Mercurial > repos > iuc > edger
comparison edger.R @ 8:3d89af8a44f0 draft
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/edger commit 215a0f27f3de87506895ac655f801c40e8c7edbc"
| author | iuc | 
|---|---|
| date | Thu, 03 Jun 2021 19:34:18 +0000 | 
| parents | 555659de7321 | 
| children | 6e53e565fc6a | 
   comparison
  equal
  deleted
  inserted
  replaced
| 7:334ce9b1bac5 | 8:3d89af8a44f0 | 
|---|---|
| 5 # ARGS: htmlPath", "R", 1, "character" -Path to html file linking to other outputs | 5 # ARGS: htmlPath", "R", 1, "character" -Path to html file linking to other outputs | 
| 6 # outPath", "o", 1, "character" -Path to folder to write all output to | 6 # outPath", "o", 1, "character" -Path to folder to write all output to | 
| 7 # filesPath", "j", 2, "character" -JSON list object if multiple files input | 7 # filesPath", "j", 2, "character" -JSON list object if multiple files input | 
| 8 # matrixPath", "m", 2, "character" -Path to count matrix | 8 # matrixPath", "m", 2, "character" -Path to count matrix | 
| 9 # factFile", "f", 2, "character" -Path to factor information file | 9 # factFile", "f", 2, "character" -Path to factor information file | 
| 10 # factInput", "i", 2, "character" -String containing factors if manually input | 10 # factInput", "i", 2, "character" -String containing factors if manually input | 
| 11 # annoPath", "a", 2, "character" -Path to input containing gene annotations | 11 # annoPath", "a", 2, "character" -Path to input containing gene annotations | 
| 12 # contrastData", "C", 1, "character" -String containing contrasts of interest | 12 # contrastData", "C", 1, "character" -String containing contrasts of interest | 
| 13 # cpmReq", "c", 2, "double" -Float specifying cpm requirement | 13 # cpmReq", "c", 2, "double" -Float specifying cpm requirement | 
| 14 # cntReq", "z", 2, "integer" -Integer specifying minimum total count requirement | 14 # cntReq", "z", 2, "integer" -Integer specifying minimum total count requirement | 
| 15 # sampleReq", "s", 2, "integer" -Integer specifying cpm requirement | 15 # sampleReq", "s", 2, "integer" -Integer specifying cpm requirement | 
| 16 # normCounts", "x", 0, "logical" -String specifying if normalised counts should be output | 16 # normCounts", "x", 0, "logical" -String specifying if normalised counts should be output | 
| 17 # rdaOpt", "r", 0, "logical" -String specifying if RData should be output | 17 # rdaOpt", "r", 0, "logical" -String specifying if RData should be output | 
| 18 # lfcReq", "l", 1, "double" -Float specifying the log-fold-change requirement | 18 # lfcReq", "l", 1, "double" -Float specifying the log-fold-change requirement | 
| 19 # pValReq", "p", 1, "double" -Float specifying the p-value requirement | 19 # pValReq", "p", 1, "double" -Float specifying the p-value requirement | 
| 20 # pAdjOpt", "d", 1, "character" -String specifying the p-value adjustment method | 20 # pAdjOpt", "d", 1, "character" -String specifying the p-value adjustment method | 
| 21 # normOpt", "n", 1, "character" -String specifying type of normalisation used | 21 # normOpt", "n", 1, "character" -String specifying type of normalisation used | 
| 22 # robOpt", "b", 0, "logical" -String specifying if robust options should be used | 22 # robOpt", "b", 0, "logical" -String specifying if robust options should be used | 
| 23 # lrtOpt", "t", 0, "logical" -String specifying whether to perform LRT test instead | 23 # lrtOpt", "t", 0, "logical" -String specifying whether to perform LRT test instead | 
