE, 'is:', SortedDisplayDictVerbose({pos+corr : y[pos-1] for pos in [i+1 for i in BestBarcode]}), "</p>", file=g)#OCT2022
+                break
+            else:# VERY NEW FROM HERE ONWARDS
+                npos += 1
+                if npos > min([10, len(Allpos)]):
+                    if BestBarcode != 'none':
+                        print('The highest scoring rDNC for taxon', qCLADE, 'is:', SortedDisplayDictVerbose({pos+corr : y[pos-1] for pos in [i+1 for i in BestBarcode]}))#OCT2022
+                        print("<p>", 'The highest scoring rDNC*** for taxon', qCLADE, 'is:', SortedDisplayDictVerbose({pos+corr : y[pos-1] for pos in [i+1 for i in BestBarcode]}), "</p>", file=g)#OCT2022
+                    else:
+                        print('No sufficiently robust DNA diagnosis for taxon', qCLADE, 'was retrieved')
+                        print("<p>", 'No sufficiently robust DNA diagnosis for taxon', qCLADE, 'was retrieved', "</p>", file=g)
+    #OCT2022 - start
+    print("<h4>", '################################# EXPLANATIONS ####################################', "</h4>", file=g)
+    print("<p>", '  * mDNC -(=minimal Diagnostic nucleotide combination) is a combination of nucleotides at specified sites of the alignment,', "</p>", file=g)
+    print("<p>", '    unique for a query taxon. Therefore it is sufficient to differentiate a query taxon from all reference taxa in a dataset.', "</p>", file=g)
+    print("<p>", '    Because it comprises minimal necessary number of nucleotide sites to differentiate a query, any mutation in the mDNC in'  "</p>", file=g)
+    print("<p>", '    single specimen of a query taxon will automatically disqualify it as a diagnostic combination.', "</p>", file=g)
+    print("<p>",  "</p>", file=g)
+    print("<p>", ' ** two or more mDNCs are INDEPENDENT if they constitute non-overlapping sets of nucleotide sites.', "</p>", file=g)
+    print("<p>",  "</p>", file=g)
+    print("<p>", '*** rDNC -(=robust/redundant Diagnostic nucleotide combination) is a combination of nucleotides at specified sites of the alignment,', "</p>", file=g)
+    print("<p>", '    unique for a query taxon and (likewise mDNC) sufficient to differentiate a query taxon from all reference taxa in a dataset.', "</p>", file=g)
+    print("<p>", '    However, rDNC comprises more than a minimal necessary number of diagnostic sites, and therefore is robust to single nucleotide', "</p>", file=g)
+    print("<p>", '    replacements. Even if a mutation arises in one of the rDNC sites, the remaining ones will (with high probability) remain sufficient ', "</p>", file=g)
+    print("<p>", '    to diagnose the query taxon', "</p>", file=g)
+    print("<h4>", '    Final diagnosis corresponds to rDNC', "</h4>", file=g)
+    #OCT2022 - end
+    
+    if ParDict['OUTPUT_FILE'] == "str":
+        contents = g.getvalue()
+        os.unlink(ParDict['INPUT_FILE'])
+    else:
+        contents = None
+    g.close()
+    #OCT2022 - start
+    if len(P2) != 0:
+        ext = '.'+ParDict['OUTPUT_FILE'].split('.')[-1]
+        h = open(ParDict['OUTPUT_FILE'].replace(ext, '_pairwise'+ext), "w")#Initiating output file
+        if len(withplus) != 0:
+            raw_records = old_records
+        taxain = [i[1] for i in raw_records]
+        tpairs = []
+        for alist in P2:
+            if alist.count('all')+alist.count('All')+alist.count('ALL') == 2:
+                tpairs = getAllPairs(taxain)
+            elif alist.count('all')+alist.count('All')+alist.count('ALL') == 1:
+                thetax = [i for i in taxain if i in alist][0]
+                print(thetax)
+                for atax in sorted(list(set(taxain))):
+                    if atax != thetax:
+                        tpairs.append([thetax, atax])
+            else:
+                for apair in getAllPairs(alist):
+                    tpairs.append(apair)
+        for apair in tpairs:
+            t1 = apair[0]
+            t2 = apair[1]
+            p2records = [i for i in raw_records if i[1] in [t1, t2]]
+            print('\n**************', t1, 'VS', t2,'**************')
+            print('<h4>**************', t1, 'VS', t2, '**************</h4>', file=h)
+            C2, css2, sp2 = Step1(p2records)#STEP1
+            x2,y2,z2,pures2 = C_VP_PP(css2, t1, sp2, '>0')#STEP2 ####! added pures
+            Pairphrase = 'Each of the following '+ str(len(pures2))+' sites is invariant across sequences of '+ t1+ ' and differentiates it from '+ t2+': '
+            counterPures = {}
+            for site in pures2:
+                counterPures[site] = "'or'".join(list(set([thing[site] for thing in css2[t2] if thing[site] != 'N'])))
+                Pairphrase = Pairphrase + str(site+corr)+" ('"+str(y2[site])+"' vs '"+str(counterPures[site])+"'), "
+            print(Pairphrase[:-2])
+            print("<p>",Pairphrase[:-2],'</h4>', file=h)#OCT2022
+            x2r,y2r,z2r,pures2r = C_VP_PP(css2, t2, sp2, '>0')#STEP2 ####! added pures
+            Pairphraser = 'Each of the following '+ str(len(pures2r))+' sites is invariant across sequences of '+ t2+ ' and differentiates it from '+ t1+': '
+            counterPuresr = {}
+            for site in pures2r:
+                counterPuresr[site] = "'or'".join(list(set([thing[site] for thing in css2[t1] if thing[site] != 'N'])))
+                Pairphraser = Pairphraser + str(site+corr)+" ('"+str(y2r[site])+"' vs '"+str(counterPuresr[site])+"'), "
+            print(Pairphraser[:-2])
+            print("<p>",Pairphraser[:-2],'</h4>', file=h)#OCT2022
+        h.close()
+            
+    #OCT2022 - end
+    return contents, qCLADEs
+if __name__ == "__main__":
+    c, q = mainprocessing()
+  
\ No newline at end of file
Binary file MolD_v1_3_manual.pdf has changed
Binary file MolD_v1_4_manual_new_in_red.docx has changed
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/README.md	Sun Jan 29 16:25:48 2023 +0000
@@ -0,0 +1,3 @@
+# MolD
+Original scripts and manual of the program MolD with manual and example files
+Please see the newest release - version 1.3
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/api.py	Sun Jan 29 16:25:48 2023 +0000
@@ -0,0 +1,295 @@
+#!/usr/bin/env python
+# -*- coding: utf-8 -*-
+
+from flask import Flask, make_response, request, current_app, send_file, url_for
+from flask_restful import Resource, Api, reqparse, abort
+from flask.json import jsonify
+from flasgger import Swagger
+from flask_cors import CORS, cross_origin
+from flask_restful.utils import cors
+import logging
+import base64
+import uuid
+import tempfile
+import os
+import html2text
+
+# for emails
+import smtplib
+from email.message import EmailMessage
+from email.mime.multipart import MIMEMultipart
+from email.mime.text import MIMEText
+from email.mime.image import MIMEImage
+from celery import Celery
+from celery.schedules import crontab
+
+import json
+
+#from MolD_sDNC import SortedDisplayDict
+#from MolD_sDNC import Step1
+#from MolD_sDNC import C_VP_PP
+#from MolD_sDNC import random_position
+#from MolD_sDNC import step_reduction_complist
+#from MolD_sDNC import ConditionD
+#from MolD_sDNC import RemoveRedundantPositions
+#from MolD_sDNC import Diagnostic_combinations
+#from MolD_sDNC import IndependentKey
+#from MolD_sDNC import random_sequence2
+#from MolD_sDNC import GenerateBarcode2
+#from MolD_sDNC import Screwed_dataset31
+from MolD_sDNCFASTA import mainprocessing
+
+
+logging.basicConfig(format='%(levelname)s: %(asctime)s - %(message)s',
+                    level=logging.DEBUG, datefmt='%d.%m.%Y %I:%M:%S %p')
+
+app = Flask(__name__)
+app.config.from_envvar('APPSETTINGS')
+API_VERSION = app.config.get('API_VERSION', 1)
+
+cors = CORS(app, resources={r"/*": {"origins": "*"}}, methods=['GET', 'POST', 'PATCH', 'DELETE', 'HEAD', 'OPTIONS'])
+api = Api(app, prefix=f"/api/v{API_VERSION}")
+
+gunicorn_logger = logging.getLogger('gunicorn.error')
+app.logger.handlers = gunicorn_logger.handlers
+app.logger.setLevel(gunicorn_logger.level)
+
+REDIS_HOST = app.config.get('REDIS_HOST', 'localhost')
+REDIS_PORT = app.config.get('REDIS_PORT', 6379)
+REDIS_DB = app.config.get('REDIS_DB', 0)
+
+MAILUSER = app.config.get('MAILUSER')
+MAILPASS = app.config.get('MAILPASS')
+
+app.config['SWAGGER'] = {
+    'uiversion': 3
+}
+swtemplate = {
+    "info": {
+        "title": "MoID API",
+        "description": "MoID API is the online version of a tree independent algorithm to retrieve diagnostic nucleotide characters from monolocus datasets. BioRxiv. DOI: 10.1101/838151",
+        "version": f"{API_VERSION}",
+    },
+    "schemes": [
+        "https"
+    ]
+}
+
+swagger_config = {
+    "headers": [
+    ],
+    "specs": [
+        {
+            "endpoint": 'apidescr',
+            "route": '/apidescr.json',
+            "rule_filter": lambda rule: True,
+            "model_filter": lambda tag: True,
+        }
+    ],
+    "static_url_path": "/flasgger_static",
+    "swagger_ui": True,
+    "specs_route": "/docs/",
+    'uiversion': 3
+}
+
+swagger = Swagger(app, config=swagger_config, template=swtemplate)
+
+SEND_EMAILS = True
+
+app.config['CELERY_BROKER_URL'] = 'redis://{}:{}/{}'.format(REDIS_HOST, REDIS_PORT, REDIS_DB)
+app.config['CELERY_RESULT_BACKEND'] = 'redis://{}:{}/{}'.format(REDIS_HOST, REDIS_PORT, REDIS_DB)
+
+def make_celery(app):
+    celery = Celery(app.import_name, broker=app.config['CELERY_BROKER_URL'])
+    celery.conf.update(app.config)
+    TaskBase = celery.Task
+    class ContextTask(TaskBase):
+        abstract = True
