Mercurial > repos > iuc > dada2_mergepairs
comparison test-data/gentest.R @ 3:0b884b080bb6 draft
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/dada2 commit 8533fe71d1d50f09348da2dc34941724407a1ffe"
author | iuc |
---|---|
date | Tue, 14 Jul 2020 07:41:00 -0400 |
parents | 69900ffd3b8e |
children | 84743da21318 |
comparison
equal
deleted
inserted
replaced
2:69900ffd3b8e | 3:0b884b080bb6 |
---|---|
1 library(dada2, quietly=T) | 1 library(dada2, quietly = T) |
2 library(ggplot2, quietly=T) | 2 library(ggplot2, quietly = T) |
3 | 3 |
4 sample.names <- c('F3D0_S188_L001', 'F3D141_S207_L001') | 4 sample_names <- c("F3D0_S188_L001", "F3D141_S207_L001") |
5 fwd <- c('F3D0_S188_L001_R1_001.fastq.gz', 'F3D141_S207_L001_R1_001.fastq.gz') | 5 fwd <- c("F3D0_S188_L001_R1_001.fastq.gz", "F3D141_S207_L001_R1_001.fastq.gz") |
6 rev <- c('F3D0_S188_L001_R2_001.fastq.gz', 'F3D141_S207_L001_R2_001.fastq.gz') | 6 rev <- c("F3D0_S188_L001_R2_001.fastq.gz", "F3D141_S207_L001_R2_001.fastq.gz") |
7 | 7 |
8 filt.fwd <- c('filterAndTrim_F3D0_R1.fq.gz', 'filterAndTrim_F3D141_R1.fq.gz') | 8 filt_fwd <- c("filterAndTrim_F3D0_R1.fq.gz", "filterAndTrim_F3D141_R1.fq.gz") |
9 filt.rev <- c('filterAndTrim_F3D0_R2.fq.gz', 'filterAndTrim_F3D141_R2.fq.gz') | 9 filt_rev <- c("filterAndTrim_F3D0_R2.fq.gz", "filterAndTrim_F3D141_R2.fq.gz") |
10 | 10 |
11 print("filterAndTrim") | 11 print("filterAndTrim") |
12 | 12 |
13 for(i in 1:length(fwd)){ | 13 for (i in seq_len(fwd)) { |
14 ftout <- filterAndTrim(fwd[i], filt.fwd[i], rev[i], filt.rev[i]) | 14 ftout <- dada2::filterAndTrim(fwd[i], filt_fwd[i], rev[i], filt_rev[i]) |
15 b <- paste(strsplit(fwd[i], ".", fixed=T)[[1]][1], "tab", sep=".") | 15 b <- paste(strsplit(fwd[i], ".", fixed = T)[[1]][1], "tab", sep = ".") |
16 write.table(ftout, b, quote=F, sep="\t", col.names=NA) | 16 write.table(ftout, b, quote = F, sep = "\t", col.names = NA) |
17 } | 17 } |
18 | 18 |
19 # In the test only the 1st data set is used | 19 # In the test only the 1st data set is used |
20 t <- data.frame() | 20 t <- data.frame() |
21 t <- rbind(t, ftout[1,]) | 21 t <- rbind(t, ftout[1, ]) |
22 colnames(t) <- colnames(ftout) | 22 colnames(t) <- colnames(ftout) |
23 rownames(t) <- rownames(ftout)[1] | 23 rownames(t) <- rownames(ftout)[1] |
24 write.table(t, "filterAndTrim.tab", quote=F, sep="\t", col.names=NA) | 24 write.table(t, "filterAndTrim.tab", quote = F, sep = "\t", col.names = NA) |
25 | 25 |
26 names(fwd) <- sample.names | 26 names(fwd) <- sample_names |
27 names(rev) <- sample.names | 27 names(rev) <- sample_names |
28 names(filt.fwd) <- sample.names | 28 names(filt_fwd) <- sample_names |
29 names(filt.rev) <- sample.names | 29 names(filt_rev) <- sample_names |
30 | 30 |
31 # Plot quality profile (just for one file, Galaxy compares with sim_size) | 31 # Plot quality profile (just for one file, Galaxy compares with sim_size) |
32 print("plots") | 32 print("plots") |
33 qp <- plotQualityProfile(fwd) | 33 qp <- dada2::plotQualityProfile(fwd) |