| 24 # | 24 # | 
| 25 # OUT: | 25 # OUT: | 
| 26 # MDS Plot | 26 # MDS Plot | 
| 27 # BCV Plot | 27 # BCV Plot | 
| 28 # QL Plot | 28 # QL Plot | 
| 29 # MD Plot | 29 # MD Plot | 
| 30 # Expression Table | 30 # Expression Table | 
| 31 # HTML file linking to the ouputs | 31 # HTML file linking to the ouputs | 
| 35 # | 35 # | 
| 36 # Author: Shian Su - registertonysu@gmail.com - Jan 2014 | 36 # Author: Shian Su - registertonysu@gmail.com - Jan 2014 | 
| 37 # Modified by: Maria Doyle - Oct 2017 (some code taken from the DESeq2 wrapper) | 37 # Modified by: Maria Doyle - Oct 2017 (some code taken from the DESeq2 wrapper) | 
| 38 | 38 | 
| 39 # Record starting time | 39 # Record starting time | 
| 40 timeStart <- as.character(Sys.time()) | 40 time_start <- as.character(Sys.time()) | 
| 41 | 41 | 
| 42 # setup R error handling to go to stderr | 42 # setup R error handling to go to stderr | 
| 43 options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) | 43 options(show.error.messages = F, error = function() { | 
| 44 cat(geterrmessage(), file = stderr()) | |
| 45 q("no", 1, F) | |
| 46 }) | |
| 44 | 47 | 
| 45 # we need that to not crash galaxy with an UTF8 error on German LC settings. | 48 # we need that to not crash galaxy with an UTF8 error on German LC settings. | 
| 46 loc <- Sys.setlocale("LC_MESSAGES", "en_US.UTF-8") | 49 loc <- Sys.setlocale("LC_MESSAGES", "en_US.UTF-8") | 
| 47 | 50 | 
| 48 # Load all required libraries | 51 # Load all required libraries | 
| 49 library(methods, quietly=TRUE, warn.conflicts=FALSE) | 52 library(methods, quietly = TRUE, warn.conflicts = FALSE) | 
| 50 library(statmod, quietly=TRUE, warn.conflicts=FALSE) | 53 library(statmod, quietly = TRUE, warn.conflicts = FALSE) | 
| 51 library(splines, quietly=TRUE, warn.conflicts=FALSE) | 54 library(splines, quietly = TRUE, warn.conflicts = FALSE) | 
| 52 library(edgeR, quietly=TRUE, warn.conflicts=FALSE) | 55 library(edgeR, quietly = TRUE, warn.conflicts = FALSE) | 
| 53 library(limma, quietly=TRUE, warn.conflicts=FALSE) | 56 library(limma, quietly = TRUE, warn.conflicts = FALSE) | 
| 54 library(scales, quietly=TRUE, warn.conflicts=FALSE) | 57 library(scales, quietly = TRUE, warn.conflicts = FALSE) | 
| 55 library(getopt, quietly=TRUE, warn.conflicts=FALSE) | 58 library(getopt, quietly = TRUE, warn.conflicts = FALSE) | 
| 56 | 59 | 
| 57 ################################################################################ | 60 ################################################################################ | 
| 58 ### Function Delcaration | 61 ### Function Delcaration | 
| 59 ################################################################################ | 62 ################################################################################ | 
| 60 # Function to sanitise contrast equations so there are no whitespaces | 63 # Function to sanitise contrast equations so there are no whitespaces | 
| 61 # surrounding the arithmetic operators, leading or trailing whitespace | 64 # surrounding the arithmetic operators, leading or trailing whitespace | 
| 62 sanitiseEquation <- function(equation) { | 65 sanitise_equation <- function(equation) { | 
| 63 equation <- gsub(" *[+] *", "+", equation) | 66 equation <- gsub(" *[+] *", "+", equation) | 
| 64 equation <- gsub(" *[-] *", "-", equation) | 67 equation <- gsub(" *[-] *", "-", equation) | 
| 65 equation <- gsub(" *[/] *", "/", equation) | 68 equation <- gsub(" *[/] *", "/", equation) | 