+        def __call__(self, *args, **kwargs):
+            with app.app_context():
+                return TaskBase.__call__(self, *args, **kwargs)
+    celery.Task = ContextTask
+    return celery
+
+celery = make_celery(app)
+
+#@celery.on_after_configure.connect
+#def setup_periodic_tasks(sender, **kwargs):
+#    sender.add_periodic_task(
+#        crontab(minute=0, hour='*/3'),
+#        check_pending_notifications.s(),
+#    )
+
+
+@celery.task
+def send_email_notification(email, status, parameters, taxalist, orig_filename):
+    print("Sending email")
+    sender = MAILUSER
+    taxa = ", ".join(taxalist)
+    print(taxalist)
+    taxa1 = "-".join([t.replace(" ", "_") for t in taxalist])
+    msg = MIMEMultipart('related')
+    msg['Subject'] = f'MolD results: {taxa}'
+    msg['From'] = sender
+    msg['To'] = email
+
+    # TODO: add three txt files:
+    # 
+    
+    email_body = """\
+<html>
+    <head></head>
+       <body>
+
+    Results:
+     {}
+
+    ***************
+
+    <p>Citation: <b>Fedosov A.E.</b>, Achaz G., Puillandre N. 2019. Revisiting use of DNA characters in taxonomy with MolD – a tree independent algorithm to retrieve diagnostic nucleotide characters from monolocus datasets. BioRxiv, published online on 11.11.2019. DOI: 10.1101/838151 </p>
+       </body>
+</html>
+    """.format(status)
+    
+    plain_text_results = html2text.html2text(status)
+    
+    message_text = MIMEText(email_body, 'html')
+    msg.attach(message_text)
+
+    text_attachment = f"""
+Results: 
+{plain_text_results}
+
+***************
+
+Citation: Fedosov A.E., Achaz G., Puillandre N. 2019. Revisiting use of DNA characters in taxonomy with MolD – a tree independent algorithm to retrieve diagnostic nucleotide characters from monolocus datasets. BioRxiv, published online on 11.11.2019. DOI: 10.1101/838151
+    """
+    
+    mail_attachment = MIMEText(text_attachment)
+    fname = f"{orig_filename}.results.txt"
+    mail_attachment.add_header('Content-Disposition', 'attachment', filename=fname)
+    msg.attach(mail_attachment)
+    
+    print("mail ready to be sent")
+    s = smtplib.SMTP('smtp.gmail.com', 587)
+    s.ehlo()
+    s.starttls()
+    s.login(MAILUSER, MAILPASS)
+    s.sendmail(sender, email, msg.as_string())
+    s.quit()
+    print("mail sent")
+
+
+@celery.task
+def process_data(email, gapsaschars, taxalist, taxonrank, cutoff, numnucl, numiter, maxlenraw, maxlenrefined, pdiff, nmax, thresh, tmpfname, orig_fname):
+    print("Processing data")
+
+    results, qclades = mainprocessing(gapsaschars, taxalist, taxonrank, cutoff, numnucl, numiter, maxlenraw, maxlenrefined, pdiff, nmax, thresh, tmpfname, orig_fname)
+
+    parameters = f"""
+    List of focus taxa: {taxalist}
+    Taxon rank: {taxonrank}
+    Cutoff: {cutoff}
+    NNNNN...: {numnucl}
+    Num iterations: {numiter}
+    Max length for the raw mDNCs: {maxlenraw}
+    Max length for the refined mDNCs: {maxlenrefined}
+    Pdiff: {pdiff}
+    NMaxSeq: {nmax}
+    Threshold of rDNC rating: {thresh}
+    """
+    
+    send_email_notification.delay(email, results, parameters, qclades, orig_fname)
+    
+@app.errorhandler(404)
+def not_found(error):
+    return make_response(jsonify({'error': 'Not found'}), 404)
+
+
+class DataAPI(Resource):
+    def __init__(self):
+        self.method_decorators = []
+
+    def options(self, *args, **kwargs):
+        return jsonify([])
+
+
+    #@token_required
+    @cross_origin()
+    def post(self):
+        """
+        POST data to analyse
+        ---
+        parameters:
+         - in: formData
+           name: file
+           type: file
+           required: true
+           description: Data file
+         - in: formData
+           name: tags
+           type: array
+           required: false
+           description: A list of image tags to link with the image
+           items:
+             type: string
+             description: Tag text
+         - in: formData
+           name: width
+           type: integer
+           required: false
+           description: Image width
+         - in: formData
+           name: height
+           type: integer
+           required: false
+           description: Image height
+
+        responses:
+          200:
+            description: Data processing
+          400:
+            description: Bad request
+        """
+        app.logger.debug(request.files)
+        app.logger.debug(request.values)
+        email = request.values.get('email', None)
+        gapsaschars = request.values.get('gapsaschars', "no")
+        taxalist = request.values.get('taxalist', "ALL")
+        taxalist = taxalist.replace(" ", '')
+        taxonrank = int(request.values.get('taxonrank', 2))
+        cutoff = request.values.get('cutoff', ">0")
+        numnucl = int(request.values.get('numnucl', 5))
+        numiter = int(request.values.get('numites', 10000))
+        maxlenraw = int(request.values.get('maxlenraw', 12))
+        maxlenrefined = int(request.values.get('maxlenrefined', 7))
+        pdiff = int(request.values.get('pdiff', 1))
+        #prseq = float(request.values.get('prseq', 0.1))
+        nmax = int(request.values.get('nmax', 20))
+        thresh = int(request.values.get('thresh', 85))
+        
+        if not all([email, gapsaschars, taxalist, taxonrank, cutoff, numnucl, numiter, maxlenraw, maxlenrefined, pdiff, nmax, thresh]):
+            return make_response(jsonify({'error': 'Parameter missing'}), 400)
+            
+        if not request.files:
+            return make_response(jsonify({'error': 'No file provided'}), 400)
+
+        
+        data_file = [request.files.get(f) for f in request.files][-1]
+
+        thumb_height = request.values.get('height', None)
+        tmpdname = "/tmp"
+        tmpfname = str(uuid.uuid4())
+        tmp_upl_file = os.path.join(tmpdname, tmpfname)
+        data_file.save(tmp_upl_file)
+        app.logger.debug(tmp_upl_file)
+        process_data.delay(email, gapsaschars, taxalist, taxonrank, cutoff, numnucl, numiter, maxlenraw, maxlenrefined, pdiff, nmax, thresh, tmp_upl_file, data_file.filename)
+
+        return jsonify("OK"), 200
+
+
+api.add_resource(DataAPI, '/data', endpoint='processdata')
+
+if __name__ == '__main__':
+    app.debug = True
+    app.run(host='0.0.0.0')
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/datatypes_conf.xml	Sun Jan 29 16:25:48 2023 +0000
@@ -0,0 +1,6 @@
+<?xml version="1.0"?>
+<datatypes>
+  <registration>
+    <datatype extension="spart" type="galaxy.datatypes.data:Text" subclass="true" display_in_upload="true"/>
+  </registration>
+</datatypes>
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/Example_input_alignment_Pontohedyle_COI.fas	Sun Jan 29 16:25:48 2023 +0000
@@ -0,0 +1,54 @@
+>ZSM20071381|milaschewitchii
+NNNTCTATATCTTGTTTTTGGAGTCTGGTGCGGTTTAGTGGGTACAGGGCTTTCCCTTCTTATCCGGTTTGAGCTAGGCACGTCCTCCGTCTTCATAGACGAGCACTTTTATAATGTTATTGTGACGGCCCATGCATTTGTTATAATTTTTTTTATGGTCATGCCACTAATAATTGGTGGTTTTGGGAATTGAATGGTTCCCCTGTTAATTGGGGCCCCCGACATAAGGTTTCCTCGAATAAATAACATAAGATTTTGGTTGCTTCCCCCTAGGTTTGTTCTTTTGTTGAGCTCAAGATTAGTTGAGGGGGGTGCGGGTACAGGGTGAACTGTCTATCCGCCCCTAAGCGGGTCTGTTGCGCACGGAGGAGCCTCGGTAGACTTAGTTATTTTTTCACTACATTTGGCGGGAATGTCTTCTATTCTTGGGGCTATCAACTTCATTACAACAATCTTTAATATGCGGTCCCCCGGGCTAACAATGGAACGGCTGAGGTTGTTTGTTTGGTCTGTTCTAGTCACGGCTTTTTTACTTCTGCTAAGACTGCCTGTGCTAGCAGGGGCTATCACAATGCTTTTAACTGATCGTAACTTTAACACTAGTTTTTTTGACCCGGCCGGAGGGGGGGACCCTATTTTATACCAACACCTTTTC
+>ZSM20080925|milaschewitchii
+NNNTCTATATCTTGTTTTTGGAGTCTGGTGCGGTTTAGTAGGTACAGGGCTTTCCCTTCTTATCCGGTTTGAGCTAGGCACGTCCTCCGTGTTCATAGACGAGCACTTTTATAATGTTATTGTGACGGCCCATGCATTTGTTATAATTTTTTTTATGGTCATGCCACTAATAATTGGTGGTTTTGGGAATTGAATGGTTCCCCTGTTAATTGGGGCCCCCGACATAAGGTTTCCTCGGATAAACAACATAAGGTTTTGGTTGCTTCCCCCTAGGTTTGTTCTTTTGTTGAGCTCAAGATTAGTTGAGGGGGGTGCGGGTACAGGGTGAACTGTCTATCCGCCCCTAAGCGGGTCTGTTGCGCACGGAGGAGCCTCGGTAGACTTGGTTATTTTTTCACTACATTTGGCGGGAATGTCTTCTATTCTTGGGGCTATCAACTTCATTACAACAATCTTTAATATGCGGTCCCCCGGGCTAACAATGGAGCGGCTGAGGTTGTTTGTTTGGTCTGTTCTAGTCACGGCTTTTTTACTTCTGCTAAGATTGCCTGTGCTAGCAGGGGCTATCACAATGCTTTTAACTGATCGTAACTTTAACACTAGTTTTTTTGACCCGGCCGGAGGGGGGGACCCTATTTTATACCAACACCTTTTC
+>ZSM20080953|milaschewitchii
+AACTCTATATCTTGTTTTTGGAGTCTGGTGCGGTTTAGTGGGTACAGGGCTTTCTCTTCTTATCCGGTTTGAGCTAGGCACGTCCTCCGTCTTCATAGACGAGCACTTTTATAATGTTATTGTAACGGCCCATGCATTTGTTATAATTTTTTTTATGGTCATGCCACTAATAATTGGCGGTTTTGGTAATTGAATGGTTCCCCTGTTAATTGGGGCCCCCGACATAAGGTTTCCTCGAATAAATAACATAAGGTTTTGGTTGCTTCCCCCTAGGTTTGTTCTTTTGTTAAGCTCAAGATTAGTTGAGGGGGGCGCGGGTACAGGGTGAACTGTCTATCCGCCCCTAAGCGGGTCTGTTGCGCACGGAGGAGCCTCGGTAGACTTAGTTATTTTTTCACTACATTTGGCGGGAATGTCTTCTATTCTTGGGGCTATCAACTTCATTACAACAATCTTTAATATACGGTCCCCCGGGCTAACAATGGAACGGCTGAGGTTGTTTGTTTGGTCTGTTCTAGTCACGGCTTTTTTACTTCTGCTAAGATTGCCCGTGCTAGCAGGGGCTATCACAATGCTTTTAACTGATCGTAACTTTAACACTAGTTTTTTTGACCCGGCCGGAGGGGGGGACCCTATTTTATACCAACACCTTTTC
+>SICBC2010KJ01B09|brasilensis
+CACGTTGTACATTATCTTTGGGGTTTGATGCGGTTTGGTCGGTGCGGGGTTGTCTTTGTTGATTCGGGTAGAGTTGGGGACTTCTAGGGTGTTAACCGACCCTCACTTCTACAATGTGGTTGTGACTGCCCATGCTTTCGTTATGATTTTTTTTATGGTTATACCTGTCTTGATCGGGGGTTTTGGTAACTGAATGATCCCGCTTCTGATTGGGGCACCTGATATGGCTTTTCCTCGGTTAAATAACCTAAGGTTTTGGCTGCTCCCGCCTGCGTTTATTTTACTTATAAGCTCGGTTTTGGTAGAAGGCGGAGCGGGGACAGGTTGAACCTTGTATCCCCCTCTGAGCG---CGGAGGGGCATTCAGGATTTTCAGTTGATTTAGCCATTTTTTCTCTGCACTTGGCAGGGGTCTCTTCTATCTTAGGGGCAGTTAATTTTATTACCACTATTTGGAATATGCGGGCCCCGGGGGTTACTTGAGAGCGGCTGAATCTTTTTGTCTGGTCTTTACTTATTACAGCGTTATTGTTGCTGTTGTCACTGCCTGTGCTAGCTGGTGCTCTTACAATGTTGTTAACTGATCGGAATTTTAATACTACTTTTTTTGATCCGGCGGGGGGCGGGGACCCTGTTTTATACCAACACCTGTTC