34 ggsave('qualityProfile_fwd.pdf', qp, width = 20,height = 15,units = c("cm")) | 34 ggsave("qualityProfile_fwd.pdf", qp, width = 20, height = 15, units = c("cm")) |
35 qp <- plotQualityProfile(rev) | 35 qp <- dada2::plotQualityProfile(rev) |
36 ggsave('qualityProfile_rev.pdf', qp, width = 20,height = 15,units = c("cm")) | 36 ggsave("qualityProfile_rev.pdf", qp, width = 20, height = 15, units = c("cm")) |
37 qp <- plotQualityProfile(fwd[1]) | 37 qp <- dada2::plotQualityProfile(fwd[1]) |
38 ggsave('qualityProfile.pdf', qp, width = 20,height = 15,units = c("cm")) | 38 ggsave("qualityProfile.pdf", qp, width = 20, height = 15, units = c("cm")) |
39 | 39 |
40 # Plot complexity (just for one file, Galaxy compares with sim_size) | 40 # Plot complexity (just for one file, Galaxy compares with sim_size) |
41 | 41 |
42 cp <- plotComplexity(fwd) | 42 cp <- dada2::plotComplexity(fwd) |
43 ggsave('complexity_fwd.pdf', cp, width = 20,height = 15,units = c("cm")) | 43 ggsave("complexity_fwd.pdf", cp, width = 20, height = 15, units = c("cm")) |
44 cp <- plotComplexity(rev) | 44 cp <- dada2::plotComplexity(rev) |
45 ggsave('complexity_rev.pdf', cp, width = 20,height = 15,units = c("cm")) | 45 ggsave("complexity_rev.pdf", cp, width = 20, height = 15, units = c("cm")) |
46 cp <- plotComplexity(fwd[1]) | 46 cp <- dada2::plotComplexity(fwd[1]) |
47 ggsave('complexity.pdf', cp, width = 20,height = 15,units = c("cm")) | 47 ggsave("complexity.pdf", cp, width = 20, height = 15, units = c("cm")) |
48 | 48 |
49 | 49 |
50 # learn Errors | 50 # learn Errors |
51 print("learnErrors") | 51 print("learnErrors") |
52 err.fwd <- learnErrors(filt.fwd) | 52 err_fwd <- dada2::learnErrors(filt_fwd) |
53 saveRDS(err.fwd, file='learnErrors_R1.Rdata') | 53 saveRDS(err_fwd, file = "learnErrors_R1.Rdata") |
54 plot <- plotErrors(err.fwd) | 54 plot <- dada2::plotErrors(err_fwd) |
55 ggsave('learnErrors_R1.pdf', plot, width = 20,height = 15,units = c("cm")) | 55 ggsave("learnErrors_R1.pdf", plot, width = 20, height = 15, units = c("cm")) |
56 | 56 |
57 err.rev <- learnErrors(filt.rev) | 57 err_rev <- dada2::learnErrors(filt_rev) |
58 saveRDS(err.rev, file='learnErrors_R2.Rdata') | 58 saveRDS(err_rev, file = "learnErrors_R2.Rdata") |
59 plot <- plotErrors(err.rev) | 59 plot <- dada2::plotErrors(err_rev) |
60 ggsave('learnErrors.pdf', plot, width = 20,height = 15,units = c("cm")) | 60 ggsave("learnErrors.pdf", plot, width = 20, height = 15, units = c("cm")) |
61 | 61 |
62 # dada | 62 # dada |
63 print("dada") | 63 print("dada") |
64 dada.fwd <- dada(filt.fwd, err.fwd) | 64 dada_fwd <- dada2::dada(filt_fwd, err_fwd) |
65 dada.rev <- dada(filt.rev, err.rev) | 65 dada_rev <- dada2::dada(filt_rev, err_rev) |
66 for( id in sample.names ){ | 66 for (id in sample_names) { |
67 saveRDS(dada.fwd[[id]], file=paste("dada_", id,"_R1.Rdata", sep="")) | 67 saveRDS(dada_fwd[[id]], file = paste("dada_", id, "_R1.Rdata", sep = "")) |
