Mercurial > repos > iuc > calculate_contrast_threshold
comparison calculate_contrast_threshold.py @ 0:7371bb087d86 draft default tip
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/calculate_contrast_threshold commit 6ba8e678f8cedabaf9b4759cddb81b8b3cd9ec31"
author | iuc |
---|---|
date | Wed, 11 Sep 2019 09:28:55 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:7371bb087d86 |
---|---|
1 #!/usr/bin/python | |
2 | |
3 import getopt | |
4 import math | |
5 import sys | |
6 | |
7 import numpy as np | |
8 | |
9 """ | |
10 Program to calculate the contrast thresholds for heatmap from tagPileUp CDT | |
11 """ | |
12 | |
13 | |
14 def rebin(a, new_shape): | |
15 M, N = a.shape | |
16 m, n = new_shape | |
17 if m >= M: | |
18 # repeat rows in data matrix | |
19 a = np.repeat(a, math.ceil(float(m) / M), axis=0) | |
20 | |
21 M, N = a.shape | |
22 m, n = new_shape | |
23 | |
24 row_delete_num = M % m | |
25 col_delete_num = N % n | |
26 | |
27 np.random.seed(seed=0) | |
28 | |
29 if row_delete_num > 0: | |
30 # select deleted rows with equal intervals | |
31 row_delete = np.linspace(0, M - 1, num=row_delete_num, dtype=int) | |
32 # sort the random selected deleted row ids | |
33 row_delete = np.sort(row_delete) | |
34 row_delete_plus1 = row_delete[1:-1] + \ | |
35 1 # get deleted rows plus position | |
36 # get deleted rows plus position (top +1; end -1) | |
37 row_delete_plus1 = np.append( | |
38 np.append(row_delete[0] + 1, row_delete_plus1), row_delete[-1] - 1) | |
39 # put the info of deleted rows into the next rows by mean | |
40 a[row_delete_plus1, :] = ( | |
41 a[row_delete, :] + a[row_delete_plus1, :]) / 2 | |
42 a = np.delete(a, row_delete, axis=0) # random remove rows | |
43 | |
44 if col_delete_num > 0: | |
45 # select deleted cols with equal intervals | |
46 col_delete = np.linspace(0, N - 1, num=col_delete_num, dtype=int) | |
47 # sort the random selected deleted col ids | |
48 col_delete = np.sort(col_delete) | |
49 col_delete_plus1 = col_delete[1:-1] + \ | |
50 1 # get deleted cols plus position | |
51 # get deleted cols plus position (top +1; end -1) | |
52 col_delete_plus1 = np.append( | |
53 np.append(col_delete[0] + 1, col_delete_plus1), col_delete[-1] - 1) | |
54 # put the info of deleted cols into the next cols by mean | |
55 a[:, col_delete_plus1] = ( | |
56 a[:, col_delete] + a[:, col_delete_plus1]) / 2 | |
57 a = np.delete(a, col_delete, axis=1) # random remove columns | |
58 | |
59 M, N = a.shape | |
60 | |
61 # compare the heatmap matrix | |
62 a_compress = a.reshape((m, int(M / m), n, int(N / n))).mean(3).mean(1) | |
63 return np.array(a_compress) | |
64 | |
65 | |
66 def load_Data(input_file, quantile, absolute, header, start_col, row_num, col_num, min_upper_lim): | |
67 data0 = [] | |
68 with open(input_file, 'r') as data: | |
69 if header == 'T': | |
70 data.readline() | |
71 | |
72 for rec in data: | |
73 tmp = [(x.strip()) for x in rec.split('\t')] | |
74 data0.append(tmp[start_col:]) | |
75 data0 = np.array(data0, dtype=float) | |
76 | |
77 if row_num == -999: | |
78 row_num = data0.shape[0] | |
79 if col_num == -999: | |
80 col_num = data0.shape[1] | |
81 | |
82 # rebin data0 | |
83 if row_num < data0.shape[0] and col_num < data0.shape[1]: | |
84 data0 = rebin(data0, (row_num, col_num)) | |
85 elif row_num < data0.shape[0]: | |
86 data0 = rebin(data0, (row_num, data0.shape[1])) | |
87 elif col_num < data0.shape[1]: | |
88 data0 = rebin(data0, (data0.shape[0], col_num)) | |
89 | |
90 # Calculate contrast limits here | |
91 rows, cols = np.nonzero(data0) | |
92 upper_lim = np.percentile(data0[rows, cols], quantile) | |
93 lower_lim = 0 | |
94 if absolute != -999: | |
95 upper_lim = absolute | |
96 | |
97 # Setting an absolute threshold to a minimum, | |