| 66 equation <- gsub(" *[*] *", "*", equation) | 69 equation <- gsub(" *[*] *", "*", equation) | 
| 67 equation <- gsub("^\\s+|\\s+$", "", equation) | 70 equation <- gsub("^\\s+|\\s+$", "", equation) | 
| 68 return(equation) | 71 return(equation) | 
| 69 } | 72 } | 
| 70 | 73 | 
| 71 # Function to sanitise group information | 74 # Function to sanitise group information | 
| 72 sanitiseGroups <- function(string) { | 75 sanitise_groups <- function(string) { | 
| 73 string <- gsub(" *[,] *", ",", string) | 76 string <- gsub(" *[,] *", ",", string) | 
| 74 string <- gsub("^\\s+|\\s+$", "", string) | 77 string <- gsub("^\\s+|\\s+$", "", string) | 
| 75 return(string) | 78 return(string) | 
| 76 } | 79 } | 
| 77 | 80 | 
| 78 # Function to change periods to whitespace in a string | 81 # Function to change periods to whitespace in a string | 
| 79 unmake.names <- function(string) { | 82 unmake_names <- function(string) { | 
| 80 string <- gsub(".", " ", string, fixed=TRUE) | 83 string <- gsub(".", " ", string, fixed = TRUE) | 
| 81 return(string) | 84 return(string) | 
| 82 } | 85 } | 
| 83 | 86 | 
| 84 # Generate output folder and paths | 87 # Generate output folder and paths | 
| 85 makeOut <- function(filename) { | 88 make_out <- function(filename) { | 
| 86 return(paste0(opt$outPath, "/", filename)) | 89 return(paste0(out_path, "/", filename)) | 
| 87 } | 90 } | 
| 88 | 91 | 
| 89 # Generating design information | 92 # Generating design information | 
| 90 pasteListName <- function(string) { | 93 paste_listname <- function(string) { | 
| 91 return(paste0("factors$", string)) | 94 return(paste0("factors$", string)) | 
| 92 } | 95 } | 
| 93 | 96 | 
| 94 # Create cata function: default path set, default seperator empty and appending | 97 # Create cata function: default path set, default seperator empty and appending | 
| 95 # true by default (Ripped straight from the cat function with altered argument | 98 # true by default (Ripped straight from the cat function with altered argument | 
| 96 # defaults) | 99 # defaults) | 
| 97 cata <- function(..., file=opt$htmlPath, sep="", fill=FALSE, labels=NULL, | 100 cata <- function(..., file = opt$htmlPath, sep = "", fill = FALSE, labels = NULL, | 
| 98 append=TRUE) { | 101 append = TRUE) { | 
| 99 if (is.character(file)) | 102 if (is.character(file)) { | 
| 100 if (file == "") | 103 if (file == "") { | 
| 101 file <- stdout() | 104 file <- stdout() | 
| 102 else if (substring(file, 1L, 1L) == "|") { | 105 } else if (substring(file, 1L, 1L) == "|") { | 
| 103 file <- pipe(substring(file, 2L), "w") | 106 file <- pipe(substring(file, 2L), "w") | 
| 104 on.exit(close(file)) | 107 on.exit(close(file)) | 
| 105 } | 108 } | 
| 106 else { | 109 else { | 
| 107 file <- file(file, ifelse(append, "a", "w")) | 110 file <- file(file, ifelse(append, "a", "w")) | 
| 108 on.exit(close(file)) | 111 on.exit(close(file)) | 
| 109 } | 112 } | 
| 110 .Internal(cat(list(...), file, sep, fill, labels, append)) | 113 } | 
| 114 .Internal(cat(list(...), file, sep, fill, labels, append)) | |
| 111 } | 115 } | 
| 112 | 116 | 
| 113 # Function to write code for html head and title | 117 # Function to write code for html head and title | 
| 114 HtmlHead <- function(title) { | 118 html_head <- function(title) { | 
| 115 cata("<head>\n") | 119 cata("<head>\n") | 
| 116 cata("<title>", title, "</title>\n") | 120 cata("<title>", title, "</title>\n") | 
