diff test-data/gentest.R @ 0:74ec28dbdf17 draft

planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/dada2 commit 3dd3145db6ed58efc3bf5f71e96515173967fc72
author iuc
date Sat, 07 Dec 2024 08:46:08 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/gentest.R	Sat Dec 07 08:46:08 2024 +0000
@@ -0,0 +1,186 @@
+library(dada2, quietly = TRUE)
+library(ggplot2, quietly = TRUE)
+
+sample_names <- c("F3D0_S188_L001", "F3D141_S207_L001")
+fwd <- c("F3D0_S188_L001_R1_001.fastq.gz", "F3D141_S207_L001_R1_001.fastq.gz")
+rev <- c("F3D0_S188_L001_R2_001.fastq.gz", "F3D141_S207_L001_R2_001.fastq.gz")
+
+filt_fwd <- c("filterAndTrim_F3D0_R1.fq.gz", "filterAndTrim_F3D141_R1.fq.gz")
+filt_rev <- c("filterAndTrim_F3D0_R2.fq.gz", "filterAndTrim_F3D141_R2.fq.gz")
+
+print("filterAndTrim")
+
+for (i in seq_len(fwd)) {
+    ftout <- dada2::filterAndTrim(fwd[i], filt_fwd[i], rev[i], filt_rev[i])
+    b <- paste(strsplit(fwd[i], ".", fixed = TRUE)[[1]][1], "tab", sep = ".")
+    write.table(ftout, b, quote = FALSE, sep = "\t", col.names = NA)
+}
+
+# In the test only the 1st data set is used
+t <- data.frame()
+t <- rbind(t, ftout[1, ])
+colnames(t) <- colnames(ftout)
+rownames(t) <- rownames(ftout)[1]
+write.table(t, "filterAndTrim.tab", quote = FALSE, sep = "\t", col.names = NA)
+
+names(fwd) <- sample_names
+names(rev) <- sample_names
+names(filt_fwd) <- sample_names
+names(filt_rev) <- sample_names
+
+# Plot quality profile (just for one file, Galaxy compares with sim_size)
+print("plots")
+qp <- dada2::plotQualityProfile(fwd)
+ggsave("qualityProfile_fwd.pdf", qp, width = 20, height = 15, units = c("cm"))
+qp <- dada2::plotQualityProfile(rev)
+ggsave("qualityProfile_rev.pdf", qp, width = 20, height = 15, units = c("cm"))
+qp <- dada2::plotQualityProfile(fwd[1])
+ggsave("qualityProfile.pdf", qp, width = 20, height = 15, units = c("cm"))
+
+# Plot complexity (just for one file, Galaxy compares with sim_size)
+
+cp <- dada2::plotComplexity(fwd)
+ggsave("complexity_fwd.pdf", cp, width = 20, height = 15, units = c("cm"))
+cp <- dada2::plotComplexity(rev)
+ggsave("complexity_rev.pdf", cp, width = 20, height = 15, units = c("cm"))
+cp <- dada2::plotComplexity(fwd[1])
+ggsave("complexity.pdf", cp, width = 20, height = 15, units = c("cm"))
+
+
+# learn Errors
+print("learnErrors")
+err_fwd <- dada2::learnErrors(filt_fwd)
+saveRDS(err_fwd, file = "learnErrors_R1.Rdata")
+plot <- dada2::plotErrors(err_fwd)
+ggsave("learnErrors_R1.pdf", plot, width = 20, height = 15, units = c("cm"))
+
+err_rev <- dada2::learnErrors(filt_rev)
+saveRDS(err_rev, file = "learnErrors_R2.Rdata")
+plot <- dada2::plotErrors(err_rev)
+ggsave("learnErrors.pdf", plot, width = 20, height = 15, units = c("cm"))
+
+# dada
+print("dada")
+dada_fwd <- dada2::dada(filt_fwd, err_fwd)
+dada_rev <- dada2::dada(filt_rev, err_rev)
+for (id in sample_names) {