98 # in cases the 95th percentile contrast is <= user defined min_upper_lim | |
99 if quantile > 0.0: | |
100 print("\nQUANTILE: {}".format(quantile)) | |
101 print("Quantile calculated UPPER LIM: {}".format(upper_lim)) | |
102 print("LOWER LIM: {}".format(lower_lim)) | |
103 if upper_lim <= min_upper_lim: | |
104 print("setting heatmap upper_threshold to min_upper_lim\n") | |
105 upper_lim = min_upper_lim | |
106 | |
107 outfile = open('calcThreshold.txt', 'w') | |
108 outfile.write("upper_threshold:{}\nlower_threshold:{}\nrow_num:{}\ncol_num:{}\nheader:{}\nstart_col:{}".format( | |
109 upper_lim, lower_lim, row_num, col_num, header, start_col)) | |
110 print('heatmap_upper_threshold:' + str(upper_lim)) | |
111 print('heatmap_lower_threshold:' + str(lower_lim)) | |
112 outfile.flush() | |
113 outfile.close() | |
114 | |
115 | |
116 ############################################################################ | |
117 # python cdt_to_heatmap.py -i test.tabular.split_line -o test.tabular.split_line.png -q 0.9 -c black -d T -s 2 -r 500 -l 300 -b test.colorsplit | |
118 ############################################################################ | |
119 usage = """ | |
120 Usage: | |
121 This script calculates the contrast thresholds from Tag pile up heatmap data. Outputs a text file that contains the parameters for the heatmap script. | |
122 | |
123 python calculateThreshold.py -i <input file> -q <quantile> -m <min upper thresold after quantile calculation> -t <absolute tag threshold> -d <header T/F> -s <start column> -r <row num after compress> -l <col num after compress>' | |
124 | |
125 Example: | |
126 python calculateThreshold.py -i test.tabular.split_line -q 90 -m 5 -d T -s 2 -r 600 -l 300 | |
127 """ | |
128 | |
129 if __name__ == '__main__': | |
130 | |
131 # check for command line arguments | |
132 if len(sys.argv) < 2 or not sys.argv[1].startswith("-"): | |
133 sys.exit(usage) | |
134 # get arguments | |
135 try: | |
136 optlist, alist = getopt.getopt(sys.argv[1:], 'hi:o:q:t:c:d:s:r:l:m:') | |
137 except getopt.GetoptError: | |
138 sys.exit(usage) | |
139 | |
140 # default quantile contrast saturation = 0.9 | |
141 quantile = 90.0 | |
142 min_upper_lim = 5.0 | |
143 # absolute contrast saturation overrides quantile | |
144 absolute = -999 | |
145 | |
146 # default figure width/height is defined by matrix size | |
147 # if user-defined size is smaller than matrix, activate rebin function | |
148 row_num = -999 | |
149 col_num = -999 | |
150 | |
151 for opt in optlist: | |
152 if opt[0] == "-h": | |
153 sys.exit(usage) | |
154 elif opt[0] == "-i": | |
155 input_file = opt[1] | |
156 elif opt[0] == "-q": | |
157 quantile = float(opt[1]) | |
158 elif opt[0] == '-t': | |
159 absolute = float(opt[1]) | |
160 elif opt[0] == "-d": | |
161 header = opt[1] | |
162 elif opt[0] == "-s": | |
163 start_col = int(opt[1]) | |
164 elif opt[0] == "-r": | |
165 row_num = int(opt[1]) | |
166 elif opt[0] == "-l": | |
167 col_num = int(opt[1]) | |
168 elif opt[0] == "-m": | |
169 min_upper_lim = float(opt[1]) | |
170 | |
171 print("Header present:", header) | |
172 print("Start column:", start_col) | |
173 print("Row number (pixels):", row_num) | |
174 print("Col number (pixels):", col_num) | |
175 print("Min Upper Limit while using Quantile:", min_upper_lim) | |
176 if absolute != -999: | |
177 print("Absolute tag contrast threshold:", absolute) | |
178 else: | |
179 print("Percentile tag contrast threshold:", quantile) | |
180 | |
181 if absolute == -999 and quantile <= 0: | |
182 print("\nInvalid threshold!!!") | |
183 sys.exit(usage) | |
184 | |
185 load_Data(input_file, quantile, absolute, | |
186 header, start_col, row_num, col_num, min_upper_lim) |