68 saveRDS(dada.rev[[id]], file=paste("dada_", id,"_R2.Rdata", sep="")) | 68 saveRDS(dada_rev[[id]], file = paste("dada_", id, "_R2.Rdata", sep = "")) |
69 } | 69 } |
70 | 70 |
71 # merge pairs | 71 # merge pairs |
72 print("mergePairs") | 72 print("mergePairs") |
73 merged <- mergePairs(dada.fwd, filt.fwd, dada.rev, filt.rev) | 73 merged <- dada2::mergePairs(dada_fwd, filt_fwd, dada_rev, filt_rev) |
74 for( id in sample.names ){ | 74 for (id in sample_names) { |
75 saveRDS(merged[[id]], file=paste("mergePairs_", id,".Rdata", sep="")) | 75 saveRDS(merged[[id]], file = paste("mergePairs_", id, ".Rdata", sep = "")) |
76 } | 76 } |
77 | 77 |
78 | 78 |
79 # make sequence table | 79 # make sequence table |
80 print("makeSequenceTable") | 80 print("makeSequenceTable") |
81 seqtab <- makeSequenceTable(merged) | 81 seqtab <- makeSequenceTable(merged) |
82 write.table(t(seqtab), file="makeSequenceTable.tab", quote=F, sep="\t", row.names = T, col.names = NA) | 82 write.table(t(seqtab), file = "makeSequenceTable.tab", quote = F, sep = "\t", row.names = T, col.names = NA) |
83 | 83 |
84 reads.per.seqlen <- tapply(colSums(seqtab), factor(nchar(getSequences(seqtab))), sum) | 84 reads_per_seqlen <- tapply(colSums(seqtab), factor(nchar(getSequences(seqtab))), sum) |
85 df <- data.frame(length=as.numeric(names(reads.per.seqlen)), count=reads.per.seqlen) | 85 df <- data.frame(length = as.numeric(names(reads_per_seqlen)), count = reads_per_seqlen) |
86 pdf( 'makeSequenceTable.pdf' ) | 86 pdf("makeSequenceTable.pdf") |
87 ggplot(data=df, aes(x=length, y=count)) + | 87 ggplot(data = df, aes(x = length, y = count)) + |
88 geom_col() + | 88 geom_col() + |
89 theme_bw() | 89 theme_bw() |
90 bequiet <- dev.off() | 90 bequiet <- dev.off() |
91 | 91 |
92 # remove bimera | 92 # remove bimera |
93 print("removeBimera") | 93 print("removeBimera") |
94 seqtab.nochim <- removeBimeraDenovo(seqtab) | 94 seqtab_nochim <- dada2::removeBimeraDenovo(seqtab) |
95 write.table(t(seqtab), file="removeBimeraDenovo.tab", quote=F, sep="\t", row.names = T, col.names = NA) | 95 write.table(t(seqtab), file = "removeBimeraDenovo.tab", quote = F, sep = "\t", row.names = T, col.names = NA) |
96 | 96 |
97 # assign taxonomy/species | 97 # assign taxonomy/species |
98 tl <- 'Level1,Level2,Level3,Level4,Level5' | 98 tl <- "Level1,Level2,Level3,Level4,Level5" |
99 tl <- strsplit(tl, ",")[[1]] | 99 tl <- strsplit(tl, ",")[[1]] |
100 | 100 |
101 set.seed(42) | 101 set.seed(42) |
102 print("assignTaxonomyAndSpecies") | 102 print("assignTaxonomyAndSpecies") |
103 taxa <- assignTaxonomy(seqtab.nochim, 'reference.fa.gz', outputBootstraps = T, taxLevels=tl, multithread = 1) | 103 taxa <- dada2::assignTaxonomy(seqtab_nochim, "reference.fa.gz", outputBootstraps = T, taxLevels = tl, multithread = 1) |
104 | 104 |
105 taxa$tax <- addSpecies(taxa$tax, 'reference_species.fa.gz') | 105 taxa$tax <- dada2::addSpecies(taxa$tax, "reference_species.fa.gz") |
