Mercurial > repos > iuc > dimet_bivariate_analysis
view dimet_bivariate_analysis.xml @ 5:fe3500a01254 draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/DIMet commit 6da96d865a3a557cfa3ad09e1cfa830519e73748
author | iuc |
---|---|
date | Tue, 06 Aug 2024 17:40:12 +0000 |
parents | f070b08ff139 |
children |
line wrap: on
line source
<tool id="dimet_@EXECUTABLE@" name="dimet @TOOL_LABEL@" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="20.05"> <description> Computation of the correlation of MDV profiles, or the metabolite time course profiles (by DIMet) </description> <macros> <token name="@TOOL_LABEL@">bivariate analysis</token> <token name="@EXECUTABLE@">bivariate_analysis</token> <import>macros.xml</import> </macros> <expand macro="requirements"/> <command detect_errors="exit_code"><![CDATA[ @INIT_CONFIG@ @INIT_BI_ANALYSIS@ @INIT_BIVAR_COMPARISONS@ HYDRA_FULL_ERROR=1 python -m dimet '++hydra.run.dir=.' '++figure_path=figures' '++table_path=tables' '++analysis={ dataset:{ _target_: dimet.data.DatasetConfig, name: "I am a synthetic data example" }, method:{ _target_: dimet.method.BivariateAnalysisConfig, label: "bivariate analysis", name: "Computation of the correlation of MDV profiles, or the metabolite time course profiles" }, label: bivariate-analysis-example2 }' '++analysis.conditions=${conditions}' '++analysis.dataset.label=' '++analysis.method.correction_method=${correction_method}' '++analysis.method.impute_values=${impute_values}' '++analysis.method.conditions_metabolite_time_profiles=${conditions_metabolite_time_profiles}' '++analysis.method.timepoints_MDV_comparison=${timepoints_MDV_comparison}' '++analysis.method.conditions_MDV_comparison=${conditions_MDV_comparison}' '++analysis.method.output_include_gmean_arr_columns=true' '++analysis.dataset.subfolder=' '++analysis.dataset.conditions=${conditions}' #if $metadata_path: '++analysis.dataset.metadata=metadata' #end if #if str( $data_input.data_input_selector ) == "abundance": #if $data_input.abundance_file: '++analysis.dataset.abundances=abundance' #end if #elif str( $data_input.data_input_selector ) == "mean_enrichment": #if $data_input.me_or_frac_contrib_file: '++analysis.dataset.mean_enrichment=me_or_frac_contrib' #end if #elif str( $data_input.data_input_selector ) == "isotop_prop": #if $data_input.isotop_prop_file: '++analysis.dataset.isotopologue_proportions=isotop_prop' #end if #else #if $data_input.isotop_abs_file: '++analysis.dataset.isotopologues=isotop_abs' #end if #end if @REMOVE_CONFIG@ ]]></command> <inputs> <expand macro="input_parameters_bivar_analysis"/> <expand macro="plot_factor_list"/> <expand macro="correction_method"/> </inputs> <outputs> <collection name="report" type="list"> <discover_datasets pattern="__designation__" directory="tables" format="tabular"/> </collection> </outputs> <tests> <test> <param name="data_input_selector" value="isotop_prop" /> <param name="isotop_prop_file" ftype="tabular" value="CorrectedIsotopologues_5.csv"/> <param name="metadata_path" ftype="tabular" value="example5_metadata.csv"/> <param name="correction_method" value="fdr_bh"/> <repeat name="plot_factor_list"> <param name="condition" value="Control"/> </repeat> <repeat name="plot_factor_list"> <param name="condition" value="L-Cycloserine"/> </repeat> <output_collection name="report" type="list" count="8"> <element file="isotop_prop--cell--MDV-Control-L-Cycloserine--T0-pearson.tsv" name="isotop_prop--cell--MDV-Control-L-Cycloserine--T0-pearson.tsv" ftype="tabular"/> <element file="isotop_prop--cell--MDV-Control-L-Cycloserine--T2h-pearson.tsv" name="isotop_prop--cell--MDV-Control-L-Cycloserine--T2h-pearson.tsv" ftype="tabular"/> <element file="isotop_prop--cell--MDV-T2h-T0--Control-pearson.tsv" name="isotop_prop--cell--MDV-T2h-T0--Control-pearson.tsv" ftype="tabular"/> <element file="isotop_prop--cell--MDV-T2h-T0--L-Cycloserine-pearson.tsv" name="isotop_prop--cell--MDV-T2h-T0--L-Cycloserine-pearson.tsv" ftype="tabular"/> <element file="isotop_prop--med--MDV-Control-L-Cycloserine--T0-pearson.tsv" name="isotop_prop--med--MDV-Control-L-Cycloserine--T0-pearson.tsv" ftype="tabular"/> <element file="isotop_prop--med--MDV-Control-L-Cycloserine--T2h-pearson.tsv" name="isotop_prop--med--MDV-Control-L-Cycloserine--T2h-pearson.tsv" ftype="tabular"/> <element