+>SICBC2010KJ01C09|brasilensis
+CACGTTGTACATTATCTTTGGGGTTTGATGTGGTTTGGTCGGTGCGGGGTTGTCTTTGTTGATTCGGGTAGAGTTGGGGACTTCTAGAGTGTTAACCGACCCTCACTTCTACAATGTGGTTGTGACTGCCCATGCTTTCGTTATGATTTTTTTTATGGTTATACCTGTCTTGATTGGGGGTTTTGGTAACTGAATGATCCCGCTTCTGATTGGGGCACCTGATATGGCTTTTCCTCGGTTAAATAATCTAAGGTTTTGGCTGCTCCCTCCCGCGTTTATTTTACTTATAAGCTCGGTTCTGGTAGAAGGCGGAGCGGGGACAGGTTGAACCTTGTATCCCCCTCTGAGCG---CGGAGGGTCATTCAGGGTTTTCAGTTGATTTAGCCATTTTTTCTCTGCACTTGGCAGGGGTTTCTTCTATTTTAGGGGCAGTTAACTTTATTACCACTATTTGGAATATGCGGGCCCCGGGGGTTACTTGAGAGCGGCTGAATCTTTTTGTCTGGTCTTTACTTATTACAGCGTTATTGCTGCTGTTGTCACTGCCTGTGCTAGCTGGTGCTCTTACAATGTTGTTAACTGATCGGAATTTTAATACTACTTTTTTTGATCCGGCGGGGGGCGGGGACCCTGTTTTATACCAACACCTGTTC
+>ZSM20110723|brasilensis
+CACGTTGTACATTATCTTTGGGGTTTGATGCGGTTTGGTCGGTGCGGGGTTGTCTTTGTTGATTCGGGTAGAGTTGGGGGCTTCTAGGGTGTTAACCGACCCTCACTTCTACAATGTGGTTGTGACTGCCCATGCTTTCGTTATGATTTTTTTTATGGTTATACCTGTCTTGATCGGGGGGTTTGGTAACTGAATGATCCCGCTTCTGATTGGGGCACCTGATATGGCTTTTCCTCGGTTAAATAACCTAAGGTTTTGGCTGCTCCCTCCCGCGTTTATTTTACTTATAAGCTCGGTTCTGGTAGAAGGCGGAGCGGGGACAGGTTGAACCTTGTATCCCCCTCTGAGCG---CGGAGGGTCATTCAGGGTTTTCAGTTGATTTAGCCATTTTTTCTCTGCACTTGGCAGGGGTCTCTTCTATTTTAGGGGCAGTTAACTTTATTACCACTATTTGGAATATGCGGGCCCCGGGGGTTACTTGAGAGCGGCTGAATCTTTTTGTCTGGTCTTTACTTATTACAGCGTTATTGTTGCTGTTGTCACTGCCTGTGCTAGCTGGTGCTCTTACAATGTTGTTAACTGATCGGAATTTTAATACTACTTTTTTTGATCCGGCGGGGGGCGGGGACCCTGTTTTATACCAACACTTGTTC
+>ZSM20110722|brasilensis
+TACGCTATACATTATCTTTGGGGTTTGATGCGGCTTGGTCGGTGCGGGGTTGTCTTTGTTGATTCGGGTGGAGTTAGGGACTTCTGGGGTGTTAACCGACCCACACTTCTACAATGTGGTAGTGACTGCCCATGCTTTCGTCATGATTTTTTTTATGGTTATACCCGTCTTGATCGGGGGTTTCGGTAATTGAATGATCCCGCTCCTGATTGGGGCACCTGATATGGCCTTTCCCCGGTTAAATAATTTAAGGTTTTGGCTGCTTCCTCCTGCGTTTATTTTACTTATAAGCTCGGTTTTAGTAGAAGGCGGTGCGGGGACAGGCTGAACTTTATACCCCCCCTTGAGCG---CGGAGGGTCACTCAGGGTTTTCAGTTGATTTAGCTATTTTTTCTCTGCACTTGGCGGGGGTCTCATCTATTCTAGGGGCGGTTAACTTCATCACAACTATCTGGAATATGCGGGCCCCAGGGGTTACTTGAGAGCGGTTGAATCTTTTTGTGTGGTCTTTACTCATTACAGCGTTATTGTTGTTGTTGTCACTACCAGTACTGGCTGGTGCTCTTACAATGTTGTTAACTGATCGGAATTTTAATACTACTTTTTTTGATCCAGCGGGGGGTGGGGACCCAGTTTTATATCAACATCTGTTC
+>ZSM20071820|verrucosa
+GACCTTGTATATAGTATTTGGTGTGTTAGCTGGGTTGGTGGGAACTGGCTTATCCTTGTTAATTCGTTTTGAGTTGGGAACAGCATCTGTTTTTATGGATGAGCATTTTTATAATGTAGTTGTCACTGCGCATGCCTTTGTTATGATTTTTTTTATAGTTATGCCTCTTATAATTGGGGGGTTTGGAAACTGAATAGTTCCTTTACTTATTGGTGCCCCCGATATAAGTTTTCCTCGAATAAATAATATAAGATTCTGATTATTGCCGCCCTCATTTATTTTACTTTTATGCTCTGCTATGGTAGAAGGAGGAGCTGGCACTGGGTGAACTGTCTATCCTCCGTTAAGAGGTCCTATTGCCCATGGCGGATCTTCTGTTGACTTAGTAATTTTTTCTTTACATCTGGCTGGGATATCTTCAATCTTGGGAGCTATTAATTTTATTACTACCATTTTTAATATACGGTCTCCTGGGATGACTATAGAGCGCTTGAACTTATTTGTTTGATCCGTATTAGTAACTGCCTTTTTGCTTTTACTTAGACTTCCTGTTCTTGCTGGGGCTATTACAATGCTTTTAACAGATCGAAACTTTAATACTAGGTTTTTTGATCCTGCCGGGGGTGGGGATCCAATTTTATATCAACACTTGTTC
+>ZSM20080176|verrucosa
+GACTTTATATATAGTGTTTGGTGTGTGAGCTGGGTTGGTGGGAACTGGCTTATCCTTGTTAATTCGTTTTGAGTTGGGAACAGCATCTGTTTTTATGGATGAGCATTTTTATAATGTAGTTGTCACTGCACATGCCTTTGTCATGATTTTTTTTATAGTTATGCCTCTTATAATTGGGGGGTTCGGAAATTGAATAGTTCCTTTGCTTATTGGTGCTCCCGATATAAGCTTTCCTCGAATAAACAATATAAGATTCTGATTATTGCCGCCCTCATTTATTTTACTTTTATGCTCTGCTATGGTAGAAGGAGGGGCTGGGACTGGGTGAACTGTTTACCCTCCGTTAAGAGGTCCTATTGCCCATGGCAGGTCTTCTGTTGATTTAGTAATTTTTTCTTTACATCTGGCTGGAATGTCTTCAATCTTGGGAGCTATTAATTTTATTACTACCATTTTTAATATACGGTCTCCTGGGATGACTATAGAACGCTTGAATTTATTTGTTTGATCTGTATTAGTGACTGCCTTTTTGCTTTTACTCAGACTTCCTGTTCTTGCTGGGGCTATTACAATGCTTTTAACAGATCGAAACTTTAATACTAGGTTTTTTGATCCTGCTGGGGGCGGGGATCCAATTTTATACCAACATTTGTTT
+>ZSM20071135|verrucosa
+AACTTTATATATAGTATTTGGTGTGTGAGCTGGGTTGGTGGGAACTGGCTTATCCTTGTTAATTCGTTTTGAGTTGGGAACGGCATCTGTTTTTATGGATGAACATTTTTATAATGTAGTTGTCACTGCGCATGCCTTTGTTATAATTTTTTTTATAGTTATGCCTCTTATAATTGGGGGGTTTGGAAACTGAATAGTTCCTTTACTTATTGGTGCTCCCGATATAAGCTTTCCTCGAATAAATAATATAAGATTCTGATTATTACCGCCATCATTTATTTTACTTTTATGCTCTGCTATGGTAGAAGGAGGAGCTGGGACTGGGTGAACCGTCTATCCTCCGTTAAGAGGTCCTATTGCCCATGGCGGATCTTCTGTTGACTTAGTAATTTTTTCTTTACATCTGGCTGGGATATCTTCAATCTTGGGAGCTATTAATTTTATTACTACCATTTTTAATATACGGTCTCCTGGGATAAATATAGAACGTTTAAACTTATTTGTTTGATCCGTATTAGTGACTGCCTTTTTGCTTTTACTTAGACTTCCTGTTCTTGCTGGGGCCATTACAATGCTTTTAACAGATCGAAACTTTAATACTAGGTTTTTTGATCCTGCTGGGGGTGGGGATCCAATTTTATATCAACATTTGTTC
+>ZSM20100388|verrucosa
+GACTTTGTATATAGTGTTTGGTGTGTGAGCTGGGTTGGTGGGAACTGGTTTATCCTTGTTAGTTCGTTTTGAGCTGGGAACAGCATCTGTTTTTATGGATGAGCATTTTTATAACGTAGTTGTCACTGCGCATGCCTTTGTTATGATTTTTTTTATAGTTATGCCTCTTATAATTGGAGGGTTCGGAAACTGAATAGTTCCTTTACTTATTGGTGCTCCCGATATAAGCTTTCCTCGAATAAACAATATAAGATTCTGATTATTGCCGCCATCATTTATTTTACTTTTATGTTCTGCTATGGTAGAAGGAGGAGCTGGGACTGGGTGAACTGTCTATCCTCCGTTAAGAGGTCCTATTGCCCATGGCGGATCTTCTGTTGACTTAGTGATTTTTTCTTTACATCTGGCTGGGATATCTTCAATCTTGGGAGCTATTAATTTTATTACTACCATTTTTAATATACGGTCTCCTGGGATGACTATAGAACGCTTGAACTTATTTGTTTGATCTGTATTAGTAACTGCCTTTTTGCTTTTACTTAGACTTCCTGTTCTTGCTGGGGCCATTACAATGCTTTTAACAGATCGAAACTTTAATACTAGGTTTTTTGATCCTGCTGGGGGCGGGGATCCAATTTTATACCAACATTTGTTC
+>ZSM20100389|verrucosa
+GACTTTGTATATAGTGTTTGGTGTGTGAGCTGGGTTGGTGGGAACTGGTTTATCCTTGTTAGTTCGTTTTGAGCTGGGAACAGCATCTGTTTTTATGGATGAGCATTTTTATAACGTAGTTGTCACTGCGCATGCCTTTGTTATGATTTTTTTTATAGTTATGCCTCTTATAATTGGAGGGTTCGGAAACTGAATAGTTCCTTTACTTATTGGTGCTCCCGATATAAGCTTTCCTCGAATAAACAATATAAGATTCTGATTATTGCCGCCATCATTTATTTTACTTTTATGTTCTGCTATGGTAGAAGGAGGAGCTGGGACTGGGTGAACTGTCTATCCTCCGTTAAGAGGTCCTATTGCCCATGGCGGATCTTCTGTTGACTTAGTGATTTTTTCTTTACATCTGGCTGGGATATCTTCAATCTTGGGAGCTATTAATTTTATTACTACCATTTTTAATATACGGTCTCCTGGGATGACTATAGAACGCTTGAACTTATTTGTTTGATCTGTATTAGTAACTGCCTTTTTGCTTTTACTTAGACTTCCTGTTCTTGCTGGGGCCATTACAATGCTTTTAACAGATCGAAACTTTAATACTAGGTTTTTTGATCCTGCTGGGGGCGGGGATCCAATTTTATACCAACATTTGTTC
+>ZSM20100390|verrucosa
+GACTTTGTATATAGTGTTTGGTGTGTGAGCTGGGTTGGTGGGAACTGGTTTATCCTTGTTAGTTCGTTTTGAGCTGGGAACAGCATCTGTTTTTATGGATGAGCATTTTTATAACGTAGTTGTCACTGCGCATGCCTTTGTTATGATTTTTTTTATAGTTATGCCTCTTATAATTGGAGGGTTCGGAAACTGAATAGTTCCTTTACTTATTGGTGCTCCCGATATAAGCTTTCCTCGAATAAACAATATAAGATTCTGATTATTGCCGCCATCATTTATTTTACTTTTATGTTCTGCTATGGTAGAAGGAGGAGCTGGGACTGGGTGAACTGTCTATCCTCCGTTAAGAGGTCCTATTGCCCATGGCGGATCTTCTGTTGACTTAGTGATTTTTTCTTTACATCTGGCTGGGATATCTTCAATCTTGGGAGCTATTAATTTTATTACTACCATTTTTAATATACGGTCTCCTGGGATGACTATAGAACGCTTGAACTTATTTGTTTGATCTGTATTAGTAACTGCCTTTTTGCTTTTACTTAGACTTCCTGTTCTTGCTGGGGCCATTACAATGCTTTTAACAGATCGAAACTTTAATACTAGGTTTTTTGATCCTGCTGGGGGCGGGGATCCAATTTTATACCAACATTTGTTC
+>ZSM20100391|verrucosa
+GACCTTATATATAGTATTTGGTGTGTGAGCTGGGTTGGTGGGAACTGGCCTATCCTTGTTGATTCGTTTTGAGTTGGGAACAGCATCTGTTTTTATAGATGAGCATTTTTATAATGTAGTTGTCACTGCGCATGCCTTTGTTATGATTTTTTTTATAGTTATGCCTCTTATAATTGGGGGTTTTGGAAACTGAATAGTTCCTTTACTTATTGGTGCTCCCGATATAAGCTTTCCTCGAATAAATAATATAAGATTCTGATTATTGCCGCCATCATTTATTTTACTTTTATGCTCTGCTATGGTAGAAGGAGGAGCTGGGACTGGGTGAACTGTCTATCCTCCGTTAAGAGGTCCTATCGCCCATGGCGGATCTTCTGTTGACTTAGTAATTTTTTCTTTACATCTGGCTGGGATATCTTCAATCTTGGGAGCTATTAATTTTATTACTACCATTTTTAATATGCGGTCTCCTGGGATGACTATAGAACGCTTGAATTTATTTGTTTGATCCGTATTAGTGACTGCCTTTTTGCTTTTACTTAGACTTCCTGTTCTTGCTGGGGCCATTACAATGCTTTTAACAGATCGAAACTTTAATACTAGGTTTTTTGATCCTGCTGGAGGTGGGGATCCAATTTTATATCAACATTTGTTC
+>ZSM20081013|kepii
+GACTTTGTATATAGTATTTGGTGTATGAGCTGGGTTAGTAGGAACAGGACTTTCTTTGTTAATCCGATTTGAGTTAGGTACAGCATCAGTGTTTATAGATGAGCATTTTTATAATGTCATTGTCACAGCGCATGCCTTTGTAATAATCTTTTTCATAGTAATGCCTCTAATGATTGGGGGTTTTGGGAATTGGATGGTTCCTTTATTAATTGGAGCTCCGGATATAAGGTTTCCTCGAATAAATAATATGAGATTTTGGCTGCTTCCCCCCTCATTTCTGTTACTGTTAAGGTCAGTTATGGTAGAAGGGGGAGCAGGCACAGGTTGGACGGTATACCCTCCTTTGAGGGGCCCAATTGCTCATGGTGGTTCTTCTGTTGATTTGGTAATTTTCTCCTTGCATCTAGCTGGGATGTCTTCTATTTTAGGGGCTATTAACTTTATTACAACTATTTATAACATGCGTTCTCCAGGTATAACAATAGAACGTTTAGATTTATTTGTTTGGTCCGTTCTAGTTACTGCGTTTTTATTACTTTTAAGTCTTCCCGTTCTAGCAGGGGCCATTACCATGCTTTTAACGGATCGGAATTTTAACACTAGCTTTTTTGATCCGGCTGGAGGGGGAGATCCAATTCTATACCAGCATTTGTTT
+>ZSM20090197|joni
+CACTTTGTATATAGTGTTTGGTGTTTGAGCAGGTCTTGTGGGTACAGGTCTGTCTTTATTAATTCGTTTCGAACTAGGAACAGCGTCTGTCTTCATAGACGAGCATTTCTATAATGTTGTTGTCACGGCTCATGCTTTTGTAATAATTTTTTTTATAGTGATGCCTTTAATAATTGGGGGTTTTGGAAATTGAATGGTTCCTTTACTAATCGGGGCTCCTGATATAAGTTTTCCTCGTATAAACAATATAAGTTTTTGGCTACTTCCTCCCTCTTTTGTTTTGTTGTTATGCTCAGCGATAGTAGAAGGAGGCGCTGGAACTGGTTGAACAGTATACCCTCCTCTTAGAGGTCCCGTTGGTCATGGAGGCTCTTCTGTAGATTTGGTGATTTTTTCTCTTCATTTGGCAGGGATATCTTCTATTTTGGGGGCTATCAATTTTATTACTACGATTTTCAATATACGGTCTCCAGGGATAACTATGGAACGATTGAATTTATTTGTCTGATCAGTTTTAGTTACCGCATTTCTTTTATTATTAAGACTTCCAGTCCTAGCTGGGGCAATTACTATGCTTCTTACAGATCGGAACTTTAATACAAGGTTCTTTGATCCAGCCGGGGGTGGGGACCCTATTTTATATCAACACTTGTTC
+>SICBC2010KJ01D05|joni
+CACTTTGTATATAGTGTTTGGTGTTTGGGCAGGTCTTGTGGGTACAGGTCTCTCTTTATTAATTCGTTTCGAACTAGGGACAGCGTCTGTCTTCATAGACGAGCATTTCTATAATGTTGTTGTCACGGCTCATGCTTTTGTAATAATTTTTTTTATAGTGATGCCTTTAATAATTGGAGGTTTTGGTAATTGAATGGTTCCTTTATTAATCGGGGCTCCTGATATAAGTTTTCCTCGTATAAACAATATGAGTTTTTGGCTACTTCCTCCCTCTTTTGTTTTGTTGTTATGCTCAGCGATAGTAGAAGGAGGCGCTGGAACTGGTTGAACAGTATACCCTCCTCTTAGAGGTCCGGTTGGTCATGGGGGTTCTTCTGTAGATTTAGTGATTTTTTCTCTTCATTTGGCAGGAATATCTTCTATTTTAGGGGCTATTAATTTTATTACTACGATTTTCAACATACGGTCTCCAGGGATAACTATGGAGCGATTGAATTTATTTGTCTGATCAGTTTTAGTTACCGCATTTCTTTTATTATTAAGACTTCCAGTCTTAGCTGGGGCAATTACTATGCTTCTTACAGATCGGAACTTTAATACAAGGTTCTTTGATCCGGCCGGGGGTGGGGACCCTATTTTATATCAACACTTGTTC
+>SICBC2010KJ01C08|joni
+CACTTTGTATATAGTGTTTGGTGTTTGAGCAGGTCTTGTGGGTACAGGTCTGTCTTTATTAATTCGTTTTGAACTAGGAACAGCGTCTGTCTTCATAGACGAGCATTTCTACAATGTTGTTGTCACGGCTCATGCTTTTGTAATAATTTTTTTTATAGTGATGCCTTTAATAATTGGGGGTTTTGGTAACTGAATGGTTCCTTTACTAATCGGGGCTCCTGATATAAGTTTTCCTCGTATAAATAATATAAGTTTTTGGCTACTTCCTCCCTCTTTTGTTTTGTTGTTATGCTCAGCGATAGTAGAAGGAGGCGCTGGAACTGGTTGAACAGTATATCCCCCTCTTAGAGGTCCGGTCGGTCATGGAGGTTCCTCTGTAGATTTGGTGATTTTTTCTCTTCATTTGGCAGGGATATCTTCTATTTTAGGGGCTATTAATTTTATCACTACGATTTTCAACATACGGTCTCCAGGAATAACTATGGAACGATTGAATTTGTTTGTCTGATCAGTTTTAGTTACCGCATTTCTTTTATTATTAAGACTTCCAGTTCTAGCCGGGGCAATTACTATGCTTCTTACAGATCGGAACTTTAATACAAGGTTCTTTGATCCAGCCGGGGGTGGGGACCCTATTTTATATCAACACTTGTTC