+    saveRDS(dada_fwd[[id]], file = paste("dada_", id, "_R1.Rdata", sep = ""))
+    saveRDS(dada_rev[[id]], file = paste("dada_", id, "_R2.Rdata", sep = ""))
+}
+
+# merge pairs
+print("mergePairs")
+merged <- dada2::mergePairs(dada_fwd, filt_fwd, dada_rev, filt_rev)
+for (id in sample_names) {
+    saveRDS(merged[[id]], file = paste("mergePairs_", id, ".Rdata", sep = ""))
+}
+
+
+# make sequence table
+print("makeSequenceTable")
+seqtab <- makeSequenceTable(merged)
+write.table(t(seqtab), file = "makeSequenceTable.tab", quote = FALSE, sep = "\t", row.names = TRUE, col.names = NA)
+
+reads_per_seqlen <- tapply(colSums(seqtab), factor(nchar(getSequences(seqtab))), sum)
+df <- data.frame(length = as.numeric(names(reads_per_seqlen)), count = reads_per_seqlen)
+pdf("makeSequenceTable.pdf")
+ggplot(data = df, aes(x = length, y = count)) +
+    geom_col() +
+    theme_bw()
+bequiet <- dev.off()
+
+# remove bimera
+print("removeBimera")
+seqtab_nochim <- dada2::removeBimeraDenovo(seqtab)
+write.table(t(seqtab), file = "removeBimeraDenovo.tab", quote = FALSE, sep = "\t", row.names = TRUE, col.names = NA)
+
+# assign taxonomy/species
+tl <- "Level1,Level2,Level3,Level4,Level5"
+tl <- strsplit(tl, ",")[[1]]
+
+set.seed(42)
+print("assignTaxonomyAndSpecies")
+taxa <- dada2::assignTaxonomy(seqtab_nochim, "reference.fa.gz", outputBootstraps = TRUE, taxLevels = tl, multithread = 1)
+
+taxa$tax <- dada2::addSpecies(taxa$tax, "reference_species.fa.gz")
+write.table(taxa$tax, file = "assignTaxonomyAddspecies.tab", quote = FALSE, sep = "\t", row.names = TRUE, col.names = NA)
+
+write.table(taxa$boot, file = "assignTaxonomyAddspecies_boot.tab", quote = FALSE, sep = "\t", row.names = TRUE, col.names = NA)
+
+
+## Generate extra test data for parameter testing
+print("alternatives")
+dada2::filterAndTrim(fwd, c("filterAndTrim_single_F3D0_R1.fq.gz", "filterAndTrim_single_F3D141_R1.fq.gz"), rm.phix = TRUE, orient.fwd = "TACGG")
+
+dada2::filterAndTrim(fwd, c("filterAndTrim_single_trimmers_F3D0_R1.fq.gz", "filterAndTrim_single_trimmers_F3D141_R1.fq.gz"), truncQ = 30, truncLen = 2, trimLeft = 150, trimRight = 2)
+
+dada2::filterAndTrim(fwd, c("filterAndTrim_single_filters_F3D0_R1.fq.gz", "filterAndTrim_single_filters_F3D141_R1.fq.gz"), maxLen = 255, minLen = 60, maxN = 100, minQ = 13, maxEE = 1)
+
+
+merged_nondef <- dada2::mergePairs(dada_fwd, filt_fwd, dada_rev, filt_rev, minOverlap = 8, maxMismatch = 1, justConcatenate = TRUE, trimOverhang = TRUE)
+for (id in sample_names) {
+    saveRDS(merged_nondef[[id]], file = paste("mergePairs_", id, "_nondefault.Rdata", sep = ""))
+}
+rb_dada_fwd <- dada2::removeBimeraDenovo(dada_fwd[["F3D0_S188_L001"]])
+write.table(rb_dada_fwd, file = "removeBimeraDenovo_F3D0_dada_uniques.tab", quote = FALSE, sep = "\t", row.names = TRUE, col.names = FALSE)
+