file="isotop_prop--med--MDV-T2h-T0--Control-pearson.tsv" name="isotop_prop--med--MDV-T2h-T0--Control-pearson.tsv" ftype="tabular"/> <element file="isotop_prop--med--MDV-T2h-T0--L-Cycloserine-pearson.tsv" name="isotop_prop--med--MDV-T2h-T0--L-Cycloserine-pearson.tsv" ftype="tabular"/> </output_collection> </test> </tests> <help><![CDATA[ This module is part of DIMet: Computation of the correlation of entire MDV profiles, or the metabolite time course profiles (https://pypi.org/project/DIMet/). DIMet bi-variate analysis performs the comparison of entire MDV profiles, with the user provided isotopologue proportions data. Moreover, when total abundances and/or mean enrichment are provided, the comparison of the metabolite time-course profiles is also computed. Specifically, three types of bi-variate comparisons are performed automatically: - MDV profile comparison between two conditions - MDV profile comparison between two consecutive time-points - Metabolite (total abundances and/or mean enrichment) time course profiles comparison between two conditions For all these three types of bi-variate comparison, the statistical test that is applied is the Pearson's correlation test. To note, MDV (Mass Distribution Vector) are obtained automatically by the tool, using the isotopologue proportions. **Input data files** This tool requires (at max.) 4 tab-delimited .csv files as inputs. There are two types of files: - The measures' (or quantifications') files, that can be of 3 types. - The metadata, a unique file with the description of the samples in your measures' files. This is compulsory. For running DIMet @EXECUTABLE@ you need **at least one file** of measures: - The **isotopologue proportions** file - The total **abundances** (of the metabolites) file - The mean **enrichment** or labelled fractional contributions and one metadata file, WHICH IS COMPULSORY, see section **Metadata File Information**. **Measures files** The measures files must be organized as matrices: - The first column must contain Metabolite IDs that are unique (not repeated) within the file. - The rest of the columns correspond to the samples - The rows correspond to the metabolites - The values must be tab separated, with the first row containing the sample/column labels. See the following examples of measures files: Example - Metabolites **abundances**: =============== ================== ================== ================== ================== ================== ================== ID **MCF001089_TD01** **MCF001089_TD02** **MCF001089_TD03** **MCF001089_TD04** **MCF001089_TD05** **MCF001089_TD06** =============== ================== ================== ================== ================== ================== ================== 2_3-PG 8698823.9926 10718737.7217 10724373.9 8536484.5 22060650 28898956 2-OHGLu 36924336 424336 92060650 45165 84951950 965165051 Glc6P 2310 2142 2683 1683 012532068 1252172 Gly3P 399298 991656565 525195 6365231 89451625 4952651963 IsoCit 0 0 0 84915613 856236 954651610 =============== ================== ================== ================== ================== ================== ================== Example - mean **enrichment** or labeled fractional contributions: =============== ================== ================== ================== ================== ================== ================== ID **MCF001089_TD01** **MCF001089_TD02** **MCF001089_TD03** **MCF001089_TD04** **MCF001089_TD05** **MCF001089_TD06** =============== ================== ================== ================== ================== ================== ================== 2_3-PG 0.9711 0.968 0.9909 0.991 0.40 0.9 2-OHGLu 0.01719 0.0246 0.554 0.555 0.73 0.68 Glc6P 0.06 0.66 2683 0.06 2068 2172 Gly3P 0.06 0.06 0.06 1 5 3 IsoCit 0.06 1 0.49 0.36 6 10 =============== ================== ================== ================== ================== ================== ================== Example - **Isotopologue proportions**: =============== ================== ================== ================== ================== ================== ================== ID **MCF001089_TD01** **MCF001089_TD02** **MCF001089_TD03** **MCF001089_TD04** **MCF001089_TD05** **MCF001089_TD06** =============== ================== ================== ================== ================== ================== ================== 2_3-PG_m+0 