Mercurial > repos > iuc > decontaminator
comparison decontaminator.xml @ 0:b856d3d95413 draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/decontaminator commit 3f8e87001f3dfe7d005d0765aeaa930225c93b72
author | iuc |
---|---|
date | Mon, 09 Jan 2023 13:27:09 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:b856d3d95413 |
---|---|
1 <tool id="decontaminator" name="decontaminator" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="20.05"> | |
2 <description>Decontaminator is a deep learning helping tool that filters out phage or fungi contigs from plant virome RNAseq assemblies</description> | |
3 <macros> | |
4 <import>macros.xml</import> | |
5 </macros> | |
6 <xrefs> | |
7 <xref type="bio.tools">decontaminator</xref> | |
8 </xrefs> | |
9 <expand macro="requirements"/> | |
10 <command detect_errors="exit_code"><![CDATA[ | |
11 mkdir -p '${predicted_fragments.extra_files_path}' && | |
12 python '$__tool_directory__/predict.py' | |
13 --test_ds '${fasta_file}' | |
14 --weights '${weights.fields.path}' | |
15 --out_path '${predicted_fragments.extra_files_path}' | |
16 --return_viral True | |
17 && cp '${predicted_fragments.extra_files_path}'/predicted_fragments.tsv predicted_fragments.tsv | |
18 && cp '${predicted_fragments.extra_files_path}'/predicted.tsv predicted.tsv | |
19 && cp '${predicted_fragments.extra_files_path}'/viral.fasta viral.fasta | |
20 | |
21 ]]></command> | |
22 <inputs> | |
23 <param name="fasta_file" type="data" format="fasta" label="DNA FASTA file"/> | |
24 <param name="weights" type="select" label="Select a reference model" help="If your model of interest is not listed, contact the Galaxy team"> | |
25 <options from_data_table="decontaminator_models"> | |
26 <validator type="no_options" message="No models are available for the selected input dataset" /> | |
27 </options> | |
28 </param> | |
29 </inputs> | |
30 <outputs> | |
31 <data format="tabular" name="predicted_fragments" from_work_dir="predicted_fragments.tsv" label="${tool.name} on ${on_string}: predicted fragments"/> | |
32 <data format="tabular" name="predicted" from_work_dir="predicted.tsv" label="${tool.name} on ${on_string}: predicted "/> | |
33 <data format="fasta" name="viral" from_work_dir="viral.fasta" label="${tool.name} on ${on_string}: viral FASTA file" /> | |
34 </outputs> | |
35 <tests> | |
36 <test> | |
37 <param name="fasta_file" value="viruses.fasta"/> | |
38 <param name="weights" value="test"/> | |
39 <output name="predicted_fragments" file="predicted_fragments.tsv" ftype="tabular" lines_diff="2"/> | |
40 <output name="predicted" file="predicted.tsv" ftype="tabular" lines_diff="2"/> | |
41 <output name="viral" file="viral.fasta" ftype="fasta" lines_diff="2"/> | |
42 </test> | |
43 </tests> | |
44 <help> | |
45 <![CDATA[ | |
46 Decontaminator is a deep learning method that uses Convolutional Neural Networks (CNNs) and a Random Forest Classifier to identify viruses in | |
47 sequening datasets. More precisely, VirHunter classifies previously assembled contigs as viral, host and bacterial (contamination). | |
48 ]]></help> | |
49 </tool> |