| 117 cata("</head>\n") | 121 cata("</head>\n") | 
| 118 } | 122 } | 
| 119 | 123 | 
| 120 # Function to write code for html links | 124 # Function to write code for html links | 
| 121 HtmlLink <- function(address, label=address) { | 125 html_link <- function(address, label = address) { | 
| 122 cata("<a href=\"", address, "\" target=\"_blank\">", label, "</a><br />\n") | 126 cata("<a href=\"", address, "\" target=\"_blank\">", label, "</a><br />\n") | 
| 123 } | 127 } | 
| 124 | 128 | 
| 125 # Function to write code for html images | 129 # Function to write code for html images | 
| 126 HtmlImage <- function(source, label=source, height=600, width=600) { | 130 html_image <- function(source, label = source, height = 600, width = 600) { | 
| 127 cata("<img src=\"", source, "\" alt=\"", label, "\" height=\"", height) | 131 cata("<img src=\"", source, "\" alt=\"", label, "\" height=\"", height) | 
| 128 cata("\" width=\"", width, "\"/>\n") | 132 cata("\" width=\"", width, "\"/>\n") | 
| 129 } | 133 } | 
| 130 | 134 | 
| 131 # Function to write code for html list items | 135 # Function to write code for html list items | 
| 132 ListItem <- function(...) { | 136 list_item <- function(...) { | 
| 133 cata("<li>", ..., "</li>\n") | 137 cata("<li>", ..., "</li>\n") | 
| 134 } | 138 } | 
| 135 | 139 | 
| 136 TableItem <- function(...) { | 140 table_item <- function(...) { | 
| 137 cata("<td>", ..., "</td>\n") | 141 cata("<td>", ..., "</td>\n") | 
| 138 } | 142 } | 
| 139 | 143 | 
| 140 TableHeadItem <- function(...) { | 144 table_head_item <- function(...) { | 
| 141 cata("<th>", ..., "</th>\n") | 145 cata("<th>", ..., "</th>\n") | 
| 142 } | 146 } | 
| 143 | 147 | 
| 144 ################################################################################ | 148 ################################################################################ | 
| 145 ### Input Processing | 149 ### Input Processing | 
| 146 ################################################################################ | 150 ################################################################################ | 
| 147 | 151 | 
| 148 # Collect arguments from command line | 152 # Collect arguments from command line | 
| 149 args <- commandArgs(trailingOnly=TRUE) | 153 args <- commandArgs(trailingOnly = TRUE) | 
| 150 | 154 | 
| 151 # Get options, using the spec as defined by the enclosed list. | 155 # Get options, using the spec as defined by the enclosed list. | 
| 152 # Read the options from the default: commandArgs(TRUE). | 156 # Read the options from the default: commandArgs(TRUE). | 
| 153 spec <- matrix(c( | 157 spec <- matrix(c( | 
| 154 "htmlPath", "R", 1, "character", | 158 "htmlPath", "R", 1, "character", | 
| 155 "outPath", "o", 1, "character", | 159 "outPath", "o", 1, "character", | 
| 156 "filesPath", "j", 2, "character", | 160 "filesPath", "j", 2, "character", | 
| 157 "matrixPath", "m", 2, "character", | 161 "matrixPath", "m", 2, "character", | 
| 158 "factFile", "f", 2, "character", | 162 "factFile", "f", 2, "character", | 
| 159 "factInput", "i", 2, "character", | 163 "factInput", "i", 2, "character", | 
| 160 "annoPath", "a", 2, "character", | 164 "annoPath", "a", 2, "character", | 
| 161 "contrastData", "C", 1, "character", | 165 "contrastData", "C", 1, "character", | 
| 162 "cpmReq", "c", 1, "double", | 166 "cpmReq", "c", 1, "double", | 
| 163 "totReq", "y", 0, "logical", | 167 "totReq", "y", 0, "logical", | 
| 164 "cntReq", "z", 1, "integer", | 168 "cntReq", "z", 1, "integer", | 
