Mercurial > repos > iuc > decontaminator
diff decontaminator.xml @ 0:b856d3d95413 draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/decontaminator commit 3f8e87001f3dfe7d005d0765aeaa930225c93b72
author | iuc |
---|---|
date | Mon, 09 Jan 2023 13:27:09 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/decontaminator.xml Mon Jan 09 13:27:09 2023 +0000 @@ -0,0 +1,49 @@ +<tool id="decontaminator" name="decontaminator" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="20.05"> + <description>Decontaminator is a deep learning helping tool that filters out phage or fungi contigs from plant virome RNAseq assemblies</description> + <macros> + <import>macros.xml</import> + </macros> + <xrefs> + <xref type="bio.tools">decontaminator</xref> + </xrefs> + <expand macro="requirements"/> + <command detect_errors="exit_code"><![CDATA[ + mkdir -p '${predicted_fragments.extra_files_path}' && + python '$__tool_directory__/predict.py' + --test_ds '${fasta_file}' + --weights '${weights.fields.path}' + --out_path '${predicted_fragments.extra_files_path}' + --return_viral True + && cp '${predicted_fragments.extra_files_path}'/predicted_fragments.tsv predicted_fragments.tsv + && cp '${predicted_fragments.extra_files_path}'/predicted.tsv predicted.tsv + && cp '${predicted_fragments.extra_files_path}'/viral.fasta viral.fasta + + ]]></command> + <inputs> + <param name="fasta_file" type="data" format="fasta" label="DNA FASTA file"/> + <param name="weights" type="select" label="Select a reference model" help="If your model of interest is not listed, contact the Galaxy team"> + <options from_data_table="decontaminator_models"> + <validator type="no_options" message="No models are available for the selected input dataset" /> + </options> + </param> + </inputs> + <outputs> + <data format="tabular" name="predicted_fragments" from_work_dir="predicted_fragments.tsv" label="${tool.name} on ${on_string}: predicted fragments"/> + <data format="tabular" name="predicted" from_work_dir="predicted.tsv" label="${tool.name} on ${on_string}: predicted "/> + <data format="fasta" name="viral" from_work_dir="viral.fasta" label="${tool.name} on ${on_string}: viral FASTA file" /> + </outputs> + <tests> + <test> + <param name="fasta_file" value="viruses.fasta"/> + <param name="weights" value="test"/> + <output name="predicted_fragments" file="predicted_fragments.tsv" ftype="tabular" lines_diff="2"/> + <output name="predicted" file="predicted.tsv" ftype="tabular" lines_diff="2"/> + <output name="viral" file="viral.fasta" ftype="fasta" lines_diff="2"/> + </test> + </tests> + <help> + <![CDATA[ + Decontaminator is a deep learning method that uses Convolutional Neural Networks (CNNs) and a Random Forest Classifier to identify viruses in + sequening datasets. More precisely, VirHunter classifies previously assembled contigs as viral, host and bacterial (contamination). + ]]></help> +</tool>