106 write.table(taxa$tax, file = 'assignTaxonomyAddspecies.tab', quote = F, sep = "\t", row.names = T, col.names = NA) | 106 write.table(taxa$tax, file = "assignTaxonomyAddspecies.tab", quote = F, sep = "\t", row.names = T, col.names = NA) |
107 | 107 |
108 write.table(taxa$boot, file = 'assignTaxonomyAddspecies_boot.tab', quote = F, sep = "\t", row.names = T, col.names = NA) | 108 write.table(taxa$boot, file = "assignTaxonomyAddspecies_boot.tab", quote = F, sep = "\t", row.names = T, col.names = NA) |
109 | 109 |
110 | 110 |
111 ## Generate extra test data for parameter testing | 111 ## Generate extra test data for parameter testing |
112 print("alternatives") | 112 print("alternatives") |
113 filterAndTrim(fwd, c('filterAndTrim_single_F3D0_R1.fq.gz', 'filterAndTrim_single_F3D141_R1.fq.gz'), rm.phix = T, orient.fwd = 'TACGG') | 113 dada2::filterAndTrim(fwd, c("filterAndTrim_single_F3D0_R1.fq.gz", "filterAndTrim_single_F3D141_R1.fq.gz"), rm.phix = T, orient.fwd = "TACGG") |
114 | 114 |
115 filterAndTrim(fwd, c('filterAndTrim_single_trimmers_F3D0_R1.fq.gz', 'filterAndTrim_single_trimmers_F3D141_R1.fq.gz'), truncQ = 30, truncLen = 2, trimLeft = 150, trimRight = 2) | 115 dada2::filterAndTrim(fwd, c("filterAndTrim_single_trimmers_F3D0_R1.fq.gz", "filterAndTrim_single_trimmers_F3D141_R1.fq.gz"), truncQ = 30, truncLen = 2, trimLeft = 150, trimRight = 2) |
116 | 116 |
117 filterAndTrim(fwd, c('filterAndTrim_single_filters_F3D0_R1.fq.gz', 'filterAndTrim_single_filters_F3D141_R1.fq.gz'), maxLen = 255, minLen = 60, maxN = 100, minQ = 13, maxEE = 1) | 117 dada2::filterAndTrim(fwd, c("filterAndTrim_single_filters_F3D0_R1.fq.gz", "filterAndTrim_single_filters_F3D141_R1.fq.gz"), maxLen = 255, minLen = 60, maxN = 100, minQ = 13, maxEE = 1) |
118 | 118 |
119 | 119 |
120 merged_nondef <- mergePairs(dada.fwd, filt.fwd, dada.rev, filt.rev, minOverlap = 8, maxMismatch = 1, justConcatenate = TRUE, trimOverhang = TRUE) | 120 merged_nondef <- dada2::mergePairs(dada_fwd, filt_fwd, dada_rev, filt_rev, minOverlap = 8, maxMismatch = 1, justConcatenate = TRUE, trimOverhang = TRUE) |
121 for( id in sample.names ){ | 121 for (id in sample_names) { |
122 saveRDS(merged_nondef[[id]], file=paste("mergePairs_", id,"_nondefault.Rdata", sep="")) | 122 saveRDS(merged_nondef[[id]], file = paste("mergePairs_", id, "_nondefault.Rdata", sep = "")) |
123 } | 123 } |
124 rb.dada.fwd <- removeBimeraDenovo(dada.fwd[["F3D0_S188_L001"]]) | 124 rb_dada_fwd <- dada2::removeBimeraDenovo(dada_fwd[["F3D0_S188_L001"]]) |
125 write.table(rb.dada.fwd, file = 'removeBimeraDenovo_F3D0_dada_uniques.tab', quote = F, sep = "\t", row.names = T, col.names = F) | 125 write.table(rb_dada_fwd, file = "removeBimeraDenovo_F3D0_dada_uniques.tab", quote = F, sep = "\t", row.names = T, col.names = F) |
126 | 126 |
127 rb.merged <- removeBimeraDenovo(merged, method="pooled") | 127 rb_merged <- dada2::removeBimeraDenovo(merged, method = "pooled") |
128 saveRDS(rb.merged, file='removeBimeraDenovo_F3D0_mergepairs.Rdata') | 128 saveRDS(rb_merged, file = "removeBimeraDenovo_F3D0_mergepairs.Rdata") |