| 165 "sampleReq", "s", 1, "integer", | 169 "sampleReq", "s", 1, "integer", | 
| 166 "normCounts", "x", 0, "logical", | 170 "normCounts", "x", 0, "logical", | 
| 167 "rdaOpt", "r", 0, "logical", | 171 "rdaOpt", "r", 0, "logical", | 
| 168 "lfcReq", "l", 1, "double", | 172 "lfcReq", "l", 1, "double", | 
| 169 "pValReq", "p", 1, "double", | 173 "pValReq", "p", 1, "double", | 
| 170 "pAdjOpt", "d", 1, "character", | 174 "pAdjOpt", "d", 1, "character", | 
| 171 "normOpt", "n", 1, "character", | 175 "normOpt", "n", 1, "character", | 
| 172 "robOpt", "b", 0, "logical", | 176 "robOpt", "b", 0, "logical", | 
| 173 "lrtOpt", "t", 0, "logical"), | 177 "lrtOpt", "t", 0, "logical" | 
| 174 byrow=TRUE, ncol=4) | 178 ), | 
| 179 byrow = TRUE, ncol = 4 | |
| 180 ) | |
| 175 opt <- getopt(spec) | 181 opt <- getopt(spec) | 
| 176 | 182 | 
| 177 | 183 | 
| 178 if (is.null(opt$matrixPath) & is.null(opt$filesPath)) { | 184 if (is.null(opt$matrixPath) & is.null(opt$filesPath)) { | 
| 179 cat("A counts matrix (or a set of counts files) is required.\n") | 185 cat("A counts matrix (or a set of counts files) is required.\n") | 
| 180 q(status=1) | 186 q(status = 1) | 
| 181 } | 187 } | 
| 182 | 188 | 
| 183 if (is.null(opt$cpmReq)) { | 189 if (is.null(opt$cpmReq)) { | 
| 184 filtCPM <- FALSE | 190 filt_cpm <- FALSE | 
| 185 } else { | 191 } else { | 
| 186 filtCPM <- TRUE | 192 filt_cpm <- TRUE | 
| 187 } | 193 } | 
| 188 | 194 | 
| 189 if (is.null(opt$cntReq) || is.null(opt$sampleReq)) { | 195 if (is.null(opt$cntReq) || is.null(opt$sampleReq)) { | 
| 190 filtSmpCount <- FALSE | 196 filt_smpcount <- FALSE | 
| 191 } else { | 197 } else { | 
| 192 filtSmpCount <- TRUE | 198 filt_smpcount <- TRUE | 
| 193 } | 199 } | 
| 194 | 200 | 
| 195 if (is.null(opt$totReq)) { | 201 if (is.null(opt$totReq)) { | 
| 196 filtTotCount <- FALSE | 202 filt_totcount <- FALSE | 
| 197 } else { | 203 } else { | 
| 198 filtTotCount <- TRUE | 204 filt_totcount <- TRUE | 
| 199 } | 205 } | 
| 200 | 206 | 
| 201 if (is.null(opt$lrtOpt)) { | 207 if (is.null(opt$lrtOpt)) { | 
| 202 wantLRT <- FALSE | 208 want_lrt <- FALSE | 
| 203 } else { | 209 } else { | 
| 204 wantLRT <- TRUE | 210 want_lrt <- TRUE | 
| 205 } | 211 } | 
| 206 | 212 | 
| 207 if (is.null(opt$rdaOpt)) { | 213 if (is.null(opt$rdaOpt)) { | 
| 208 wantRda <- FALSE | 214 want_rda <- FALSE | 
| 209 } else { | 215 } else { | 
| 210 wantRda <- TRUE | 216 want_rda <- TRUE | 
| 211 } | 217 } | 
| 212 | 218 | 
| 213 if (is.null(opt$annoPath)) { | 219 if (is.null(opt$annoPath)) { | 
| 214 haveAnno <- FALSE | 220 have_anno <- FALSE | 
| 215 } else { | 221 } else { | 
| 216 haveAnno <- TRUE | 222 have_anno <- TRUE | 
| 217 } | 223 } | 
| 218 | 224 | 
| 219 if (is.null(opt$normCounts)) { | 225 if (is.null(opt$normCounts)) { | 
| 220 wantNorm <- FALSE | 226 want_norm <- FALSE | 
| 221 } else { | 227 } else { | 
| 222 wantNorm <- TRUE | 228 want_norm <- TRUE | 
| 223 } | 229 } | 
| 224 | 230 | 
| 225 if (is.null(opt$robOpt)) { | 231 if (is.null(opt$robOpt)) { | 
| 226 wantRobust <- FALSE | 232 want_robust <- FALSE | 
| 227 } else { | 233 } else { | 
| 228 wantRobust <- TRUE | 234 want_robust <- TRUE | 
| 229 } | 235 } | 
| 230 | 236 | 
| 231 | 237 | 
| 232 if (!is.null(opt$filesPath)) { | 238 if (!is.null(opt$filesPath)) { | 
| 233 # Process the separate count files (adapted from DESeq2 wrapper) | 239 # Process the separate count files (adapted from DESeq2 wrapper) | 