+>AMC476062001|neridae
+AACTTTGTACATGGTTTTTGGAGTTTGGGCTGGTCTTGTGGGGACCGGCTTGTCTTTATTAATTCGATTTGAGTTAGGGACGGCAAGAGTTTTTATGGATGAACACTTTTATAATGTGATTGTGACGGCTCATGCTTTTGTTATAATTTTCTTTATGGTTATACCCTTGATGATTGGAGGGTTTGGGAATTGAATAGTCCCTCTGTTAATTGGGGCCCCAGACATAAGGTTTCCACGTATAAACAATATAAGTTTCTGACTACTACCTCCTTCGTTCTTGCTTCTTCTTTGTTCTGCAATGGTTGAAGGAGGAGCTGGAACAGGTTGAACTGTTTACCCTCCTCTTAGTGGACCTATTGCGCATGGTGGGTCTTCTGTTGACTTGGTAATCTTTTCGTTACACTTGGCTGGTATATCTTCCATTTTAGGAGCTATTAACTTTATTACAACTATCTTCAACATACGATCCCCAGGAATGTCTATGGAGCGACTGAATTTATTTGTATGATCAGTTTTAGTTACGGCTTTTTTATTATTATTGAGTTTACCTGTCCTTGCTGGTGCCATTACAATGCTGTTGACTGATCGGAATTTTAATACCAGCTTTTTTGACCCTGCCGGAGGGGGGGATCCTATTTTGTATCAACATCTTTTC
+>ZSM20100595|wiggi
+TACTTTATACATGATTTTTGGGGTATGATGTGGCCTGGTAGGGACTGGTCTATCCCTATTAATTCGTTTCGAACTGGGAACTGCTACAGTTTTTATAGATGAGCACTTTTACAATGTTGTTGTAACCGCTCATGCTTTTGTAATAATTTTTTTTATGGTTATGCCTCTTATGATTGGGGGTTTTGGAAACTGAATAGTTCCTCTACTGATTGGAGCTCCTGATATAAGATTTCCTCGTATGAACAACATAAGTTTTTGACTATTGCCTCCTTCTTTTATTCTTTTGCTGTGCTCTGCTATGGTTGAGGGGGGAGCAGGGACTGGATGGACAGTTTATCCACCTCTTAGAGGCCCAATTGCCCATGGAGGTTCTTCTGTTGACTTAGTTATTTTTTCCCTTCATTTGGCAGGGATGTCTTCTATTTTAGGGGCAATTAATTTTATCACAACTATTTTTAATATACGATCTCCGGGTATAAGAATGGAACGTTTAAATTTGTTTGTTTGATCAGTATTAGTGACTGCCTTTTTGCTTTTACTAAGTTTACCTGTCTTGGCTGGTGCTATCACCATGCTTTTAACCGATCGAAATTTCAACACTAGCTTCTTTGATCCGGCAGGAGGGGGGGATCCTATTTTGTATCAACATCTATTT
+>ZSM20100596|wiggi
+TACTTTATACATGATTTTTGGGGTATGATGTGGCCTGGTAGGGACTGGTCTATCCTTATTAATTCGTTTCGAACTAGGAACTGCTACAGTTTTTATAGATGAGCACTTTTACAATGTTGTTGTAACCGCTCATGCTTTTGTAATAATTTTTTTTATGGTTATGCCTCTTATGATTGGGGGTTTCGGAAACTGAATAGTTCCTCTACTGATTGGAGCTCCTGATATAAGATTTCCTCGCATAAACAACATAAGTTTTTGACTGTTGCCTCCTTCTTTTATTCTTTTGCTGTGTTCCGCTATGGTTGAGGGGGGAGCAGGGACTGGATGGACAGTTTATCCGCCTCTTAGAGGCCCAATTGCCCATGGAGGTTCTTCTGTTGACTTAGTTATTTTTTCCCTTCATTTGGCAGGGATGTCTTCTATTTTAGGGGCAATTAATTTTATTACAACTATTTTTAATATACGATCTCCGGGTATAAGAATGGAACGTTTAAATTTGTTTGTTTGATCAGTATTAGTGACTGCCTTTTTGCTTTTACTAAGTTTACCTGTCTTGGCTGGTGCTATTACCATGCTTTTAACCGATCGAAATTTCAACACTAGCTTCTTTGATCCGGCAGGAGGGGGGGATCCTATTTTGTATCAACATCTATTC
+>ZSM20100597|wiggi
+TACTTTATACATGATTTTTGGGGTGTGATGTGGCCTGGTAGGGACTGGTCTATCCCTATTAATTCGTTTCGAACTAGGAACTGCTACAGTTTTTATAGATGAGCACTTTTACAATGTTGTTGTAACCGCTCATGCTTTTGTAATAATTTTTTTTATGGTTATGCCTCTTATGATTGGGGGTTTCGGAAACTGAATAGTTCCTCTACTGATTGGAGCTCCTGACATAAGATTTCCTCGTATAAACAACATAAGTTTTTGACTGTTGCCTCCTTCTTTTATTCTTTTGCTGTGTTCCGCTATGGTTGAGGGGGGAGCAGGGACTGGATGGACAGTTTATCCGCCTCTTAGAGGCCCAATTGCCCATGGAGGTTCTTCTGTTGACTTAGTTATTTTTTCCCTTCATTTGGCAGGGATGTCTTCTATTTTAGGGGCAATTAATTTTATCACAACTATTTTTAATATACGATCTCCGGGTATAAGAATGGAACGTTTAAATTTGTTTGTTTGATCAGTATTAGTGACTGCCTTTTTGCTTTTACTAAGTTTACCTGTCTTGGCTGGTGCTATTACCATGCTTTTAACCGATCGAAATTTCAACACTAGCTTCTTTGATCCGGCAGGAGGGGGGGATCCTATTTTGTATCAACATCTATTC
+>ZSM20100603|wiggi
+TACTTTATACATGATTTTTGGGGTATGATGTGGCCTGGTAGGGACTGGTCTATCCCTATTAATTCGTTTCGAACTAGGAACTGCTACAGTTTTTATAGATGAGCACTTTTACAATGTTGTTGTAACCGCTCATGCTTTTGTAATAATTTTTTTTATGGTTATGCCTCTTATGATTGGGGGTTTCGGAAACTGAATAGTTCCTCTACTGATTGGAGCTCCTGATATAAGATTTCCTCGTATAAACAACATAAGTTTTTGACTGTTGCCTCCTTCTTTTATTCTTTTGCTGTGTTCCGCTATGGTTGAGGGGGGAGCAGGGACTGGATGGACAGTTTATCCGCCTCTTAGAGGCCCAATTGCCCATGGAGGTTCTTCTGTTGACTTAGTTATTTTTTCCCTTCATTTGGCAGGGATGTCTTCTATTTTAGGGGCAATTAATTTTATCACAACTATTTTTAATATACGATCTCCAGGTATAAGAATGGAACGTTTAAATTTGTTTGTTTGATCAGTATTAGTGACTGCCTTTTTGCTTTTACTAAGTTTACCTGTCTTGGCTGGTGCTATTACCATGCTTTTAACCGATCGAAATTTCAACACTAGCTTCTTTGATCCGGCAGGAGGGGGGGATCCTATTTTGTATCAACATCTATTC
+>ZSM20100592|wenzli
+AACTTTATACATAATTTTTGGTGTTTGGTGTGGGTTAGTTGGAACTGGGCTTTCTCTGCTTATTCGATTTGAGCTAGGAACTGCCTCTGTCTTAATAGATGAACATTTTTATAATGTGATTGTTACAGCTCATGCATTTGTCATAATTTTTTTCATAGTTATACCCTTAATAATTGGAGGATTTGGGAATTGAATAGTTCCATTATTAATTGGAGCTGTGGATATAAGCTTTCCACGTATAAATAATATAAGATTTTGATTGCTTCCCCCTTCCTTTATTTTTCTACTGTGTTCATCTATAATTGAAGGAGGTGCTGGAACTGGGTGAACAGTATATCCTCCTCTGAGGGGTCCTATTGCTCATGCTGGGTCTTCAGTCGATCTTGTAATTTTTTCTTTACACTTGGCAGGGATATCTTCTATTTTAGGTGCTATTAATTTTATTACTACTATTTTTAATATACGATCTCCTGGGGTAGGAATAGAACGTCTAAATTTGTTTGTTTGATCTGTATTAGTAACAGCTTTTCTTTTACTTCTAAGACTTCCTGTTTTAGCAGGAGCTATTACTATGCTATTAACTGATCGTAATATTAATACAACATTCTTTGACCCCGCAGGAGGAGGTGACCCTATTTTATACCAACATTTGTTT
+>ZSM20081014|wenzli
+AACTTTATATATAATTTTTGGTGTTTGATGTGGATTAGTTGGAACTGGGCTTTCATTACTCATTCGATTTGAGTTAGGGACTGCTTCCGTTTTAATAGACGAGCACTTTTATAATGTGATTGTAACTGCTCATGCATTCGTAATAATTTTTTTTATGGTTATACCCCTAATAATTGGAGGATTTGGAAATTGAATAGTACCTTTATTAATTGGTGCCGTCGATATAAGGTTTCCCCGTATAAATAATATAAGATTCTGGTTACTTCCTCCATCATTTATCTTTCTTCTATGCTCTTCTATAGTCGAAGGAGGGGCTGGGACAGGTTGAACAGTATATCCTCCTTTAAGAGGATCTATTGCTCATGCTGGATCTTCAGTAGATCTAGTAATTTTTTCTCTACATTTAGCAGGTATGTCTTCTATTCTTGGTGCAATTAATTTTATTACTACTATTTTTAATATGCGGTCTCCAGGAATTACCCTAGAACGCTTAAATTTGTTCGTTTGGTCGGTATTGGTAACAGCTTTTCTGTTACTTTTAAGATTACCTGTTTTAGCTGGAGCAATTACTATGTTGTTAACTGATCGTAACATTAATACGACTTTCTTTGATCCTGCAGGAGGAGGGGATCCTATTTTATACCAACACTTATTT
+>ZSM20100379|wenzli
+AACTTTATATATAATTTTTGGTGTTTGATGTGGATTAGTTGGAACTGGGCTTTCATTACTCATTCGATTTGAGTTAGGGACTGCTTCCGTTTTAATAGACGAGCACTTTTATAATGTGATTGTAACTGCTCATGCATTCGTAATAATTTTTTTTATGGTTATACCCCTAATAATTGGAGGATTTGGAAATTGAATAGTACCTTTGTTAATTGGTGCCGTCGATATAAGGTTTCCTCGTATAAATAATATAAGATTCTGGTTACTTCCTCCATCATTTATCTTTCTTCTATGCTCTTCTATAGTCGAAGGAGGAGCTGGGACAGGTTGAACAGTATATCCTCCTTTAAGAGGATCTATTGCTCATGCTGGATCTTCAGTAGATCTAGTAATTTTTTCTCTACACTTAGCAGGTATGTCTTCTATTCTTGGTGCAATTAATTTTATTACTACTATTTTTAATATGCGGTCTCCAGGAATCACCCTAGAACGCTTAAATTTGTTCGTTTGATCGGTATTGGTAACAGCTTTTTTGTTACTTTTAAGATTACCTGTTTTAGCTGGAGCAATTACTATGTTGTTAACTGATCGTAACATTAATACGACTTTCTTTGATCCTGCAGGAGGAGGGGATCCTATTTTATACCAACATTTATTT
+>ZSM20071133|peteryalli
+AACCTTATACATGTTGTTTGGAATTTGGTGCGGATTAGTTGGGACAGCTTTGTCACTGCTGATTCGGATTGAGCTCGGCGTGACTTCTGTGTTTTCAGATAGTCACTTTTACAATGTTATTGTTACTGCGCATGCTTTCACTATAATTTTTTTTATGGTTATGCCAATTATAATTGGCGGGTTCGGCAATTGAATGGTCCCCTTGCTTCTCGGTGCCCCTGATATGAGATTCCCTCGAATAAACAATCTAAGATTTTGATTACTACCTCCATCTTTTCTACTTCTCCTGTGTAGAAGTATAGTAGAAGGAGGCGCAGGGACTGGGTGAACAGTTTACCCCCCTCTTAGTGGTCCAACAGGACACAGAAGTTCATCAGTCGACTTAGTAATTTTCTCCCTTCATTTAGCTGGGGTTTCTTCTATTTTAGGGGCCATTAATTTTATTACGACTATTTACAATATACGAATTCCCGGAGTTACAATAGATCGGCTGAACTTATTTTGTTGGTCGATTTTGGTGACAGCGTTTCTTCTCTTACTGAGTCTTCCAGTTCTCGCCGGAGCTATTACTATACTTTTGACTGACCGGAACTTCAATACTAGATTTTTTGATCCAGCTGGGGGAGGCGACCCCATTTTATACCAGCATTTATTT
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/Pontohedyle_COI.fas	Sun Jan 29 16:25:48 2023 +0000
@@ -0,0 +1,54 @@
+>ZSM20071381|milaschewitchii
+NNNTCTATATCTTGTTTTTGGAGTCTGGTGCGGTTTAGTGGGTACAGGGCTTTCCCTTCTTATCCGGTTTGAGCTAGGCACGTCCTCCGTCTTCATAGACGAGCACTTTTATAATGTTATTGTGACGGCCCATGCATTTGTTATAATTTTTTTTATGGTCATGCCACTAATAATTGGTGGTTTTGGGAATTGAATGGTTCCCCTGTTAATTGGGGCCCCCGACATAAGGTTTCCTCGAATAAATAACATAAGATTTTGGTTGCTTCCCCCTAGGTTTGTTCTTTTGTTGAGCTCAAGATTAGTTGAGGGGGGTGCGGGTACAGGGTGAACTGTCTATCCGCCCCTAAGCGGGTCTGTTGCGCACGGAGGAGCCTCGGTAGACTTAGTTATTTTTTCACTACATTTGGCGGGAATGTCTTCTATTCTTGGGGCTATCAACTTCATTACAACAATCTTTAATATGCGGTCCCCCGGGCTAACAATGGAACGGCTGAGGTTGTTTGTTTGGTCTGTTCTAGTCACGGCTTTTTTACTTCTGCTAAGACTGCCTGTGCTAGCAGGGGCTATCACAATGCTTTTAACTGATCGTAACTTTAACACTAGTTTTTTTGACCCGGCCGGAGGGGGGGACCCTATTTTATACCAACACCTTTTC
+>ZSM20080925|milaschewitchii
+NNNTCTATATCTTGTTTTTGGAGTCTGGTGCGGTTTAGTAGGTACAGGGCTTTCCCTTCTTATCCGGTTTGAGCTAGGCACGTCCTCCGTGTTCATAGACGAGCACTTTTATAATGTTATTGTGACGGCCCATGCATTTGTTATAATTTTTTTTATGGTCATGCCACTAATAATTGGTGGTTTTGGGAATTGAATGGTTCCCCTGTTAATTGGGGCCCCCGACATAAGGTTTCCTCGGATAAACAACATAAGGTTTTGGTTGCTTCCCCCTAGGTTTGTTCTTTTGTTGAGCTCAAGATTAGTTGAGGGGGGTGCGGGTACAGGGTGAACTGTCTATCCGCCCCTAAGCGGGTCTGTTGCGCACGGAGGAGCCTCGGTAGACTTGGTTATTTTTTCACTACATTTGGCGGGAATGTCTTCTATTCTTGGGGCTATCAACTTCATTACAACAATCTTTAATATGCGGTCCCCCGGGCTAACAATGGAGCGGCTGAGGTTGTTTGTTTGGTCTGTTCTAGTCACGGCTTTTTTACTTCTGCTAAGATTGCCTGTGCTAGCAGGGGCTATCACAATGCTTTTAACTGATCGTAACTTTAACACTAGTTTTTTTGACCCGGCCGGAGGGGGGGACCCTATTTTATACCAACACCTTTTC
+>ZSM20080953|milaschewitchii
+AACTCTATATCTTGTTTTTGGAGTCTGGTGCGGTTTAGTGGGTACAGGGCTTTCTCTTCTTATCCGGTTTGAGCTAGGCACGTCCTCCGTCTTCATAGACGAGCACTTTTATAATGTTATTGTAACGGCCCATGCATTTGTTATAATTTTTTTTATGGTCATGCCACTAATAATTGGCGGTTTTGGTAATTGAATGGTTCCCCTGTTAATTGGGGCCCCCGACATAAGGTTTCCTCGAATAAATAACATAAGGTTTTGGTTGCTTCCCCCTAGGTTTGTTCTTTTGTTAAGCTCAAGATTAGTTGAGGGGGGCGCGGGTACAGGGTGAACTGTCTATCCGCCCCTAAGCGGGTCTGTTGCGCACGGAGGAGCCTCGGTAGACTTAGTTATTTTTTCACTACATTTGGCGGGAATGTCTTCTATTCTTGGGGCTATCAACTTCATTACAACAATCTTTAATATACGGTCCCCCGGGCTAACAATGGAACGGCTGAGGTTGTTTGTTTGGTCTGTTCTAGTCACGGCTTTTTTACTTCTGCTAAGATTGCCCGTGCTAGCAGGGGCTATCACAATGCTTTTAACTGATCGTAACTTTAACACTAGTTTTTTTGACCCGGCCGGAGGGGGGGACCCTATTTTATACCAACACCTTTTC
+>SICBC2010KJ01B09|brasilensis
+CACGTTGTACATTATCTTTGGGGTTTGATGCGGTTTGGTCGGTGCGGGGTTGTCTTTGTTGATTCGGGTAGAGTTGGGGACTTCTAGGGTGTTAACCGACCCTCACTTCTACAATGTGGTTGTGACTGCCCATGCTTTCGTTATGATTTTTTTTATGGTTATACCTGTCTTGATCGGGGGTTTTGGTAACTGAATGATCCCGCTTCTGATTGGGGCACCTGATATGGCTTTTCCTCGGTTAAATAACCTAAGGTTTTGGCTGCTCCCGCCTGCGTTTATTTTACTTATAAGCTCGGTTTTGGTAGAAGGCGGAGCGGGGACAGGTTGAACCTTGTATCCCCCTCTGAGCG---CGGAGGGGCATTCAGGATTTTCAGTTGATTTAGCCATTTTTTCTCTGCACTTGGCAGGGGTCTCTTCTATCTTAGGGGCAGTTAATTTTATTACCACTATTTGGAATATGCGGGCCCCGGGGGTTACTTGAGAGCGGCTGAATCTTTTTGTCTGGTCTTTACTTATTACAGCGTTATTGTTGCTGTTGTCACTGCCTGTGCTAGCTGGTGCTCTTACAATGTTGTTAACTGATCGGAATTTTAATACTACTTTTTTTGATCCGGCGGGGGGCGGGGACCCTGTTTTATACCAACACCTGTTC
+>SICBC2010KJ01C09|brasilensis
+CACGTTGTACATTATCTTTGGGGTTTGATGTGGTTTGGTCGGTGCGGGGTTGTCTTTGTTGATTCGGGTAGAGTTGGGGACTTCTAGAGTGTTAACCGACCCTCACTTCTACAATGTGGTTGTGACTGCCCATGCTTTCGTTATGATTTTTTTTATGGTTATACCTGTCTTGATTGGGGGTTTTGGTAACTGAATGATCCCGCTTCTGATTGGGGCACCTGATATGGCTTTTCCTCGGTTAAATAATCTAAGGTTTTGGCTGCTCCCTCCCGCGTTTATTTTACTTATAAGCTCGGTTCTGGTAGAAGGCGGAGCGGGGACAGGTTGAACCTTGTATCCCCCTCTGAGCG---CGGAGGGTCATTCAGGGTTTTCAGTTGATTTAGCCATTTTTTCTCTGCACTTGGCAGGGGTTTCTTCTATTTTAGGGGCAGTTAACTTTATTACCACTATTTGGAATATGCGGGCCCCGGGGGTTACTTGAGAGCGGCTGAATCTTTTTGTCTGGTCTTTACTTATTACAGCGTTATTGCTGCTGTTGTCACTGCCTGTGCTAGCTGGTGCTCTTACAATGTTGTTAACTGATCGGAATTTTAATACTACTTTTTTTGATCCGGCGGGGGGCGGGGACCCTGTTTTATACCAACACCTGTTC