129 | 129 |
130 # SeqCounts | 130 # SeqCounts |
131 getN <- function(x){ sum(getUniques(x)) } | 131 get_n <- function(x) { |
132 | 132 sum(dada2::getUniques(x)) |
133 read.uniques <- function ( fname ) { | |
134 p <- read.table(fname, header=F, sep="\t") | |
135 n <-x[,2] | |
136 names(n)<-x[,1] | |
137 } | 133 } |
138 | 134 |
139 | |
140 print("seqCounts ft") | 135 print("seqCounts ft") |
141 samples = list() | 136 samples <- list() |
142 samples[["F3D0_S188_L001_R1_001.tab"]] <- read.table("F3D0_S188_L001_R1_001.tab", header=T, sep="\t", row.names=1) | 137 samples[["F3D0_S188_L001_R1_001.tab"]] <- read.table("F3D0_S188_L001_R1_001.tab", header = T, sep = "\t", row.names = 1) |
143 dname <- "filter" | 138 dname <- "filter" |
144 tdf <- samples[["F3D0_S188_L001_R1_001.tab"]] | 139 tdf <- samples[["F3D0_S188_L001_R1_001.tab"]] |
145 names(tdf) <- paste( dname, names(tdf) ) | 140 names(tdf) <- paste(dname, names(tdf)) |
146 tdf <- cbind( data.frame(samples=names( samples )), tdf) | 141 tdf <- cbind(data.frame(samples = names(samples)), tdf) |
147 write.table(tdf, "seqCounts_filter.tab", quote=F, sep="\t", row.names = F, col.names = T) | 142 write.table(tdf, "seqCounts_filter.tab", quote = F, sep = "\t", row.names = F, col.names = T) |
148 | 143 |
149 samples = list() | 144 samples <- list() |
150 samples[["F3D0_S188_L001_R1_001.tab"]] <- read.table("F3D0_S188_L001_R1_001.tab", header=T, sep="\t", row.names=1) | 145 samples[["F3D0_S188_L001_R1_001.tab"]] <- read.table("F3D0_S188_L001_R1_001.tab", header = T, sep = "\t", row.names = 1) |
151 samples[["F3D141_S207_L001_R1_001.tab"]] <- read.table("F3D141_S207_L001_R1_001.tab", header=T, sep="\t", row.names=1) | 146 samples[["F3D141_S207_L001_R1_001.tab"]] <- read.table("F3D141_S207_L001_R1_001.tab", header = T, sep = "\t", row.names = 1) |
152 dname <- "filter" | 147 dname <- "filter" |
153 tdf <- samples[["F3D0_S188_L001_R1_001.tab"]] | 148 tdf <- samples[["F3D0_S188_L001_R1_001.tab"]] |
154 tdf <- rbind(tdf, samples[["F3D141_S207_L001_R1_001.tab"]]) | 149 tdf <- rbind(tdf, samples[["F3D141_S207_L001_R1_001.tab"]]) |
155 names(tdf) <- paste( dname, names(tdf) ) | 150 names(tdf) <- paste(dname, names(tdf)) |
156 tdf <- cbind( data.frame(samples=names( samples )), tdf) | 151 tdf <- cbind(data.frame(samples = names(samples)), tdf) |
157 write.table(tdf, "seqCounts_filter_both.tab", quote=F, sep="\t", row.names = F, col.names = T) | 152 write.table(tdf, "seqCounts_filter_both.tab", quote = F, sep = "\t", row.names = F, col.names = T) |
158 | 153 |
159 print("seqCounts dada") | 154 print("seqCounts dada") |
160 samples = list() | 155 samples <- list() |
161 samples[["dada_F3D0_S188_L001_R1.Rdata"]] <- readRDS('dada_F3D0_S188_L001_R1.Rdata') | 156 samples[["dada_F3D0_S188_L001_R1.Rdata"]] <- readRDS("dada_F3D0_S188_L001_R1.Rdata") |
162 samples[["dada_F3D141_S207_L001_R1.Rdata"]] <- readRDS('dada_F3D141_S207_L001_R1.Rdata') | 157 samples[["dada_F3D141_S207_L001_R1.Rdata"]] <- readRDS("dada_F3D141_S207_L001_R1.Rdata") |