| 234 library("rjson") | 240 library("rjson") | 
| 235 parser <- newJSONParser() | 241 parser <- newJSONParser() | 
| 236 parser$addData(opt$filesPath) | 242 parser$addData(opt$filesPath) | 
| 237 factorList <- parser$getObject() | 243 factor_list <- parser$getObject() | 
| 238 factors <- sapply(factorList, function(x) x[[1]]) | 244 factors <- sapply(factor_list, function(x) x[[1]]) | 
| 239 filenamesIn <- unname(unlist(factorList[[1]][[2]])) | 245 filenames_in <- unname(unlist(factor_list[[1]][[2]])) | 
| 240 sampleTable <- data.frame(sample=basename(filenamesIn), | 246 sampletable <- data.frame( | 
| 241 filename=filenamesIn, | 247 sample = basename(filenames_in), | 
| 242 row.names=filenamesIn, | 248 filename = filenames_in, | 
| 243 stringsAsFactors=FALSE) | 249 row.names = filenames_in, | 
| 244 for (factor in factorList) { | 250 stringsAsFactors = FALSE | 
| 245 factorName <- factor[[1]] | 251 ) | 
| 246 sampleTable[[factorName]] <- character(nrow(sampleTable)) | 252 for (factor in factor_list) { | 
| 247 lvls <- sapply(factor[[2]], function(x) names(x)) | 253 factorname <- factor[[1]] | 
| 248 for (i in seq_along(factor[[2]])) { | 254 sampletable[[factorname]] <- character(nrow(sampletable)) | 
| 249 files <- factor[[2]][[i]][[1]] | 255 lvls <- sapply(factor[[2]], function(x) names(x)) | 
| 250 sampleTable[files,factorName] <- lvls[i] | 256 for (i in seq_along(factor[[2]])) { | 
| 251 } | 257 files <- factor[[2]][[i]][[1]] | 
| 252 sampleTable[[factorName]] <- factor(sampleTable[[factorName]], levels=lvls) | 258 sampletable[files, factorname] <- lvls[i] | 
| 253 } | 259 } | 
| 254 rownames(sampleTable) <- sampleTable$sample | 260 sampletable[[factorname]] <- factor(sampletable[[factorname]], levels = lvls) | 
| 255 rem <- c("sample","filename") | 261 } | 
| 256 factors <- sampleTable[, !(names(sampleTable) %in% rem), drop=FALSE] | 262 rownames(sampletable) <- sampletable$sample | 
| 257 | 263 rem <- c("sample", "filename") | 
| 258 #read in count files and create single table | 264 factors <- sampletable[, !(names(sampletable) %in% rem), drop = FALSE] | 
| 259 countfiles <- lapply(sampleTable$filename, function(x){read.delim(x, row.names=1)}) | 265 | 
| 260 counts <- do.call("cbind", countfiles) | 266 # read in count files and create single table | 
| 261 | 267 countfiles <- lapply(sampletable$filename, function(x) { | 
| 262 } else { | 268 read.delim(x, row.names = 1) | 
| 263 # Process the single count matrix | 269 }) | 
| 264 counts <- read.table(opt$matrixPath, header=TRUE, sep="\t", strip.white=TRUE, stringsAsFactors=FALSE) | 270 counts <- do.call("cbind", countfiles) | 
| 265 row.names(counts) <- counts[, 1] | 271 } else { | 
| 266 counts <- counts[ , -1] | 272 # Process the single count matrix | 
| 267 countsRows <- nrow(counts) | 273 counts <- read.table(opt$matrixPath, header = TRUE, sep = "\t", strip.white = TRUE, stringsAsFactors = FALSE) | 
| 268 | 274 row.names(counts) <- counts[, 1] | 
| 269 # Process factors | 275 counts <- counts[, -1] | 
| 270 if (is.null(opt$factInput)) { | 276 countsrows <- nrow(counts) | 
| 271 factorData <- read.table(opt$factFile, header=TRUE, sep="\t", strip.white=TRUE) | 277 | 
| 272 # check samples names match | 278 # Process factors | 
| 273 if(!any(factorData[, 1] %in% colnames(counts))) | 279 if (is.null(opt$factInput)) { | 
| 274 stop("Sample IDs in factors file and count matrix don't match") | 280 factordata <- read.table(opt$factFile, header = TRUE, sep = "\t", strip.white = TRUE) | 
