diff test-data/gentest.R @ 2:99c6929236fa draft

"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/dada2 commit f2a33fe115fef9d711112b53136cf7619f1b19be"
author iuc
date Mon, 16 Mar 2020 07:54:26 -0400
parents 6e0946238688
children bfd62e881837
line wrap: on
line diff
--- a/test-data/gentest.R	Thu Dec 05 18:00:38 2019 -0500
+++ b/test-data/gentest.R	Mon Mar 16 07:54:26 2020 -0400
@@ -1,99 +1,192 @@
 library(dada2, quietly=T)
 library(ggplot2, quietly=T)
 
-fwd <- c('F3D0_S188_L001_R1_001.fastq.gz')
-rev <- c('F3D0_S188_L001_R2_001.fastq.gz')
+sample.names <- c('F3D0_S188_L001', 'F3D141_S207_L001')
+fwd <- c('F3D0_S188_L001_R1_001.fastq.gz', 'F3D141_S207_L001_R1_001.fastq.gz')
+rev <- c('F3D0_S188_L001_R2_001.fastq.gz', 'F3D141_S207_L001_R2_001.fastq.gz')
+
+filt.fwd <- c('filterAndTrim_F3D0_R1.fq.gz', 'filterAndTrim_F3D141_R1.fq.gz')
+filt.rev <- c('filterAndTrim_F3D0_R2.fq.gz', 'filterAndTrim_F3D141_R2.fq.gz')
+
+print("filterAndTrim")
 
-sample.names <- c('F3D0_S188_L001')
+for(i in 1:length(fwd)){
+	ftout <- filterAndTrim(fwd[i], filt.fwd[i], rev[i], filt.rev[i])
+    b <- paste(strsplit(fwd[i], ".", fixed=T)[[1]][1], "tab", sep=".")
+    write.table(ftout, b, quote=F, sep="\t", col.names=NA)
+}
+
+# In the test only the 1st data set is used
+t <- data.frame()
+t <- rbind(t, ftout[1,])
+colnames(t) <- colnames(ftout)
+rownames(t) <- rownames(ftout)[1]
+write.table(t, "filterAndTrim.tab", quote=F, sep="\t", col.names=NA)
 
 names(fwd) <- sample.names
 names(rev) <- sample.names
-
-
-filt.fwd <- c('filterAndTrim_F3D0_R1.fq.gz')
-filt.rev <- c('filterAndTrim_F3D0_R2.fq.gz')
-
-ftout <- filterAndTrim(fwd, filt.fwd, rev, filt.rev)
-
-# In the test no name can be given to the collection
-rownames(ftout) <- c( 'Unnamed Collection' )
-write.table(ftout, "filterAndTrim_F3D0.tab", quote=F, sep="\t", col.names=NA)
+names(filt.fwd) <- sample.names
+names(filt.rev) <- sample.names
 
 # Plot quality profile (just for one file, Galaxy compares with sim_size)
-
+print("plots")
 qp <- plotQualityProfile(fwd)
+ggsave('qualityProfile_fwd.pdf', qp, width = 20,height = 15,units = c("cm"))
+qp <- plotQualityProfile(rev)
+ggsave('qualityProfile_rev.pdf', qp, width = 20,height = 15,units = c("cm"))
+qp <- plotQualityProfile(fwd[1])
 ggsave('qualityProfile.pdf', qp, width = 20,height = 15,units = c("cm"))
 
 # Plot complexity (just for one file, Galaxy compares with sim_size)
 
 cp <- plotComplexity(fwd)
+ggsave('complexity_fwd.pdf', cp, width = 20,height = 15,units = c("cm"))
+cp <- plotComplexity(rev)
+ggsave('complexity_rev.pdf', cp, width = 20,height = 15,units = c("cm"))
+cp <- plotComplexity(fwd[1])
 ggsave('complexity.pdf', cp, width = 20,height = 15,units = c("cm"))
 
 
 # learn Errors
+print("learnErrors")
 err.fwd <- learnErrors(filt.fwd) 
-saveRDS(err.fwd, file='learnErrors_F3D0_R1.Rdata')
+saveRDS(err.fwd, file='learnErrors_R1.Rdata')
 plot <- plotErrors(err.fwd)
-ggsave('learnErrors_F3D0_R1.pdf', plot, width = 20,height = 15,units = c("cm"))
+ggsave('learnErrors_R1.pdf', plot, width = 20,height = 15,units = c("cm"))
 
-err.rev <- learnErrors(filt.fwd) 
-saveRDS(err.rev, file='learnErrors_F3D0_R2.Rdata')
+err.rev <- learnErrors(filt.rev) 
+saveRDS(err.rev, file='learnErrors_R2.Rdata')
 plot <- plotErrors(err.rev)
-ggsave('learnErrors_F3D0_R2.pdf', plot, width = 20,height = 15,units = c("cm"))
+ggsave('learnErrors.pdf', plot, width = 20,height = 15,units = c("cm"))
 