+>ZSM20110723|brasilensis
+CACGTTGTACATTATCTTTGGGGTTTGATGCGGTTTGGTCGGTGCGGGGTTGTCTTTGTTGATTCGGGTAGAGTTGGGGGCTTCTAGGGTGTTAACCGACCCTCACTTCTACAATGTGGTTGTGACTGCCCATGCTTTCGTTATGATTTTTTTTATGGTTATACCTGTCTTGATCGGGGGGTTTGGTAACTGAATGATCCCGCTTCTGATTGGGGCACCTGATATGGCTTTTCCTCGGTTAAATAACCTAAGGTTTTGGCTGCTCCCTCCCGCGTTTATTTTACTTATAAGCTCGGTTCTGGTAGAAGGCGGAGCGGGGACAGGTTGAACCTTGTATCCCCCTCTGAGCG---CGGAGGGTCATTCAGGGTTTTCAGTTGATTTAGCCATTTTTTCTCTGCACTTGGCAGGGGTCTCTTCTATTTTAGGGGCAGTTAACTTTATTACCACTATTTGGAATATGCGGGCCCCGGGGGTTACTTGAGAGCGGCTGAATCTTTTTGTCTGGTCTTTACTTATTACAGCGTTATTGTTGCTGTTGTCACTGCCTGTGCTAGCTGGTGCTCTTACAATGTTGTTAACTGATCGGAATTTTAATACTACTTTTTTTGATCCGGCGGGGGGCGGGGACCCTGTTTTATACCAACACTTGTTC
+>ZSM20110722|brasilensis
+TACGCTATACATTATCTTTGGGGTTTGATGCGGCTTGGTCGGTGCGGGGTTGTCTTTGTTGATTCGGGTGGAGTTAGGGACTTCTGGGGTGTTAACCGACCCACACTTCTACAATGTGGTAGTGACTGCCCATGCTTTCGTCATGATTTTTTTTATGGTTATACCCGTCTTGATCGGGGGTTTCGGTAATTGAATGATCCCGCTCCTGATTGGGGCACCTGATATGGCCTTTCCCCGGTTAAATAATTTAAGGTTTTGGCTGCTTCCTCCTGCGTTTATTTTACTTATAAGCTCGGTTTTAGTAGAAGGCGGTGCGGGGACAGGCTGAACTTTATACCCCCCCTTGAGCG---CGGAGGGTCACTCAGGGTTTTCAGTTGATTTAGCTATTTTTTCTCTGCACTTGGCGGGGGTCTCATCTATTCTAGGGGCGGTTAACTTCATCACAACTATCTGGAATATGCGGGCCCCAGGGGTTACTTGAGAGCGGTTGAATCTTTTTGTGTGGTCTTTACTCATTACAGCGTTATTGTTGTTGTTGTCACTACCAGTACTGGCTGGTGCTCTTACAATGTTGTTAACTGATCGGAATTTTAATACTACTTTTTTTGATCCAGCGGGGGGTGGGGACCCAGTTTTATATCAACATCTGTTC
+>ZSM20071820|verrucosa
+GACCTTGTATATAGTATTTGGTGTGTTAGCTGGGTTGGTGGGAACTGGCTTATCCTTGTTAATTCGTTTTGAGTTGGGAACAGCATCTGTTTTTATGGATGAGCATTTTTATAATGTAGTTGTCACTGCGCATGCCTTTGTTATGATTTTTTTTATAGTTATGCCTCTTATAATTGGGGGGTTTGGAAACTGAATAGTTCCTTTACTTATTGGTGCCCCCGATATAAGTTTTCCTCGAATAAATAATATAAGATTCTGATTATTGCCGCCCTCATTTATTTTACTTTTATGCTCTGCTATGGTAGAAGGAGGAGCTGGCACTGGGTGAACTGTCTATCCTCCGTTAAGAGGTCCTATTGCCCATGGCGGATCTTCTGTTGACTTAGTAATTTTTTCTTTACATCTGGCTGGGATATCTTCAATCTTGGGAGCTATTAATTTTATTACTACCATTTTTAATATACGGTCTCCTGGGATGACTATAGAGCGCTTGAACTTATTTGTTTGATCCGTATTAGTAACTGCCTTTTTGCTTTTACTTAGACTTCCTGTTCTTGCTGGGGCTATTACAATGCTTTTAACAGATCGAAACTTTAATACTAGGTTTTTTGATCCTGCCGGGGGTGGGGATCCAATTTTATATCAACACTTGTTC
+>ZSM20080176|verrucosa
+GACTTTATATATAGTGTTTGGTGTGTGAGCTGGGTTGGTGGGAACTGGCTTATCCTTGTTAATTCGTTTTGAGTTGGGAACAGCATCTGTTTTTATGGATGAGCATTTTTATAATGTAGTTGTCACTGCACATGCCTTTGTCATGATTTTTTTTATAGTTATGCCTCTTATAATTGGGGGGTTCGGAAATTGAATAGTTCCTTTGCTTATTGGTGCTCCCGATATAAGCTTTCCTCGAATAAACAATATAAGATTCTGATTATTGCCGCCCTCATTTATTTTACTTTTATGCTCTGCTATGGTAGAAGGAGGGGCTGGGACTGGGTGAACTGTTTACCCTCCGTTAAGAGGTCCTATTGCCCATGGCAGGTCTTCTGTTGATTTAGTAATTTTTTCTTTACATCTGGCTGGAATGTCTTCAATCTTGGGAGCTATTAATTTTATTACTACCATTTTTAATATACGGTCTCCTGGGATGACTATAGAACGCTTGAATTTATTTGTTTGATCTGTATTAGTGACTGCCTTTTTGCTTTTACTCAGACTTCCTGTTCTTGCTGGGGCTATTACAATGCTTTTAACAGATCGAAACTTTAATACTAGGTTTTTTGATCCTGCTGGGGGCGGGGATCCAATTTTATACCAACATTTGTTT
+>ZSM20071135|verrucosa
+AACTTTATATATAGTATTTGGTGTGTGAGCTGGGTTGGTGGGAACTGGCTTATCCTTGTTAATTCGTTTTGAGTTGGGAACGGCATCTGTTTTTATGGATGAACATTTTTATAATGTAGTTGTCACTGCGCATGCCTTTGTTATAATTTTTTTTATAGTTATGCCTCTTATAATTGGGGGGTTTGGAAACTGAATAGTTCCTTTACTTATTGGTGCTCCCGATATAAGCTTTCCTCGAATAAATAATATAAGATTCTGATTATTACCGCCATCATTTATTTTACTTTTATGCTCTGCTATGGTAGAAGGAGGAGCTGGGACTGGGTGAACCGTCTATCCTCCGTTAAGAGGTCCTATTGCCCATGGCGGATCTTCTGTTGACTTAGTAATTTTTTCTTTACATCTGGCTGGGATATCTTCAATCTTGGGAGCTATTAATTTTATTACTACCATTTTTAATATACGGTCTCCTGGGATAAATATAGAACGTTTAAACTTATTTGTTTGATCCGTATTAGTGACTGCCTTTTTGCTTTTACTTAGACTTCCTGTTCTTGCTGGGGCCATTACAATGCTTTTAACAGATCGAAACTTTAATACTAGGTTTTTTGATCCTGCTGGGGGTGGGGATCCAATTTTATATCAACATTTGTTC
+>ZSM20100388|verrucosa
+GACTTTGTATATAGTGTTTGGTGTGTGAGCTGGGTTGGTGGGAACTGGTTTATCCTTGTTAGTTCGTTTTGAGCTGGGAACAGCATCTGTTTTTATGGATGAGCATTTTTATAACGTAGTTGTCACTGCGCATGCCTTTGTTATGATTTTTTTTATAGTTATGCCTCTTATAATTGGAGGGTTCGGAAACTGAATAGTTCCTTTACTTATTGGTGCTCCCGATATAAGCTTTCCTCGAATAAACAATATAAGATTCTGATTATTGCCGCCATCATTTATTTTACTTTTATGTTCTGCTATGGTAGAAGGAGGAGCTGGGACTGGGTGAACTGTCTATCCTCCGTTAAGAGGTCCTATTGCCCATGGCGGATCTTCTGTTGACTTAGTGATTTTTTCTTTACATCTGGCTGGGATATCTTCAATCTTGGGAGCTATTAATTTTATTACTACCATTTTTAATATACGGTCTCCTGGGATGACTATAGAACGCTTGAACTTATTTGTTTGATCTGTATTAGTAACTGCCTTTTTGCTTTTACTTAGACTTCCTGTTCTTGCTGGGGCCATTACAATGCTTTTAACAGATCGAAACTTTAATACTAGGTTTTTTGATCCTGCTGGGGGCGGGGATCCAATTTTATACCAACATTTGTTC
+>ZSM20100389|verrucosa
+GACTTTGTATATAGTGTTTGGTGTGTGAGCTGGGTTGGTGGGAACTGGTTTATCCTTGTTAGTTCGTTTTGAGCTGGGAACAGCATCTGTTTTTATGGATGAGCATTTTTATAACGTAGTTGTCACTGCGCATGCCTTTGTTATGATTTTTTTTATAGTTATGCCTCTTATAATTGGAGGGTTCGGAAACTGAATAGTTCCTTTACTTATTGGTGCTCCCGATATAAGCTTTCCTCGAATAAACAATATAAGATTCTGATTATTGCCGCCATCATTTATTTTACTTTTATGTTCTGCTATGGTAGAAGGAGGAGCTGGGACTGGGTGAACTGTCTATCCTCCGTTAAGAGGTCCTATTGCCCATGGCGGATCTTCTGTTGACTTAGTGATTTTTTCTTTACATCTGGCTGGGATATCTTCAATCTTGGGAGCTATTAATTTTATTACTACCATTTTTAATATACGGTCTCCTGGGATGACTATAGAACGCTTGAACTTATTTGTTTGATCTGTATTAGTAACTGCCTTTTTGCTTTTACTTAGACTTCCTGTTCTTGCTGGGGCCATTACAATGCTTTTAACAGATCGAAACTTTAATACTAGGTTTTTTGATCCTGCTGGGGGCGGGGATCCAATTTTATACCAACATTTGTTC
+>ZSM20100390|verrucosa
+GACTTTGTATATAGTGTTTGGTGTGTGAGCTGGGTTGGTGGGAACTGGTTTATCCTTGTTAGTTCGTTTTGAGCTGGGAACAGCATCTGTTTTTATGGATGAGCATTTTTATAACGTAGTTGTCACTGCGCATGCCTTTGTTATGATTTTTTTTATAGTTATGCCTCTTATAATTGGAGGGTTCGGAAACTGAATAGTTCCTTTACTTATTGGTGCTCCCGATATAAGCTTTCCTCGAATAAACAATATAAGATTCTGATTATTGCCGCCATCATTTATTTTACTTTTATGTTCTGCTATGGTAGAAGGAGGAGCTGGGACTGGGTGAACTGTCTATCCTCCGTTAAGAGGTCCTATTGCCCATGGCGGATCTTCTGTTGACTTAGTGATTTTTTCTTTACATCTGGCTGGGATATCTTCAATCTTGGGAGCTATTAATTTTATTACTACCATTTTTAATATACGGTCTCCTGGGATGACTATAGAACGCTTGAACTTATTTGTTTGATCTGTATTAGTAACTGCCTTTTTGCTTTTACTTAGACTTCCTGTTCTTGCTGGGGCCATTACAATGCTTTTAACAGATCGAAACTTTAATACTAGGTTTTTTGATCCTGCTGGGGGCGGGGATCCAATTTTATACCAACATTTGTTC
+>ZSM20100391|verrucosa
+GACCTTATATATAGTATTTGGTGTGTGAGCTGGGTTGGTGGGAACTGGCCTATCCTTGTTGATTCGTTTTGAGTTGGGAACAGCATCTGTTTTTATAGATGAGCATTTTTATAATGTAGTTGTCACTGCGCATGCCTTTGTTATGATTTTTTTTATAGTTATGCCTCTTATAATTGGGGGTTTTGGAAACTGAATAGTTCCTTTACTTATTGGTGCTCCCGATATAAGCTTTCCTCGAATAAATAATATAAGATTCTGATTATTGCCGCCATCATTTATTTTACTTTTATGCTCTGCTATGGTAGAAGGAGGAGCTGGGACTGGGTGAACTGTCTATCCTCCGTTAAGAGGTCCTATCGCCCATGGCGGATCTTCTGTTGACTTAGTAATTTTTTCTTTACATCTGGCTGGGATATCTTCAATCTTGGGAGCTATTAATTTTATTACTACCATTTTTAATATGCGGTCTCCTGGGATGACTATAGAACGCTTGAATTTATTTGTTTGATCCGTATTAGTGACTGCCTTTTTGCTTTTACTTAGACTTCCTGTTCTTGCTGGGGCCATTACAATGCTTTTAACAGATCGAAACTTTAATACTAGGTTTTTTGATCCTGCTGGAGGTGGGGATCCAATTTTATATCAACATTTGTTC
+>ZSM20081013|kepii
+GACTTTGTATATAGTATTTGGTGTATGAGCTGGGTTAGTAGGAACAGGACTTTCTTTGTTAATCCGATTTGAGTTAGGTACAGCATCAGTGTTTATAGATGAGCATTTTTATAATGTCATTGTCACAGCGCATGCCTTTGTAATAATCTTTTTCATAGTAATGCCTCTAATGATTGGGGGTTTTGGGAATTGGATGGTTCCTTTATTAATTGGAGCTCCGGATATAAGGTTTCCTCGAATAAATAATATGAGATTTTGGCTGCTTCCCCCCTCATTTCTGTTACTGTTAAGGTCAGTTATGGTAGAAGGGGGAGCAGGCACAGGTTGGACGGTATACCCTCCTTTGAGGGGCCCAATTGCTCATGGTGGTTCTTCTGTTGATTTGGTAATTTTCTCCTTGCATCTAGCTGGGATGTCTTCTATTTTAGGGGCTATTAACTTTATTACAACTATTTATAACATGCGTTCTCCAGGTATAACAATAGAACGTTTAGATTTATTTGTTTGGTCCGTTCTAGTTACTGCGTTTTTATTACTTTTAAGTCTTCCCGTTCTAGCAGGGGCCATTACCATGCTTTTAACGGATCGGAATTTTAACACTAGCTTTTTTGATCCGGCTGGAGGGGGAGATCCAATTCTATACCAGCATTTGTTT
+>ZSM20090197|joni
+CACTTTGTATATAGTGTTTGGTGTTTGAGCAGGTCTTGTGGGTACAGGTCTGTCTTTATTAATTCGTTTCGAACTAGGAACAGCGTCTGTCTTCATAGACGAGCATTTCTATAATGTTGTTGTCACGGCTCATGCTTTTGTAATAATTTTTTTTATAGTGATGCCTTTAATAATTGGGGGTTTTGGAAATTGAATGGTTCCTTTACTAATCGGGGCTCCTGATATAAGTTTTCCTCGTATAAACAATATAAGTTTTTGGCTACTTCCTCCCTCTTTTGTTTTGTTGTTATGCTCAGCGATAGTAGAAGGAGGCGCTGGAACTGGTTGAACAGTATACCCTCCTCTTAGAGGTCCCGTTGGTCATGGAGGCTCTTCTGTAGATTTGGTGATTTTTTCTCTTCATTTGGCAGGGATATCTTCTATTTTGGGGGCTATCAATTTTATTACTACGATTTTCAATATACGGTCTCCAGGGATAACTATGGAACGATTGAATTTATTTGTCTGATCAGTTTTAGTTACCGCATTTCTTTTATTATTAAGACTTCCAGTCCTAGCTGGGGCAATTACTATGCTTCTTACAGATCGGAACTTTAATACAAGGTTCTTTGATCCAGCCGGGGGTGGGGACCCTATTTTATATCAACACTTGTTC
+>SICBC2010KJ01D05|joni
+CACTTTGTATATAGTGTTTGGTGTTTGGGCAGGTCTTGTGGGTACAGGTCTCTCTTTATTAATTCGTTTCGAACTAGGGACAGCGTCTGTCTTCATAGACGAGCATTTCTATAATGTTGTTGTCACGGCTCATGCTTTTGTAATAATTTTTTTTATAGTGATGCCTTTAATAATTGGAGGTTTTGGTAATTGAATGGTTCCTTTATTAATCGGGGCTCCTGATATAAGTTTTCCTCGTATAAACAATATGAGTTTTTGGCTACTTCCTCCCTCTTTTGTTTTGTTGTTATGCTCAGCGATAGTAGAAGGAGGCGCTGGAACTGGTTGAACAGTATACCCTCCTCTTAGAGGTCCGGTTGGTCATGGGGGTTCTTCTGTAGATTTAGTGATTTTTTCTCTTCATTTGGCAGGAATATCTTCTATTTTAGGGGCTATTAATTTTATTACTACGATTTTCAACATACGGTCTCCAGGGATAACTATGGAGCGATTGAATTTATTTGTCTGATCAGTTTTAGTTACCGCATTTCTTTTATTATTAAGACTTCCAGTCTTAGCTGGGGCAATTACTATGCTTCTTACAGATCGGAACTTTAATACAAGGTTCTTTGATCCGGCCGGGGGTGGGGACCCTATTTTATATCAACACTTGTTC
+>SICBC2010KJ01C08|joni
+CACTTTGTATATAGTGTTTGGTGTTTGAGCAGGTCTTGTGGGTACAGGTCTGTCTTTATTAATTCGTTTTGAACTAGGAACAGCGTCTGTCTTCATAGACGAGCATTTCTACAATGTTGTTGTCACGGCTCATGCTTTTGTAATAATTTTTTTTATAGTGATGCCTTTAATAATTGGGGGTTTTGGTAACTGAATGGTTCCTTTACTAATCGGGGCTCCTGATATAAGTTTTCCTCGTATAAATAATATAAGTTTTTGGCTACTTCCTCCCTCTTTTGTTTTGTTGTTATGCTCAGCGATAGTAGAAGGAGGCGCTGGAACTGGTTGAACAGTATATCCCCCTCTTAGAGGTCCGGTCGGTCATGGAGGTTCCTCTGTAGATTTGGTGATTTTTTCTCTTCATTTGGCAGGGATATCTTCTATTTTAGGGGCTATTAATTTTATCACTACGATTTTCAACATACGGTCTCCAGGAATAACTATGGAACGATTGAATTTGTTTGTCTGATCAGTTTTAGTTACCGCATTTCTTTTATTATTAAGACTTCCAGTTCTAGCCGGGGCAATTACTATGCTTCTTACAGATCGGAACTTTAATACAAGGTTCTTTGATCCAGCCGGGGGTGGGGACCCTATTTTATATCAACACTTGTTC
+>AMC476062001|neridae
+AACTTTGTACATGGTTTTTGGAGTTTGGGCTGGTCTTGTGGGGACCGGCTTGTCTTTATTAATTCGATTTGAGTTAGGGACGGCAAGAGTTTTTATGGATGAACACTTTTATAATGTGATTGTGACGGCTCATGCTTTTGTTATAATTTTCTTTATGGTTATACCCTTGATGATTGGAGGGTTTGGGAATTGAATAGTCCCTCTGTTAATTGGGGCCCCAGACATAAGGTTTCCACGTATAAACAATATAAGTTTCTGACTACTACCTCCTTCGTTCTTGCTTCTTCTTTGTTCTGCAATGGTTGAAGGAGGAGCTGGAACAGGTTGAACTGTTTACCCTCCTCTTAGTGGACCTATTGCGCATGGTGGGTCTTCTGTTGACTTGGTAATCTTTTCGTTACACTTGGCTGGTATATCTTCCATTTTAGGAGCTATTAACTTTATTACAACTATCTTCAACATACGATCCCCAGGAATGTCTATGGAGCGACTGAATTTATTTGTATGATCAGTTTTAGTTACGGCTTTTTTATTATTATTGAGTTTACCTGTCCTTGCTGGTGCCATTACAATGCTGTTGACTGATCGGAATTTTAATACCAGCTTTTTTGACCCTGCCGGAGGGGGGGATCCTATTTTGTATCAACATCTTTTC