| 275 # order samples as in counts matrix | 281 # check samples names match | 
| 276 factorData <- factorData[match(colnames(counts), factorData[, 1]), ] | 282 if (!any(factordata[, 1] %in% colnames(counts))) { | 
| 277 factors <- factorData[, -1, drop=FALSE] | 283 stop("Sample IDs in factors file and count matrix don't match") | 
| 278 } else { | |
| 279 factors <- unlist(strsplit(opt$factInput, "|", fixed=TRUE)) | |
| 280 factorData <- list() | |
| 281 for (fact in factors) { | |
| 282 newFact <- unlist(strsplit(fact, split="::")) | |
| 283 factorData <- rbind(factorData, newFact) | |
| 284 } # Factors have the form: FACT_NAME::LEVEL,LEVEL,LEVEL,LEVEL,... The first factor is the Primary Factor. | |
| 285 | |
| 286 # Set the row names to be the name of the factor and delete first row | |
| 287 row.names(factorData) <- factorData[, 1] | |
| 288 factorData <- factorData[, -1] | |
| 289 factorData <- sapply(factorData, sanitiseGroups) | |
| 290 factorData <- sapply(factorData, strsplit, split=",") | |
| 291 factorData <- sapply(factorData, make.names) | |
| 292 # Transform factor data into data frame of R factor objects | |
| 293 factors <- data.frame(factorData) | |
| 294 } | 284 } | 
| 295 } | 285 # order samples as in counts matrix | 
| 296 | 286 factordata <- factordata[match(colnames(counts), factordata[, 1]), ] | 
| 297 # if annotation file provided | 287 factors <- factordata[, -1, drop = FALSE] | 
| 298 if (haveAnno) { | 288 } else { | 
| 299 geneanno <- read.table(opt$annoPath, header=TRUE, sep="\t", quote= "", strip.white=TRUE, stringsAsFactors=FALSE) | 289 factors <- unlist(strsplit(opt$factInput, "|", fixed = TRUE)) | 
| 300 } | 290 factordata <- list() | 
| 301 | 291 for (fact in factors) { | 
| 302 #Create output directory | 292 newfact <- unlist(strsplit(fact, split = "::")) | 
| 303 dir.create(opt$outPath, showWarnings=FALSE) | 293 factordata <- rbind(factordata, newfact) | 
| 294 } # Factors have the form: FACT_NAME::LEVEL,LEVEL,LEVEL,LEVEL,... The first factor is the Primary Factor. | |
| 295 | |
| 296 # Set the row names to be the name of the factor and delete first row | |
| 297 row.names(factordata) <- factordata[, 1] | |
| 298 factordata <- factordata[, -1] | |
| 299 factordata <- sapply(factordata, sanitise_groups) | |
| 300 factordata <- sapply(factordata, strsplit, split = ",") | |
| 301 factordata <- sapply(factordata, make.names) | |
| 302 # Transform factor data into data frame of R factor objects | |
| 303 factors <- data.frame(factordata) | |
| 304 } | |
| 305 } | |
| 306 | |
| 307 # if annotation file provided | |
| 308 if (have_anno) { | |
| 309 geneanno <- read.table(opt$annoPath, header = TRUE, sep = "\t", quote = "", strip.white = TRUE, stringsAsFactors = FALSE) | |
| 310 } | |
| 311 | |
| 312 # Create output directory | |
| 313 out_path <- opt$outPath | |
| 314 dir.create(out_path, showWarnings = FALSE) | |
| 304 | 315 | 
| 305 # Split up contrasts separated by comma into a vector then sanitise | 316 # Split up contrasts separated by comma into a vector then sanitise | 
| 306 contrastData <- unlist(strsplit(opt$contrastData, split=",")) | 317 contrast_data <- unlist(strsplit(opt$contrastData, split = ",")) | 
| 307 contrastData <- sanitiseEquation(contrastData) | 318 contrast_data <- sanitise_equation(contrast_data) | 
| 308 contrastData <- gsub(" ", ".", contrastData, fixed=TRUE) | 319 contrast_data <- gsub(" ", ".", contrast_data, fixed = TRUE) | 