163 dname <- "dadaF" | 158 dname <- "dadaF" |
164 tdf <- data.frame( samples = names(samples) ) | 159 tdf <- data.frame(samples = names(samples)) |
165 tdf[[ dname ]] <- sapply(samples, getN) | 160 tdf[[dname]] <- sapply(samples, get_n) |
166 write.table(tdf, "seqCounts_dadaF.tab", quote=F, sep="\t", row.names = F, col.names = T) | 161 write.table(tdf, "seqCounts_dadaF.tab", quote = F, sep = "\t", row.names = F, col.names = T) |
167 | 162 |
168 print("seqCounts mp") | 163 print("seqCounts mp") |
169 samples = list() | 164 samples <- list() |
170 samples[["mergePairs_F3D0_S188_L001.Rdata"]] <- readRDS('mergePairs_F3D0_S188_L001.Rdata') | 165 samples[["mergePairs_F3D0_S188_L001.Rdata"]] <- readRDS("mergePairs_F3D0_S188_L001.Rdata") |
171 samples[["mergePairs_F3D141_S207_L001.Rdata"]] <- readRDS('mergePairs_F3D141_S207_L001.Rdata') | 166 samples[["mergePairs_F3D141_S207_L001.Rdata"]] <- readRDS("mergePairs_F3D141_S207_L001.Rdata") |
172 dname <- "merge" | 167 dname <- "merge" |
173 tdf <- data.frame( samples = names(samples) ) | 168 tdf <- data.frame(samples = names(samples)) |
174 tdf[[ dname ]] <- sapply(samples, getN) | 169 tdf[[dname]] <- sapply(samples, get_n) |
175 write.table(tdf, "seqCounts_merge.tab", quote=F, sep="\t", row.names = F, col.names = T) | 170 write.table(tdf, "seqCounts_merge.tab", quote = F, sep = "\t", row.names = F, col.names = T) |
176 | 171 |
177 print("seqCounts st") | 172 print("seqCounts st") |
178 samples = list() | 173 samples <- list() |
179 samples <- t(as.matrix( read.table("makeSequenceTable.tab", header=T, sep="\t", row.names=1) )) | 174 samples <- t(as.matrix(read.table("makeSequenceTable.tab", header = T, sep = "\t", row.names = 1))) |
180 dname <- "seqtab" | 175 dname <- "seqtab" |
181 tdf <- data.frame( samples = row.names(samples) ) | 176 tdf <- data.frame(samples = row.names(samples)) |
182 tdf[[ dname ]] <- rowSums(samples) | 177 tdf[[dname]] <- rowSums(samples) |
183 write.table(tdf, "seqCounts_seqtab.tab", quote=F, sep="\t", row.names = F, col.names = T) | 178 write.table(tdf, "seqCounts_seqtab.tab", quote = F, sep = "\t", row.names = F, col.names = T) |
184 | 179 |
185 print("seqCounts rb") | 180 print("seqCounts rb") |
186 samples = list() | 181 samples <- list() |
187 samples <- t(as.matrix( read.table("removeBimeraDenovo.tab", header=T, sep="\t", row.names=1) )) | 182 samples <- t(as.matrix(read.table("removeBimeraDenovo.tab", header = T, sep = "\t", row.names = 1))) |
188 dname <- "nochim" | 183 dname <- "nochim" |
189 tdf <- data.frame( samples = row.names(samples) ) | 184 tdf <- data.frame(samples = row.names(samples)) |
190 tdf[[ dname ]] <- rowSums(samples) | 185 tdf[[dname]] <- rowSums(samples) |
191 write.table(tdf, "seqCounts_nochim.tab", quote=F, sep="\t", row.names = F, col.names = T) | 186 write.table(tdf, "seqCounts_nochim.tab", quote = F, sep = "\t", row.names = F, col.names = T) |
192 |