+>ZSM20100595|wiggi
+TACTTTATACATGATTTTTGGGGTATGATGTGGCCTGGTAGGGACTGGTCTATCCCTATTAATTCGTTTCGAACTGGGAACTGCTACAGTTTTTATAGATGAGCACTTTTACAATGTTGTTGTAACCGCTCATGCTTTTGTAATAATTTTTTTTATGGTTATGCCTCTTATGATTGGGGGTTTTGGAAACTGAATAGTTCCTCTACTGATTGGAGCTCCTGATATAAGATTTCCTCGTATGAACAACATAAGTTTTTGACTATTGCCTCCTTCTTTTATTCTTTTGCTGTGCTCTGCTATGGTTGAGGGGGGAGCAGGGACTGGATGGACAGTTTATCCACCTCTTAGAGGCCCAATTGCCCATGGAGGTTCTTCTGTTGACTTAGTTATTTTTTCCCTTCATTTGGCAGGGATGTCTTCTATTTTAGGGGCAATTAATTTTATCACAACTATTTTTAATATACGATCTCCGGGTATAAGAATGGAACGTTTAAATTTGTTTGTTTGATCAGTATTAGTGACTGCCTTTTTGCTTTTACTAAGTTTACCTGTCTTGGCTGGTGCTATCACCATGCTTTTAACCGATCGAAATTTCAACACTAGCTTCTTTGATCCGGCAGGAGGGGGGGATCCTATTTTGTATCAACATCTATTT
+>ZSM20100596|wiggi
+TACTTTATACATGATTTTTGGGGTATGATGTGGCCTGGTAGGGACTGGTCTATCCTTATTAATTCGTTTCGAACTAGGAACTGCTACAGTTTTTATAGATGAGCACTTTTACAATGTTGTTGTAACCGCTCATGCTTTTGTAATAATTTTTTTTATGGTTATGCCTCTTATGATTGGGGGTTTCGGAAACTGAATAGTTCCTCTACTGATTGGAGCTCCTGATATAAGATTTCCTCGCATAAACAACATAAGTTTTTGACTGTTGCCTCCTTCTTTTATTCTTTTGCTGTGTTCCGCTATGGTTGAGGGGGGAGCAGGGACTGGATGGACAGTTTATCCGCCTCTTAGAGGCCCAATTGCCCATGGAGGTTCTTCTGTTGACTTAGTTATTTTTTCCCTTCATTTGGCAGGGATGTCTTCTATTTTAGGGGCAATTAATTTTATTACAACTATTTTTAATATACGATCTCCGGGTATAAGAATGGAACGTTTAAATTTGTTTGTTTGATCAGTATTAGTGACTGCCTTTTTGCTTTTACTAAGTTTACCTGTCTTGGCTGGTGCTATTACCATGCTTTTAACCGATCGAAATTTCAACACTAGCTTCTTTGATCCGGCAGGAGGGGGGGATCCTATTTTGTATCAACATCTATTC
+>ZSM20100597|wiggi
+TACTTTATACATGATTTTTGGGGTGTGATGTGGCCTGGTAGGGACTGGTCTATCCCTATTAATTCGTTTCGAACTAGGAACTGCTACAGTTTTTATAGATGAGCACTTTTACAATGTTGTTGTAACCGCTCATGCTTTTGTAATAATTTTTTTTATGGTTATGCCTCTTATGATTGGGGGTTTCGGAAACTGAATAGTTCCTCTACTGATTGGAGCTCCTGACATAAGATTTCCTCGTATAAACAACATAAGTTTTTGACTGTTGCCTCCTTCTTTTATTCTTTTGCTGTGTTCCGCTATGGTTGAGGGGGGAGCAGGGACTGGATGGACAGTTTATCCGCCTCTTAGAGGCCCAATTGCCCATGGAGGTTCTTCTGTTGACTTAGTTATTTTTTCCCTTCATTTGGCAGGGATGTCTTCTATTTTAGGGGCAATTAATTTTATCACAACTATTTTTAATATACGATCTCCGGGTATAAGAATGGAACGTTTAAATTTGTTTGTTTGATCAGTATTAGTGACTGCCTTTTTGCTTTTACTAAGTTTACCTGTCTTGGCTGGTGCTATTACCATGCTTTTAACCGATCGAAATTTCAACACTAGCTTCTTTGATCCGGCAGGAGGGGGGGATCCTATTTTGTATCAACATCTATTC
+>ZSM20100603|wiggi
+TACTTTATACATGATTTTTGGGGTATGATGTGGCCTGGTAGGGACTGGTCTATCCCTATTAATTCGTTTCGAACTAGGAACTGCTACAGTTTTTATAGATGAGCACTTTTACAATGTTGTTGTAACCGCTCATGCTTTTGTAATAATTTTTTTTATGGTTATGCCTCTTATGATTGGGGGTTTCGGAAACTGAATAGTTCCTCTACTGATTGGAGCTCCTGATATAAGATTTCCTCGTATAAACAACATAAGTTTTTGACTGTTGCCTCCTTCTTTTATTCTTTTGCTGTGTTCCGCTATGGTTGAGGGGGGAGCAGGGACTGGATGGACAGTTTATCCGCCTCTTAGAGGCCCAATTGCCCATGGAGGTTCTTCTGTTGACTTAGTTATTTTTTCCCTTCATTTGGCAGGGATGTCTTCTATTTTAGGGGCAATTAATTTTATCACAACTATTTTTAATATACGATCTCCAGGTATAAGAATGGAACGTTTAAATTTGTTTGTTTGATCAGTATTAGTGACTGCCTTTTTGCTTTTACTAAGTTTACCTGTCTTGGCTGGTGCTATTACCATGCTTTTAACCGATCGAAATTTCAACACTAGCTTCTTTGATCCGGCAGGAGGGGGGGATCCTATTTTGTATCAACATCTATTC
+>ZSM20100592|wenzli
+AACTTTATACATAATTTTTGGTGTTTGGTGTGGGTTAGTTGGAACTGGGCTTTCTCTGCTTATTCGATTTGAGCTAGGAACTGCCTCTGTCTTAATAGATGAACATTTTTATAATGTGATTGTTACAGCTCATGCATTTGTCATAATTTTTTTCATAGTTATACCCTTAATAATTGGAGGATTTGGGAATTGAATAGTTCCATTATTAATTGGAGCTGTGGATATAAGCTTTCCACGTATAAATAATATAAGATTTTGATTGCTTCCCCCTTCCTTTATTTTTCTACTGTGTTCATCTATAATTGAAGGAGGTGCTGGAACTGGGTGAACAGTATATCCTCCTCTGAGGGGTCCTATTGCTCATGCTGGGTCTTCAGTCGATCTTGTAATTTTTTCTTTACACTTGGCAGGGATATCTTCTATTTTAGGTGCTATTAATTTTATTACTACTATTTTTAATATACGATCTCCTGGGGTAGGAATAGAACGTCTAAATTTGTTTGTTTGATCTGTATTAGTAACAGCTTTTCTTTTACTTCTAAGACTTCCTGTTTTAGCAGGAGCTATTACTATGCTATTAACTGATCGTAATATTAATACAACATTCTTTGACCCCGCAGGAGGAGGTGACCCTATTTTATACCAACATTTGTTT
+>ZSM20081014|wenzli
+AACTTTATATATAATTTTTGGTGTTTGATGTGGATTAGTTGGAACTGGGCTTTCATTACTCATTCGATTTGAGTTAGGGACTGCTTCCGTTTTAATAGACGAGCACTTTTATAATGTGATTGTAACTGCTCATGCATTCGTAATAATTTTTTTTATGGTTATACCCCTAATAATTGGAGGATTTGGAAATTGAATAGTACCTTTATTAATTGGTGCCGTCGATATAAGGTTTCCCCGTATAAATAATATAAGATTCTGGTTACTTCCTCCATCATTTATCTTTCTTCTATGCTCTTCTATAGTCGAAGGAGGGGCTGGGACAGGTTGAACAGTATATCCTCCTTTAAGAGGATCTATTGCTCATGCTGGATCTTCAGTAGATCTAGTAATTTTTTCTCTACATTTAGCAGGTATGTCTTCTATTCTTGGTGCAATTAATTTTATTACTACTATTTTTAATATGCGGTCTCCAGGAATTACCCTAGAACGCTTAAATTTGTTCGTTTGGTCGGTATTGGTAACAGCTTTTCTGTTACTTTTAAGATTACCTGTTTTAGCTGGAGCAATTACTATGTTGTTAACTGATCGTAACATTAATACGACTTTCTTTGATCCTGCAGGAGGAGGGGATCCTATTTTATACCAACACTTATTT
+>ZSM20100379|wenzli
+AACTTTATATATAATTTTTGGTGTTTGATGTGGATTAGTTGGAACTGGGCTTTCATTACTCATTCGATTTGAGTTAGGGACTGCTTCCGTTTTAATAGACGAGCACTTTTATAATGTGATTGTAACTGCTCATGCATTCGTAATAATTTTTTTTATGGTTATACCCCTAATAATTGGAGGATTTGGAAATTGAATAGTACCTTTGTTAATTGGTGCCGTCGATATAAGGTTTCCTCGTATAAATAATATAAGATTCTGGTTACTTCCTCCATCATTTATCTTTCTTCTATGCTCTTCTATAGTCGAAGGAGGAGCTGGGACAGGTTGAACAGTATATCCTCCTTTAAGAGGATCTATTGCTCATGCTGGATCTTCAGTAGATCTAGTAATTTTTTCTCTACACTTAGCAGGTATGTCTTCTATTCTTGGTGCAATTAATTTTATTACTACTATTTTTAATATGCGGTCTCCAGGAATCACCCTAGAACGCTTAAATTTGTTCGTTTGATCGGTATTGGTAACAGCTTTTTTGTTACTTTTAAGATTACCTGTTTTAGCTGGAGCAATTACTATGTTGTTAACTGATCGTAACATTAATACGACTTTCTTTGATCCTGCAGGAGGAGGGGATCCTATTTTATACCAACATTTATTT
+>ZSM20071133|peteryalli
+AACCTTATACATGTTGTTTGGAATTTGGTGCGGATTAGTTGGGACAGCTTTGTCACTGCTGATTCGGATTGAGCTCGGCGTGACTTCTGTGTTTTCAGATAGTCACTTTTACAATGTTATTGTTACTGCGCATGCTTTCACTATAATTTTTTTTATGGTTATGCCAATTATAATTGGCGGGTTCGGCAATTGAATGGTCCCCTTGCTTCTCGGTGCCCCTGATATGAGATTCCCTCGAATAAACAATCTAAGATTTTGATTACTACCTCCATCTTTTCTACTTCTCCTGTGTAGAAGTATAGTAGAAGGAGGCGCAGGGACTGGGTGAACAGTTTACCCCCCTCTTAGTGGTCCAACAGGACACAGAAGTTCATCAGTCGACTTAGTAATTTTCTCCCTTCATTTAGCTGGGGTTTCTTCTATTTTAGGGGCCATTAATTTTATTACGACTATTTACAATATACGAATTCCCGGAGTTACAATAGATCGGCTGAACTTATTTTGTTGGTCGATTTTGGTGACAGCGTTTCTTCTCTTACTGAGTCTTCCAGTTCTCGCCGGAGCTATTACTATACTTTTGACTGACCGGAACTTCAATACTAGATTTTTTGATCCAGCTGGGGGAGGCGACCCCATTTTATACCAGCATTTATTT
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/Pontohedyle_COI_all.out	Sun Jan 29 16:25:48 2023 +0000
@@ -0,0 +1,69 @@
+<h4>########################## PARAMETERS ######################</h4>
+<p> input file: D:\MOLD3\Pontohedyle_COI.fas </p>
+<p> Coding gaps as characters: False </p>
+<p> Maximum undetermined nucleotides allowed: 100 </p>
+<p> Length of the alignment: 655 -> 655 </p>
+<p> Indexing reference: Not set </p>
+<p> Read in 27 sequences </p>
+<p> query taxa: 4 - neridae, verrucosa, wiggi, neridae+wiggi+verrucosa </p>
+<p> Cutoff set as: >1 </p>
+<p> Number iterations of MolD set as: 10000 </p>
+<p> Maximum length of raw mDNCs set as: 12 </p>
+<p> Maximum length of refined mDNCs set as: 5 </p>
+<p> simulated sequences up to 1.0 percent divergent from original ones </p>
+<p> Maximum number of sequences modified per clade 10 </p>
+<p> scoring of the rDNCs; threshold in two consequtive runs: 75 </p>
+<h4>########################### RESULTS ##########################</h4>
+<h4>************** neridae **************</h4>
+<p> Sequences analyzed: 1 </p>
+<p> single nucleotide mDNCs*: 13 - 46: 'C', 151: 'C', 169: 'G', 220: 'A', 277: 'C', 278: 'T', 289: 'T', 391: 'C', 397: 'G', 421: 'C', 479: 'T', 505: 'A', 601: 'C' </p>
+<p> mDNCs* retrieved: 7071; Sites involved: 299; Independent mDNCs**: 105 </p>
+<p> Shortest retrieved mDNC*: [46: 'C'] </p>
+<p> 1 rDNC_score (100): [46] - 86 </p>
+<p> 2 rDNC_score (100): [46, 151] - 93 </p>
+<p> Final rDNC***: [46: 'C', 151: 'C'] </p>
+<p> The DNA diagnosis for the taxon neridae is: 'C' in the site 46, 'C' in the site 151. </p>
+<h4>************** verrucosa **************</h4>
+<p> Sequences analyzed: 7 </p>
+<p> single nucleotide mDNCs*: 5 - 118: 'A', 343: 'G', 367: 'C', 421: 'A', 451: 'C' </p>
+<p> mDNCs* retrieved: 5964; Sites involved: 239; Independent mDNCs**: 69 </p>
+<p> Shortest retrieved mDNC*: [118: 'A'] </p>
+<p> 1 rDNC_score (100): [118] - 65 </p>
+<p> 2 rDNC_score (100): [118, 343] - 94 </p>
+<p> 3 rDNC_score (100): [118, 343, 367] - 97 </p>
+<p> Final rDNC***: [118: 'A', 343: 'G', 367: 'C'] </p>
+<p> The DNA diagnosis for the taxon verrucosa is: 'A' in the site 118, 'G' in the site 343, 'C' in the site 367. </p>
+<h4>************** wiggi **************</h4>
+<p> Sequences analyzed: 4 </p>
+<p> single nucleotide mDNCs*: 3 - 127: 'C', 325: 'A', 583: 'C' </p>
+<p> mDNCs* retrieved: 6841; Sites involved: 281; Independent mDNCs**: 86 </p>
+<p> Shortest retrieved mDNC*: [127: 'C'] </p>
+<p> 1 rDNC_score (100): [127] - 80 </p>
+<p> 2 rDNC_score (100): [127, 325] - 94 </p>
+<p> Final rDNC***: [127: 'C', 325: 'A'] </p>
+<p> The DNA diagnosis for the taxon wiggi is: 'C' in the site 127, 'A' in the site 325. </p>
+<h4>************** neridae+wiggi+verrucosa **************</h4>
+<p> Sequences analyzed: 12 </p>
+<p> single nucleotide mDNCs*: 0 -  </p>
+<p> mDNCs* retrieved: 3251; Sites involved: 96; Independent mDNCs**: 17 </p>
+<p> Shortest retrieved mDNC*: [59: 'T', 91: 'T'] </p>
+<p> 2 rDNC_score (100): [91, 196] - 0 </p>
+<p> 3 rDNC_score (100): [91, 196, 259] - 68 </p>
+<p> 4 rDNC_score (100): [91, 196, 259, 94] - 90 </p>
+<p> 5 rDNC_score (100): [91, 196, 259, 94, 538] - 92 </p>
+<p> Final rDNC***: [91: 'T', 94: 'T', 196: 'A', 259: 'A', 538: 'A'] </p>
+<p> The DNA diagnosis for the taxon neridae+wiggi+verrucosa is: 'T' in the site 91, 'T' in the site 94, 'A' in the site 196, 'A' in the site 259, 'A' in the site 538. </p>
+<h4> ################################# EXPLANATIONS #################################### </h4>
+<p>   * mDNC -(=minimal Diagnostic nucleotide combination) is a combination of nucleotides at specified sites of the alignment, </p>
+<p>     unique for a query taxon. Therefore it is sufficient to differentiate a query taxon from all reference taxa in a dataset. </p>
+<p>     Because it comprises minimal necessary number of nucleotide sites to differentiate a query, any mutation in the mDNC in</p>