0.023701408 0.026667837 0.003395407 0.05955 0.034383527 0.12 2_3-PG_m+1 0.0 0.0 0.0 0.0 0.4 0.12 2_3-PG_m+2 0.015379329 0.01506 0.017029723 0.35483229 0.54131313 0.743 2_3-PG_m+3 0.960919263 0.958268099 0.97957487 0.581310816 0.017029723 0.017 2-OHGLu_m+0 0.972778716 0.960016157 0.238843937 0.234383527 0.9998888 0.015064063 2-OHGLu_m+1 0.0 0.0 0.0 0.0 0.0001112 0.960919263 =============== ================== ================== ================== ================== ================== ================== **Metadata File Information** Provide a tab-separated file that has the names of the samples in the first column and one header row. Column names must be exactly in this order: name_to_plot condition timepoint timenum compartment original_name Example **Metadata File**: ==================== =============== ============= ============ ================ ================= **name_to_plot** **condition** **timepoint** **timenum** **compartment** **original_name** -------------------- --------------- ------------- ------------ ---------------- ----------------- Control_cell_T0-1 Control T0 0 cell MCF001089_TD01 Control_cell_T0-2 Control T0 0 cell MCF001089_TD02 Control_cell_T0-3 Control T0 0 cell MCF001089_TD03 Tumoral_cell_T0-1 Tumoral T0 0 cell MCF001089_TD04 Tumoral_cell_T0-2 Tumoral T0 0 cell MCF001089_TD05 Tumoral_cell_T0-3 Tumoral T0 0 cell MCF001089_TD06 Tumoral_cell_T24-1 Tumoral T24 24 cell MCF001089_TD07 Tumoral_cell_T24-2 Tumoral T24 24 cell MCF001089_TD08 Tumoral_cell_T24-3 Tumoral T24 24 cell MCF001090_TD01 Control_med_T24-1 Control T24 24 med MCF001090_TD02 Control_med_T24-2 Control T24 24 med MCF001090_TD03 Tumoral_med_T24-1 Tumoral T24 24 med MCF001090_TD04 Tumoral_med_T24-2 Tumoral T24 24 med MCF001090_TD05 Control_med_T0-1 Control T0 0 med MCF001090_TD06 Tumoral_med_T0-1 Tumoral T0 0 med MCF001090_TD07 Tumoral_med_T0-2 Tumoral T0 0 med MCF001090_TD08 ==================== =============== ============= ============ ================ ================= The column **original_name** must have the names of the samples as given in your data. The column **name_to_plot** must have the names as you want them to be (or set identical to original_name if you prefer). To set names that are meaningful is a better choice, as we will take them to display the results. The column **timenum** must contain only the numeric part of the timepoint, for example 2,0, 10, 100 (this means, without letters ("T", "t", "s", "h" etc) nor any other symbol). Make sure these time numbers are in the same units (but do not write the units here!). The column **compartment** is an abbreviation, coined by you, for the compartments. This will be used for the results' files names: the longer the compartments names are, the longer the output files' names! Please pick short and clear abbreviations to fill this column. **Running the analysis** You can precise how you want your analysis to be executed, with the parameters: - **datatypes** : the measures type(s) that you want to run. - **conditions**: the two conditions to be compared in the bi-variate analysis. If 3 or more conditions are set, the tool automatically performs all the 1-to-1 condition comparisons. If you only have one condition in your data, select the condition, and see the Note at the end of this section. - **correction_method** : one of the methods for multiple testing correction available in statsmodels library (bonferroni, fdr_bh, sidak, among others, see https://www.statsmodels.org/dev/generated/statsmodels.stats.multitest.multipletests.html). **Note**: the tool automatically performs the comparison of *MDV profile between two consecutive time-points*. All the time-points are processed. There exist hints on use that will guide you, next to the parameters. For more information about the implemented statistical tests, please visit: https://github.com/cbib/DIMet/wiki/2-Statistical-tests The output files are explained in https://github.com/cbib/DIMet/wiki/3-Output **Available data for testing** You can test our tool with the data from our manuscript https://zenodo.org/records/10579862 (the pertinent files for you are located in the subfolders inside the data folder). You can also use the minimal data examples from https://zenodo.org/records/10579891 ]]> </help> <expand macro="citations" /> </tool>