-# dada 
+# dada
+print("dada")
 dada.fwd <- dada(filt.fwd, err.fwd)
-saveRDS(dada.fwd, file="dada_F3D0_R1.Rdata")
 dada.rev <- dada(filt.rev, err.rev)
-saveRDS(dada.rev, file="dada_F3D0_R2.Rdata")
+for( id in sample.names ){
+	saveRDS(dada.fwd[[id]], file=paste("dada_", id,"_R1.Rdata", sep=""))
+	saveRDS(dada.rev[[id]], file=paste("dada_", id,"_R2.Rdata", sep=""))
+}
 
 # merge pairs
+print("mergePairs")
 merged <- mergePairs(dada.fwd, filt.fwd, dada.rev, filt.rev)
-saveRDS(merged, file='mergePairs_F3D0.Rdata')
+for( id in sample.names ){
+	saveRDS(merged[[id]], file=paste("mergePairs_", id,".Rdata", sep=""))
+}
+
 
 # make sequence table
+print("makeSequenceTable")
 seqtab <- makeSequenceTable(merged)
-write.table(t(seqtab), file="makeSequenceTable_F3D0.tab", quote=F, sep="\t", row.names = T, col.names = NA)
+write.table(t(seqtab), file="makeSequenceTable.tab", quote=F, sep="\t", row.names = T, col.names = NA)
 
 reads.per.seqlen <- tapply(colSums(seqtab), factor(nchar(getSequences(seqtab))), sum)
 df <- data.frame(length=as.numeric(names(reads.per.seqlen)), count=reads.per.seqlen)
-pdf( 'makeSequenceTable_F3D0.pdf' )
+pdf( 'makeSequenceTable.pdf' )
 ggplot(data=df, aes(x=length, y=count)) +
     geom_col() +
     theme_bw()
 bequiet <- dev.off()
 
 # remove bimera
+print("removeBimera")
 seqtab.nochim <- removeBimeraDenovo(seqtab)
-write.table(t(seqtab), file="removeBimeraDenovo_F3D0.tab", quote=F, sep="\t", row.names = T, col.names = NA)
+write.table(t(seqtab), file="removeBimeraDenovo.tab", quote=F, sep="\t", row.names = T, col.names = NA)
 
 # assign taxonomy/species
 tl <- 'Level1,Level2,Level3,Level4,Level5'
 tl <- strsplit(tl, ",")[[1]]
 
-taxa <- assignTaxonomy(seqtab.nochim, 'reference.fa', outputBootstraps = T, taxLevels=c('Level1','Level2','Level3','Level4','Level5'))
+set.seed(42)
+print("assignTaxonomyAndSpecies")
+taxa <- assignTaxonomy(seqtab.nochim, 'reference.fa.gz', outputBootstraps = T, taxLevels=tl, multithread = 1)
 
-taxa$tax <- addSpecies(taxa$tax, 'reference_species.fa')
-write.table(taxa$tax, file = 'assignTaxonomyAddspecies_F3D0.tab', quote = F, sep = "\t", row.names = T, col.names = NA)
+taxa$tax <- addSpecies(taxa$tax, 'reference_species.fa.gz')
+write.table(taxa$tax, file = 'assignTaxonomyAddspecies.tab', quote = F, sep = "\t", row.names = T, col.names = NA)
 
-write.table(taxa$boot, file = 'assignTaxonomyAddspecies_F3D0_boot.tab', quote = F, sep = "\t", row.names = T, col.names = NA)
-
+write.table(taxa$boot, file = 'assignTaxonomyAddspecies_boot.tab', quote = F, sep = "\t", row.names = T, col.names = NA)
 
 
 ## Generate extra test data for parameter testing 
-
-filterAndTrim(fwd, c('filterAndTrim_single_F3D0_R1.fq.gz'), rm.phix = T, orient.fwd = 'TACGG')
+print("alternatives")
+filterAndTrim(fwd, c('filterAndTrim_single_F3D0_R1.fq.gz', 'filterAndTrim_single_F3D141_R1.fq.gz'), rm.phix = T, orient.fwd = 'TACGG')
 
-filterAndTrim(fwd, c('filterAndTrim_single_trimmers_F3D0_R1.fq.gz'), truncQ = 30, truncLen = 2, trimLeft = 150, trimRight = 2)
+filterAndTrim(fwd, c('filterAndTrim_single_trimmers_F3D0_R1.fq.gz', 'filterAndTrim_single_trimmers_F3D141_R1.fq.gz'), truncQ = 30, truncLen = 2, trimLeft = 150, trimRight = 2)
 