+<p>     single specimen of a query taxon will automatically disqualify it as a diagnostic combination. </p>
+<p> </p>
+<p>  ** two or more mDNCs are INDEPENDENT if they constitute non-overlapping sets of nucleotide sites. </p>
+<p> </p>
+<p> *** rDNC -(=robust/redundant Diagnostic nucleotide combination) is a combination of nucleotides at specified sites of the alignment, </p>
+<p>     unique for a query taxon and (likewise mDNC) sufficient to differentiate a query taxon from all reference taxa in a dataset. </p>
+<p>     However, rDNC comprises more than a minimal necessary number of diagnostic sites, and therefore is robust to single nucleotide </p>
+<p>     replacements. Even if a mutation arises in one of the rDNC sites, the remaining ones will (with high probability) remain sufficient  </p>
+<p>     to diagnose the query taxon </p>
+<h4>     Final diagnosis corresponds to rDNC </h4>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/Pontohedyle_COI_all_pairwise.out	Sun Jan 29 16:25:48 2023 +0000
@@ -0,0 +1,9 @@
+<h4>************** neridae VS verrucosa **************</h4>
+<p> Each of the following 122 sites is invariant across sequences of neridae and differentiates it from verrucosa: 9 ('C' vs 'T'), 12 ('G' vs 'A'), 15 ('T' vs 'A'or'G'), 21 ('A' vs 'T'), 24 ('T' vs 'G'), 27 ('G' vs 'A'), 33 ('T' vs 'G'), 34 ('C' vs 'T'), 36 ('T' vs 'G'), 42 ('G' vs 'A'), 45 ('C' vs 'T'), 51 ('G' vs 'A'), 54 ('T' vs 'C'), 57 ('A' vs 'G'), 66 ('A' vs 'T'), 75 ('A' vs 'G'), 78 ('G' vs 'A'), 85 ('A' vs 'T'), 86 ('G' vs 'C'), 87 ('A' vs 'T'), 105 ('C' vs 'T'), 117 ('G' vs 'A'), 118 ('A' vs 'G'), 123 ('G' vs 'C'), 126 ('G' vs 'T'), 129 ('T' vs 'A'or'G'), 135 ('T' vs 'C'), 150 ('C' vs 'T'), 156 ('G' vs 'A'), 162 ('A' vs 'G'), 165 ('C' vs 'T'), 166 ('T' vs 'C'), 168 ('G' vs 'T'), 171 ('G' vs 'A'), 186 ('G' vs 'A'), 198 ('C' vs 'T'), 202 ('C' vs 'T'), 205 ('T' vs 'C'), 207 ('A' vs 'T'), 213 ('G' vs 'T'), 219 ('A' vs 'C'), 222 ('C' vs 'T'), 228 ('G' vs 'T'or'C'), 234 ('A' vs 'T'), 237 ('T' vs 'A'), 252 ('T' vs 'A'), 259 ('C' vs 'T'), 262 ('C' vs 'T'), 267 ('T' vs 'G'), 270 ('T' vs 'A'or'C'), 273 ('G' vs 'A'), 276 ('C' vs 'T'), 277 ('T' vs 'A'), 279 ('G' vs 'T'), 280 ('C' vs 'T'), 282 ('T' vs 'A'), 286 ('C' vs 'T'), 288 ('T' vs 'A'), 297 ('A' vs 'T'), 303 ('T' vs 'A'), 318 ('A' vs 'G'or'C'), 321 ('A' vs 'T'), 324 ('T' vs 'G'), 342 ('T' vs 'G'), 343 ('C' vs 'T'), 345 ('T' vs 'A'), 348 ('T' vs 'A'), 351 ('A' vs 'T'), 360 ('G' vs 'C'), 366 ('T' vs 'C'), 384 ('G' vs 'A'), 390 ('C' vs 'T'), 396 ('G' vs 'T'), 402 ('C' vs 'T'), 403 ('T' vs 'C'), 411 ('T' vs 'A'or'G'), 420 ('C' vs 'A'), 423 ('T' vs 'C'), 426 ('A' vs 'G'), 438 ('C' vs 'T'), 447 ('A' vs 'T'), 450 ('T' vs 'C'), 453 ('C' vs 'T'), 456 ('C' vs 'T'), 459 ('C' vs 'T'), 465 ('A' vs 'G'), 468 ('C' vs 'T'), 471 ('A' vs 'T'), 474 ('A' vs 'G'), 478 ('T' vs 'A'), 483 ('G' vs 'A'), 489 ('A' vs 'T'or'C'), 490 ('C' vs 'T'), 504 ('A' vs 'T'), 510 ('A' vs 'T'or'C'), 513 ('T' vs 'A'), 519 ('T' vs 'A'or'G'), 522 ('G' vs 'T'), 525 ('T' vs 'C'), 531 ('A' vs 'G'), 532 ('T' vs 'C'), 534 ('A' vs 'T'), 538 ('T' vs 'C'), 540 ('G' vs 'T'or'C'), 543 ('T' vs 'A'), 544 ('T' vs 'C'), 546 ('A' vs 'T'), 552 ('C' vs 'T'), 561 ('T' vs 'G'), 576 ('G' vs 'T'), 579 ('G' vs 'A'), 582 ('T' vs 'A'), 588 ('G' vs 'A'), 591 ('T' vs 'C'), 600 ('C' vs 'T'), 603 ('C' vs 'G'), 612 ('C' vs 'T'), 624 ('G' vs 'T'or'C'), 633 ('T' vs 'A'), 639 ('G' vs 'A'), 649 ('C' vs 'T'), 651 ('T' vs 'G') </h4>
+<p> Each of the following 111 sites is invariant across sequences of verrucosa and differentiates it from neridae: 9 ('T' vs 'C'), 12 ('A' vs 'G'), 21 ('T' vs 'A'), 24 ('G' vs 'T'), 27 ('A' vs 'G'), 33 ('G' vs 'T'), 34 ('T' vs 'C'), 36 ('G' vs 'T'), 42 ('A' vs 'G'), 45 ('T' vs 'C'), 51 ('A' vs 'G'), 54 ('C' vs 'T'), 57 ('G' vs 'A'), 66 ('T' vs 'A'), 75 ('G' vs 'A'), 78 ('A' vs 'G'), 85 ('T' vs 'A'), 86 ('C' vs 'G'), 87 ('T' vs 'A'), 105 ('T' vs 'C'), 117 ('A' vs 'G'), 118 ('G' vs 'A'), 123 ('C' vs 'G'), 126 ('T' vs 'G'), 135 ('C' vs 'T'), 150 ('T' vs 'C'), 156 ('A' vs 'G'), 162 ('G' vs 'A'), 165 ('T' vs 'C'), 166 ('C' vs 'T'), 168 ('T' vs 'G'), 171 ('A' vs 'G'), 186 ('A' vs 'G'), 198 ('T' vs 'C'), 202 ('T' vs 'C'), 205 ('C' vs 'T'), 207 ('T' vs 'A'), 213 ('T' vs 'G'), 219 ('C' vs 'A'), 222 ('T' vs 'C'), 234 ('T' vs 'A'), 237 ('A' vs 'T'), 252 ('A' vs 'T'), 259 ('T' vs 'C'), 262 ('T' vs 'C'), 267 ('G' vs 'T'), 273 ('A' vs 'G'), 276 ('T' vs 'C'), 277 ('A' vs 'T'), 279 ('T' vs 'G'), 280 ('T' vs 'C'), 282 ('A' vs 'T'), 286 ('T' vs 'C'), 288 ('A' vs 'T'), 297 ('T' vs 'A'), 303 ('A' vs 'T'), 321 ('T' vs 'A'), 324 ('G' vs 'T'), 342 ('G' vs 'T'), 343 ('T' vs 'C'), 345 ('A' vs 'T'), 348 ('A' vs 'T'), 351 ('T' vs 'A'), 360 ('C' vs 'G'), 366 ('C' vs 'T'), 384 ('A' vs 'G'), 390 ('T' vs 'C'), 396 ('T' vs 'G'), 402 ('T' vs 'C'), 403 ('C' vs 'T'), 420 ('A' vs 'C'), 423 ('C' vs 'T'), 426 ('G' vs 'A'), 438 ('T' vs 'C'), 447 ('T' vs 'A'), 450 ('C' vs 'T'), 453 ('T' vs 'C'), 456 ('T' vs 'C'), 459 ('T' vs 'C'), 465 ('G' vs 'A'), 468 ('T' vs 'C'), 471 ('T' vs 'A'), 474 ('G' vs 'A'), 478 ('A' vs 'T'), 483 ('A' vs 'G'), 490 ('T' vs 'C'), 504 ('T' vs 'A'), 513 ('A' vs 'T'), 522 ('T' vs 'G'), 525 ('C' vs 'T'), 531 ('G' vs 'A'), 532 ('C' vs 'T'), 534 ('T' vs 'A'), 538 ('C' vs 'T'), 543 ('A' vs 'T'), 544 ('C' vs 'T'), 546 ('T' vs 'A'), 552 ('T' vs 'C'), 561 ('G' vs 'T'), 576 ('T' vs 'G'), 579 ('A' vs 'G'), 582 ('A' vs 'T'), 588 ('A' vs 'G'), 591 ('C' vs 'T'), 600 ('T' vs 'C'), 603 ('G' vs 'C'), 612 ('T' vs 'C'), 633 ('A' vs 'T'), 639 ('A' vs 'G'), 649 ('T' vs 'C'), 651 ('G' vs 'T') </h4>
+<h4>************** neridae VS wiggi **************</h4>
+<p> Each of the following 132 sites is invariant across sequences of neridae and differentiates it from wiggi: 0 ('A' vs 'T'), 6 ('G' vs 'A'), 13 ('G' vs 'A'), 21 ('A' vs 'G'), 24 ('T' vs 'A'or'G'), 27 ('G' vs 'A'), 28 ('G' vs 'T'), 29 ('C' vs 'G'), 33 ('T' vs 'C'), 36 ('T' vs 'G'), 39 ('G' vs 'A'), 45 ('C' vs 'T'), 48 ('C' vs 'T'), 49 ('T' vs 'C'), 51 ('G' vs 'A'), 54 ('T' vs 'C'), 66 ('A' vs 'T'), 69 ('T' vs 'C'), 72 ('G' vs 'A'), 73 ('T' vs 'C'), 78 ('G' vs 'A'), 81 ('G' vs 'T'), 84 ('A' vs 'T'), 86 ('G' vs 'C'), 96 ('G' vs 'A'), 102 ('A' vs 'G'), 111 ('T' vs 'C'), 117 ('G' vs 'T'), 118 ('A' vs 'G'), 123 ('G' vs 'A'), 126 ('G' vs 'C'), 141 ('T' vs 'A'), 150 ('C' vs 'T'), 162 ('A' vs 'G'), 165 ('C' vs 'T'), 166 ('T' vs 'C'), 168 ('G' vs 'T'), 177 ('A' vs 'G'), 180 ('G' vs 'T'), 186 ('G' vs 'A'), 189 ('T' vs 'C'), 198 ('C' vs 'T'), 204 ('G' vs 'A'), 205 ('T' vs 'C'), 207 ('A' vs 'G'), 213 ('G' vs 'A'), 216 ('C' vs 'T'), 219 ('A' vs 'T'), 228 ('G' vs 'A'), 234 ('A' vs 'T'), 246 ('T' vs 'C'), 255 ('C' vs 'T'), 262 ('C' vs 'T'), 264 ('A' vs 'G'), 273 ('G' vs 'T'), 276 ('C' vs 'T'), 277 ('T' vs 'A'), 279 ('G' vs 'T'), 283 ('C' vs 'T'), 285 ('T' vs 'G'), 288 ('T' vs 'G'), 297 ('A' vs 'T'), 306 ('A' vs 'G'), 309 ('A' vs 'G'), 315 ('T' vs 'A'), 318 ('A' vs 'G'), 321 ('A' vs 'T'), 324 ('T' vs 'A'), 327 ('A' vs 'G'), 330 ('T' vs 'A'), 336 ('C' vs 'T'), 339 ('T' vs 'A'or'G'), 348 ('T' vs 'A'), 351 ('A' vs 'C'), 354 ('T' vs 'A'), 360 ('G' vs 'C'), 366 ('T' vs 'A'), 369 ('G' vs 'T'), 384 ('G' vs 'A'), 387 ('A' vs 'T'), 390 ('C' vs 'T'), 396 ('G' vs 'C'), 397 ('T' vs 'C'), 399 ('A' vs 'T'), 402 ('C' vs 'T'), 408 ('T' vs 'A'), 411 ('T' vs 'G'), 414 ('A' vs 'G'), 420 ('C' vs 'T'), 429 ('A' vs 'G'), 432 ('T' vs 'A'), 438 ('C' vs 'T'), 453 ('C' vs 'T'), 456 ('C' vs 'T'), 459 ('C' vs 'T'), 468 ('C' vs 'T'), 474 ('A' vs 'T'), 477 ('G' vs 'A'), 478 ('T' vs 'A'), 479 ('C' vs 'G'), 480 ('T' vs 'A'), 486 ('G' vs 'A'), 489 ('A' vs 'T'), 490 ('C' vs 'T'), 492 ('G' vs 'A'), 498 ('A' vs 'G'), 504 ('A' vs 'T'), 513 ('T' vs 'A'), 519 ('T' vs 'G'), 522 ('G' vs 'T'), 525 ('T' vs 'C'), 531 ('A' vs 'G'), 532 ('T' vs 'C'), 534 ('A' vs 'T'), 538 ('T' vs 'C'), 540 ('G' vs 'A'), 553 ('C' vs 'T'), 555 ('T' vs 'G'), 564 ('C' vs 'T'), 570 ('A' vs 'C'), 576 ('G' vs 'T'), 579 ('G' vs 'A'), 582 ('T' vs 'C'), 588 ('G' vs 'A'), 594 ('T' vs 'C'), 597 ('T' vs 'C'), 600 ('C' vs 'T'), 606 ('T' vs 'C'), 612 ('C' vs 'T'), 615 ('T' vs 'G'), 618 ('C' vs 'A'), 651 ('T' vs 'A') </h4>
+<p> Each of the following 130 sites is invariant across sequences of wiggi and differentiates it from neridae: 0 ('T' vs 'A'), 6 ('A' vs 'G'), 13 ('A' vs 'G'), 21 ('G' vs 'A'), 27 ('A' vs 'G'), 28 ('T' vs 'G'), 29 ('G' vs 'C'), 33 ('C' vs 'T'), 36 ('G' vs 'T'), 39 ('A' vs 'G'), 45 ('T' vs 'C'), 48 ('T' vs 'C'), 49 ('C' vs 'T'), 51 ('A' vs 'G'), 54 ('C' vs 'T'), 66 ('T' vs 'A'), 69 ('C' vs 'T'), 72 ('A' vs 'G'), 73 ('C' vs 'T'), 78 ('A' vs 'G'), 81 ('T' vs 'G'), 84 ('T' vs 'A'), 86 ('C' vs 'G'), 96 ('A' vs 'G'), 102 ('G' vs 'A'), 111 ('C' vs 'T'), 117 ('T' vs 'G'), 118 ('G' vs 'A'), 123 ('A' vs 'G'), 126 ('C' vs 'G'), 141 ('A' vs 'T'), 150 ('T' vs 'C'), 162 ('G' vs 'A'), 165 ('T' vs 'C'), 166 ('C' vs 'T'), 168 ('T' vs 'G'), 177 ('G' vs 'A'), 180 ('T' vs 'G'), 186 ('A' vs 'G'), 189 ('C' vs 'T'), 198 ('T' vs 'C'), 204 ('A' vs 'G'), 205 ('C' vs 'T'), 207 ('G' vs 'A'), 213 ('A' vs 'G'), 216 ('T' vs 'C'), 219 ('T' vs 'A'), 228 ('A' vs 'G'), 234 ('T' vs 'A'), 246 ('C' vs 'T'), 255 ('T' vs 'C'), 262 ('T' vs 'C'), 264 ('G' vs 'A'), 273 ('T' vs 'G'), 276 ('T' vs 'C'), 277 ('A' vs 'T'), 279 ('T' vs 'G'), 283 ('T' vs 'C'), 285 ('G' vs 'T'), 288 ('G' vs 'T'), 297 ('T' vs 'A'), 306 ('G' vs 'A'), 309 ('G' vs 'A'), 315 ('A' vs 'T'), 318 ('G' vs 'A'), 321 ('T' vs 'A'), 324 ('A' vs 'T'), 327 ('G' vs 'A'), 330 ('A' vs 'T'), 336 ('T' vs 'C'), 348 ('A' vs 'T'), 351 ('C' vs 'A'), 354 ('A' vs 'T'), 360 ('C' vs 'G'), 366 ('A' vs 'T'), 369 ('T' vs 'G'), 384 ('A' vs 'G'), 387 ('T' vs 'A'), 390 ('T' vs 'C'), 396 ('C' vs 'G'), 397 ('C' vs 'T'), 399 ('T' vs 'A'), 402 ('T' vs 'C'), 408 ('A' vs 'T'), 411 ('G' vs 'T'), 414 ('G' vs 'A'), 420 ('T' vs 'C'), 429 ('G' vs 'A'), 432 ('A' vs 'T'), 438 ('T' vs 'C'), 453 ('T' vs 'C'), 456 ('T' vs 'C'), 459 ('T' vs 'C'), 468 ('T' vs 'C'), 474 ('T' vs 'A'), 477 ('A' vs 'G'), 478 ('A' vs 'T'), 479 ('G' vs 'C'), 480 ('A' vs 'T'), 486 ('A' vs 'G'), 489 ('T' vs 'A'), 490 ('T' vs 'C'), 492 ('A' vs 'G'), 498 ('G' vs 'A'), 504 ('T' vs 'A'), 513 ('A' vs 'T'), 519 ('G' vs 'T'), 522 ('T' vs 'G'), 525 ('C' vs 'T'), 531 ('G' vs 'A'), 532 ('C' vs 'T'), 534 ('T' vs 'A'), 538 ('C' vs 'T'), 540 ('A' vs 'G'), 553 ('T' vs 'C'), 555 ('G' vs 'T'), 564 ('T' vs 'C'), 570 ('C' vs 'A'), 576 ('T' vs 'G'), 579 ('A' vs 'G'), 582 ('C' vs 'T'), 588 ('A' vs 'G'), 594 ('C' vs 'T'), 597 ('C' vs 'T'), 600 ('T' vs 'C'), 606 ('C' vs 'T'), 612 ('T' vs 'C'), 615 ('G' vs 'T'), 618 ('A' vs 'C'), 651 ('A' vs 'T') </h4>