+rb_merged <- dada2::removeBimeraDenovo(merged, method = "pooled")
+saveRDS(rb_merged, file = "removeBimeraDenovo_F3D0_mergepairs.Rdata")
+
+# SeqCounts
+get_n <- function(x) {
+    sum(dada2::getUniques(x))
+}
+
+print("seqCounts ft")
+samples <- list()
+samples[["F3D0_S188_L001_R1_001.tab"]] <- read.table("F3D0_S188_L001_R1_001.tab", header = TRUE, sep = "\t", row.names = 1)
+dname <- "filter"
+tdf <- samples[["F3D0_S188_L001_R1_001.tab"]]
+names(tdf) <- paste(dname, names(tdf))
+tdf <- cbind(data.frame(samples = names(samples)), tdf)
+write.table(tdf, "seqCounts_filter.tab", quote = FALSE, sep = "\t", row.names = FALSE, col.names = TRUE)
+
+samples <- list()
+samples[["F3D0_S188_L001_R1_001.tab"]] <- read.table("F3D0_S188_L001_R1_001.tab", header = TRUE, sep = "\t", row.names = 1)
+samples[["F3D141_S207_L001_R1_001.tab"]] <- read.table("F3D141_S207_L001_R1_001.tab", header = TRUE, sep = "\t", row.names = 1)
+dname <- "filter"
+tdf <- samples[["F3D0_S188_L001_R1_001.tab"]]
+tdf <- rbind(tdf, samples[["F3D141_S207_L001_R1_001.tab"]])
+names(tdf) <- paste(dname, names(tdf))
+tdf <- cbind(data.frame(samples = names(samples)), tdf)
+write.table(tdf, "seqCounts_filter_both.tab", quote = FALSE, sep = "\t", row.names = FALSE, col.names = TRUE)
+
+print("seqCounts dada")
+samples <- list()
+samples[["dada_F3D0_S188_L001_R1.Rdata"]] <- readRDS("dada_F3D0_S188_L001_R1.Rdata")
+samples[["dada_F3D141_S207_L001_R1.Rdata"]] <- readRDS("dada_F3D141_S207_L001_R1.Rdata")
+dname <- "dadaF"
+tdf <- data.frame(samples = names(samples))
+tdf[[dname]] <- sapply(samples, get_n)
+write.table(tdf, "seqCounts_dadaF.tab", quote = FALSE, sep = "\t", row.names = FALSE, col.names = TRUE)
+
+print("seqCounts mp")
+samples <- list()
+samples[["mergePairs_F3D0_S188_L001.Rdata"]] <- readRDS("mergePairs_F3D0_S188_L001.Rdata")
+samples[["mergePairs_F3D141_S207_L001.Rdata"]] <- readRDS("mergePairs_F3D141_S207_L001.Rdata")
+dname <- "merge"
+tdf <- data.frame(samples = names(samples))
+tdf[[dname]] <- sapply(samples, get_n)
+write.table(tdf, "seqCounts_merge.tab", quote = FALSE, sep = "\t", row.names = FALSE, col.names = TRUE)
+
+print("seqCounts st")
+samples <- list()
+samples <- t(as.matrix(read.table("makeSequenceTable.tab", header = TRUE, sep = "\t", row.names = 1)))
+dname <- "seqtab"
+tdf <- data.frame(samples = row.names(samples))
+tdf[[dname]] <- rowSums(samples)
+write.table(tdf, "seqCounts_seqtab.tab", quote = FALSE, sep = "\t", row.names = FALSE, col.names = TRUE)
+
+print("seqCounts rb")
+samples <- list()
+samples <- t(as.matrix(read.table("removeBimeraDenovo.tab", header = TRUE, sep = "\t", row.names = 1)))
+dname <- "nochim"
+tdf <- data.frame(samples = row.names(samples))
+tdf[[dname]] <- rowSums(samples)
+write.table(tdf, "seqCounts_nochim.tab", quote = FALSE, sep = "\t", row.names = FALSE, col.names = TRUE)