-filterAndTrim(fwd, c('filterAndTrim_single_filters_F3D0_R1.fq.gz'), maxLen = 255, minLen = 60, maxN = 100, minQ = 13, maxEE = 1)
+filterAndTrim(fwd, c('filterAndTrim_single_filters_F3D0_R1.fq.gz', 'filterAndTrim_single_filters_F3D141_R1.fq.gz'), maxLen = 255, minLen = 60, maxN = 100, minQ = 13, maxEE = 1)
 
 
 merged_nondef <- mergePairs(dada.fwd, filt.fwd, dada.rev, filt.rev, minOverlap = 8, maxMismatch = 1, justConcatenate = TRUE, trimOverhang = TRUE)
-saveRDS(merged_nondef, file='mergePairs_F3D0_nondefault.Rdata')
-
-rb.dada.fwd <- removeBimeraDenovo(dada.fwd)
+for( id in sample.names ){
+	saveRDS(merged_nondef[[id]], file=paste("mergePairs_", id,"_nondefault.Rdata", sep=""))
+}
+rb.dada.fwd <- removeBimeraDenovo(dada.fwd[["F3D0_S188_L001"]])
 write.table(rb.dada.fwd, file = 'removeBimeraDenovo_F3D0_dada_uniques.tab', quote = F, sep = "\t", row.names = T, col.names = F)
 
 rb.merged <- removeBimeraDenovo(merged, method="pooled")
 saveRDS(rb.merged, file='removeBimeraDenovo_F3D0_mergepairs.Rdata')
+ 
+# SeqCounts
+getN <- function(x){ sum(getUniques(x)) }
+
+read.uniques <- function ( fname ) {
+    p <- read.table(fname, header=F, sep="\t")
+    n <-x[,2]
+    names(n)<-x[,1]
+}
+
+
+print("seqCounts ft")
+samples = list()
+samples[["F3D0_S188_L001_R1_001.tab"]] <- read.table("F3D0_S188_L001_R1_001.tab", header=T, sep="\t", row.names=1)
+dname <- "filter"
+tdf <- samples[["F3D0_S188_L001_R1_001.tab"]]
+names(tdf) <- paste( dname, names(tdf) )
+tdf <- cbind( data.frame(samples=names( samples )), tdf)
+write.table(tdf, "seqCounts_filter.tab", quote=F, sep="\t", row.names = F, col.names = T)
+
+samples = list()
+samples[["F3D0_S188_L001_R1_001.tab"]] <- read.table("F3D0_S188_L001_R1_001.tab", header=T, sep="\t", row.names=1)
+samples[["F3D141_S207_L001_R1_001.tab"]] <- read.table("F3D141_S207_L001_R1_001.tab", header=T, sep="\t", row.names=1)
+dname <- "filter"
+tdf <- samples[["F3D0_S188_L001_R1_001.tab"]]
+tdf <- rbind(tdf, samples[["F3D141_S207_L001_R1_001.tab"]])
+names(tdf) <- paste( dname, names(tdf) )
+tdf <- cbind( data.frame(samples=names( samples )), tdf)
+write.table(tdf, "seqCounts_filter_both.tab", quote=F, sep="\t", row.names = F, col.names = T)
+
+print("seqCounts dada")
+samples = list()
+samples[["dada_F3D0_S188_L001_R1.Rdata"]] <- readRDS('dada_F3D0_S188_L001_R1.Rdata')
+samples[["dada_F3D141_S207_L001_R1.Rdata"]] <- readRDS('dada_F3D141_S207_L001_R1.Rdata')
+dname <- "dadaF"
+tdf <- data.frame( samples = names(samples) )
+tdf[[ dname ]] <- sapply(samples, getN)
+write.table(tdf, "seqCounts_dadaF.tab", quote=F, sep="\t", row.names = F, col.names = T)
+
+print("seqCounts mp")
+samples = list()
+samples[["mergePairs_F3D0_S188_L001.Rdata"]] <- readRDS('mergePairs_F3D0_S188_L001.Rdata')
+samples[["mergePairs_F3D141_S207_L001.Rdata"]] <- readRDS('mergePairs_F3D141_S207_L001.Rdata')
+dname <- "merge"
+tdf <- data.frame( samples = names(samples) )
+tdf[[ dname ]] <- sapply(samples, getN)
+write.table(tdf, "seqCounts_merge.tab", quote=F, sep="\t", row.names = F, col.names = T)
+
+print("seqCounts st")
+samples = list()
+samples <- t(as.matrix( read.table("makeSequenceTable.tab", header=T, sep="\t", row.names=1) ))
+dname <- "seqtab"
+tdf <- data.frame( samples = row.names(samples) )
+tdf[[ dname ]] <- rowSums(samples)
+write.table(tdf, "seqCounts_seqtab.tab", quote=F, sep="\t", row.names = F, col.names = T)
+
+print("seqCounts rb")
+samples = list()
+samples <- t(as.matrix( read.table("removeBimeraDenovo.tab", header=T, sep="\t", row.names=1) ))
+dname <- "nochim"
+tdf <- data.frame( samples = row.names(samples) )
+tdf[[ dname ]] <- rowSums(samples)
+write.table(tdf, "seqCounts_nochim.tab", quote=F, sep="\t", row.names = F, col.names = T)
+