+<h4>************** verrucosa VS wiggi **************</h4>
+<p> Each of the following 91 sites is invariant across sequences of verrucosa and differentiates it from wiggi: 9 ('T' vs 'C'), 12 ('A' vs 'G'), 13 ('G' vs 'A'), 21 ('T' vs 'G'), 28 ('G' vs 'T'), 29 ('C' vs 'G'), 33 ('G' vs 'C'), 34 ('T' vs 'C'), 39 ('G' vs 'A'), 42 ('A' vs 'G'), 57 ('G' vs 'A'), 69 ('T' vs 'C'), 72 ('G' vs 'A'), 84 ('A' vs 'T'), 85 ('T' vs 'A'), 87 ('T' vs 'A'), 105 ('T' vs 'C'), 111 ('T' vs 'C'), 117 ('A' vs 'T'), 123 ('C' vs 'A'), 126 ('T' vs 'C'), 135 ('C' vs 'T'), 156 ('A' vs 'G'), 171 ('A' vs 'G'), 202 ('T' vs 'C'), 207 ('T' vs 'G'), 213 ('T' vs 'A'), 219 ('C' vs 'T'), 237 ('A' vs 'T'or'C'), 246 ('T' vs 'C'), 252 ('A' vs 'T'), 255 ('C' vs 'T'), 259 ('T' vs 'C'), 267 ('G' vs 'T'), 273 ('A' vs 'T'), 280 ('T' vs 'C'), 282 ('A' vs 'T'), 283 ('C' vs 'T'), 285 ('T' vs 'G'), 286 ('T' vs 'C'), 288 ('A' vs 'G'), 303 ('A' vs 'T'), 306 ('A' vs 'G'), 309 ('A' vs 'G'), 315 ('T' vs 'A'), 324 ('G' vs 'A'), 327 ('A' vs 'G'), 339 ('T' vs 'A'or'G'), 342 ('G' vs 'T'), 343 ('T' vs 'C'), 345 ('A' vs 'T'), 351 ('T' vs 'C'), 354 ('T' vs 'A'), 366 ('C' vs 'A'), 396 ('T' vs 'C'), 397 ('T' vs 'C'), 399 ('A' vs 'T'), 403 ('C' vs 'T'), 408 ('T' vs 'A'), 420 ('A' vs 'T'), 423 ('C' vs 'T'), 426 ('G' vs 'A'), 429 ('A' vs 'G'), 432 ('T' vs 'A'), 447 ('T' vs 'A'), 450 ('C' vs 'T'), 465 ('G' vs 'A'), 471 ('T' vs 'A'or'G'), 474 ('G' vs 'T'), 480 ('T' vs 'A'), 483 ('A' vs 'G'), 498 ('A' vs 'G'), 543 ('A' vs 'T'), 544 ('C' vs 'T'), 546 ('T' vs 'A'), 552 ('T' vs 'C'), 553 ('C' vs 'T'), 555 ('T' vs 'G'), 561 ('G' vs 'T'), 570 ('A' vs 'C'), 582 ('A' vs 'C'), 591 ('C' vs 'T'), 594 ('T' vs 'C'), 597 ('T' vs 'C'), 603 ('G' vs 'C'), 606 ('T' vs 'C'), 615 ('T' vs 'G'), 633 ('A' vs 'T'), 639 ('A' vs 'G'), 649 ('T' vs 'C'), 651 ('G' vs 'A') </h4>
+<p> Each of the following 103 sites is invariant across sequences of wiggi and differentiates it from verrucosa: 0 ('T' vs 'A'or'G'), 9 ('C' vs 'T'), 12 ('G' vs 'A'), 13 ('A' vs 'G'), 15 ('T' vs 'A'or'G'), 21 ('G' vs 'T'), 28 ('T' vs 'G'), 29 ('G' vs 'C'), 33 ('C' vs 'G'), 34 ('C' vs 'T'), 39 ('A' vs 'G'), 42 ('G' vs 'A'), 57 ('A' vs 'G'), 69 ('C' vs 'T'), 72 ('A' vs 'G'), 81 ('T' vs 'A'or'G'), 84 ('T' vs 'A'), 85 ('A' vs 'T'), 87 ('A' vs 'T'), 105 ('C' vs 'T'), 111 ('C' vs 'T'), 117 ('T' vs 'A'), 123 ('A' vs 'C'), 126 ('C' vs 'T'), 129 ('T' vs 'A'or'G'), 135 ('T' vs 'C'), 141 ('A' vs 'T'or'C'), 156 ('G' vs 'A'), 171 ('G' vs 'A'), 202 ('C' vs 'T'), 207 ('G' vs 'T'), 213 ('A' vs 'T'), 219 ('T' vs 'C'), 228 ('A' vs 'T'or'C'), 246 ('C' vs 'T'), 252 ('T' vs 'A'), 255 ('T' vs 'C'), 259 ('C' vs 'T'), 267 ('T' vs 'G'), 270 ('T' vs 'A'or'C'), 273 ('T' vs 'A'), 280 ('C' vs 'T'), 282 ('T' vs 'A'), 283 ('T' vs 'C'), 285 ('G' vs 'T'), 286 ('C' vs 'T'), 288 ('G' vs 'A'), 303 ('T' vs 'A'), 306 ('G' vs 'A'), 309 ('G' vs 'A'), 315 ('A' vs 'T'), 324 ('A' vs 'G'), 327 ('G' vs 'A'), 330 ('A' vs 'T'or'C'), 342 ('T' vs 'G'), 343 ('C' vs 'T'), 345 ('T' vs 'A'), 351 ('C' vs 'T'), 354 ('A' vs 'T'), 366 ('A' vs 'C'), 369 ('T' vs 'A'or'G'), 387 ('T' vs 'A'or'G'), 396 ('C' vs 'T'), 397 ('C' vs 'T'), 399 ('T' vs 'A'), 403 ('T' vs 'C'), 408 ('A' vs 'T'), 420 ('T' vs 'A'), 423 ('T' vs 'C'), 426 ('A' vs 'G'), 429 ('G' vs 'A'), 432 ('A' vs 'T'), 447 ('A' vs 'T'), 450 ('T' vs 'C'), 465 ('A' vs 'G'), 474 ('T' vs 'G'), 479 ('G' vs 'A'or'C'), 480 ('A' vs 'T'), 483 ('G' vs 'A'), 498 ('G' vs 'A'), 510 ('A' vs 'T'or'C'), 540 ('A' vs 'T'or'C'), 543 ('T' vs 'A'), 544 ('T' vs 'C'), 546 ('A' vs 'T'), 552 ('C' vs 'T'), 553 ('T' vs 'C'), 555 ('G' vs 'T'), 561 ('T' vs 'G'), 570 ('C' vs 'A'), 582 ('C' vs 'A'), 591 ('T' vs 'C'), 594 ('C' vs 'T'), 597 ('C' vs 'T'), 603 ('C' vs 'G'), 606 ('C' vs 'T'), 615 ('G' vs 'T'), 618 ('A' vs 'T'or'C'), 624 ('G' vs 'T'or'C'), 633 ('T' vs 'A'), 639 ('G' vs 'A'), 649 ('C' vs 'T'), 651 ('A' vs 'G') </h4>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/testout	Sun Jan 29 16:25:48 2023 +0000
@@ -0,0 +1,50 @@
+<h4>########################## PARAMETERS ######################</h4>
+<p> input file: test-data/Pontohedyle_COI.fas </p>
+<p> Coding gaps as characters: False </p>
+<p> Maximum undetermined nucleotides allowed: 5 </p>
+<p> Length of the alignment: 655 -> 655 </p>
+<p> Indexing reference: Not set </p>
+<p> Read in 27 sequences </p>
+<p> query taxa: 2 - brasilensis, joni </p>
+<p> Cutoff set as: 100 </p>
+<p> Number iterations of MolD set as: 10000 </p>
+<p> Maximum length of raw mDNCs set as: 12 </p>
+<p> Maximum length of refined mDNCs set as: 7 </p>
+<p> simulated sequences up to 1 percent divergent from original ones </p>
+<p> Maximum number of sequences modified per clade 10 </p>
+<p> scoring of the rDNCs; threshold in two consequtive runs: 75 </p>
+<h4>########################### RESULTS ##########################</h4>
+<h4>************** brasilensis **************</h4>
+<p> Sequences analyzed: 4 </p>
+<p> single nucleotide mDNCs*: 45 - 4: 'G', 16: 'C', 40: 'C', 44: 'G', 46: 'G', 68: 'G', 97: 'C', 101: 'C', 102: 'C', 167: 'G', 169: 'C', 170: 'T', 197: 'A', 202: 'G', 217: 'A', 227: 'G', 228: 'C', 239: 'T', 272: 'G', 287: 'A', 295: 'G', 310: 'C', 332: 'T', 357: 'A', 358: 'G', 365: 'T', 372: 'T', 387: 'C', 434: 'G', 456: 'G', 457: 'G', 467: 'G', 482: 'T', 483: 'G', 497: 'C', 499: 'T', 512: 'T', 518: 'A', 529: 'A', 535: 'G', 542: 'T', 543: 'C', 566: 'C', 619: 'G', 635: 'G' </p>
+<p> mDNCs* retrieved: 1048; Sites involved: 100; Independent mDNCs**: 71 </p>
+<p> Shortest retrieved mDNC*: [4: 'G'] </p>
+<p> 1 rDNC_score (100): [4] - 52 </p>
+<p> 2 rDNC_score (100): [4, 16] - 86 </p>
+<p> 3 rDNC_score (100): [4, 16, 40] - 93 </p>
+<p> Final rDNC***: [4: 'G', 16: 'C', 40: 'C'] </p>
+<p> The DNA diagnosis for the taxon brasilensis is: 'G' in the site 4, 'C' in the site 16, 'C' in the site 40. </p>
+<h4>************** joni **************</h4>
+<p> Sequences analyzed: 3 </p>
+<p> single nucleotide mDNCs*: 10 - 31: 'A', 85: 'G', 160: 'G', 283: 'G', 298: 'G', 451: 'G', 523: 'C', 526: 'A', 578: 'C', 580: 'T' </p>
+<p> mDNCs* retrieved: 2662; Sites involved: 100; Independent mDNCs**: 50 </p>
+<p> Shortest retrieved mDNC*: [31: 'A'] </p>
+<p> 1 rDNC_score (100): [31] - 65 </p>
+<p> 2 rDNC_score (100): [31, 85] - 97 </p>
+<p> 3 rDNC_score (100): [31, 85, 160] - 99 </p>
+<p> Final rDNC***: [31: 'A', 85: 'G', 160: 'G'] </p>
+<p> The DNA diagnosis for the taxon joni is: 'A' in the site 31, 'G' in the site 85, 'G' in the site 160. </p>
+<h4> ################################# EXPLANATIONS #################################### </h4>
+<p>   * mDNC -(=minimal Diagnostic nucleotide combination) is a combination of nucleotides at specified sites of the alignment, </p>
+<p>     unique for a query taxon. Therefore it is sufficient to differentiate a query taxon from all reference taxa in a dataset. </p>
+<p>     Because it comprises minimal necessary number of nucleotide sites to differentiate a query, any mutation in the mDNC in</p>
+<p>     single specimen of a query taxon will automatically disqualify it as a diagnostic combination. </p>
+<p> </p>
+<p>  ** two or more mDNCs are INDEPENDENT if they constitute non-overlapping sets of nucleotide sites. </p>
+<p> </p>
+<p> *** rDNC -(=robust/redundant Diagnostic nucleotide combination) is a combination of nucleotides at specified sites of the alignment, </p>
+<p>     unique for a query taxon and (likewise mDNC) sufficient to differentiate a query taxon from all reference taxa in a dataset. </p>
+<p>     However, rDNC comprises more than a minimal necessary number of diagnostic sites, and therefore is robust to single nucleotide </p>
+<p>     replacements. Even if a mutation arises in one of the rDNC sites, the remaining ones will (with high probability) remain sufficient  </p>
+<p>     to diagnose the query taxon </p>
+<h4>     Final diagnosis corresponds to rDNC </h4>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/uwsgi.ini	Sun Jan 29 16:25:48 2023 +0000
@@ -0,0 +1,19 @@
+[uwsgi]
+project = mold-dev
+module = wsgi:app
+master = True
+#http-socket = localhost:9300
+socket-timeout = 3000
+buffer-size = 65535
+protocol = http
+processes = 2
+vacuum = true
+chdir = /home/annndrey/work/git/MolD_release
+home = /home/annndrey/work/git/MolD_release/venv
+#logto = mold.log
+#cheaper-algo = spare
+#cheaper = 2
+#cheaper-initial = 2
+workers = 1
+#cheaper-step = 1
+wsgi-disable-file-wrapper = true
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/wsgi.py	Sun Jan 29 16:25:48 2023 +0000
@@ -0,0 +1,5 @@
+from api import app
+
+if __name__ == "__main__":
+    app.run()
+