| 309 | 320 | 
| 310 bcvOutPdf <- makeOut("bcvplot.pdf") | 321 bcv_pdf <- make_out("bcvplot.pdf") | 
| 311 bcvOutPng <- makeOut("bcvplot.png") | 322 bcv_png <- make_out("bcvplot.png") | 
| 312 qlOutPdf <- makeOut("qlplot.pdf") | 323 ql_pdf <- make_out("qlplot.pdf") | 
| 313 qlOutPng <- makeOut("qlplot.png") | 324 ql_png <- make_out("qlplot.png") | 
| 314 mdsOutPdf <- character() # Initialise character vector | 325 mds_pdf <- character() # Initialise character vector | 
| 315 mdsOutPng <- character() | 326 mds_png <- character() | 
| 316 for (i in 1:ncol(factors)) { | 327 for (i in seq_len(ncol(factors))) { | 
| 317 mdsOutPdf[i] <- makeOut(paste0("mdsplot_", names(factors)[i], ".pdf")) | 328 mds_pdf[i] <- make_out(paste0("mdsplot_", names(factors)[i], ".pdf")) | 
| 318 mdsOutPng[i] <- makeOut(paste0("mdsplot_", names(factors)[i], ".png")) | 329 mds_png[i] <- make_out(paste0("mdsplot_", names(factors)[i], ".png")) | 
| 319 } | 330 } | 
| 320 mdOutPdf <- character() | 331 md_pdf <- character() | 
| 321 mdOutPng <- character() | 332 md_png <- character() | 
| 322 topOut <- character() | 333 top_out <- character() | 
| 323 for (i in 1:length(contrastData)) { | 334 for (i in seq_along(contrast_data)) { | 
| 324 mdOutPdf[i] <- makeOut(paste0("mdplot_", contrastData[i], ".pdf")) | 335 md_pdf[i] <- make_out(paste0("mdplot_", contrast_data[i], ".pdf")) | 
| 325 mdOutPng[i] <- makeOut(paste0("mdplot_", contrastData[i], ".png")) | 336 md_png[i] <- make_out(paste0("mdplot_", contrast_data[i], ".png")) | 
| 326 topOut[i] <- makeOut(paste0("edgeR_", contrastData[i], ".tsv")) | 337 top_out[i] <- make_out(paste0("edgeR_", contrast_data[i], ".tsv")) | 
| 327 } # Save output paths for each contrast as vectors | 338 } # Save output paths for each contrast as vectors | 
| 328 normOut <- makeOut("edgeR_normcounts.tsv") | 339 norm_out <- make_out("edgeR_normcounts.tsv") | 
| 329 rdaOut <- makeOut("edgeR_analysis.RData") | 340 rda_out <- make_out("edgeR_analysis.RData") | 
| 330 sessionOut <- makeOut("session_info.txt") | 341 session_out <- make_out("session_info.txt") | 
| 331 | 342 | 
| 332 # Initialise data for html links and images, data frame with columns Label and | 343 # Initialise data for html links and images, data frame with columns Label and | 
| 333 # Link | 344 # Link | 
| 334 linkData <- data.frame(Label=character(), Link=character(), stringsAsFactors=FALSE) | 345 link_data <- data.frame(Label = character(), Link = character(), stringsAsFactors = FALSE) | 
| 335 imageData <- data.frame(Label=character(), Link=character(), stringsAsFactors=FALSE) | 346 image_data <- data.frame(Label = character(), Link = character(), stringsAsFactors = FALSE) | 
| 336 | 347 | 
| 337 # Initialise vectors for storage of up/down/neutral regulated counts | 348 # Initialise vectors for storage of up/down/neutral regulated counts | 
| 338 upCount <- numeric() | 349 up_count <- numeric() | 
| 339 downCount <- numeric() | 350 down_count <- numeric() | 
| 340 flatCount <- numeric() | 351 flat_count <- numeric() | 
| 341 | 352 | 
| 342 ################################################################################ | 353 ################################################################################ | 
| 343 ### Data Processing | 354 ### Data Processing | 
| 344 ################################################################################ | 355 ################################################################################ | 
| 345 | 356 | 
| 346 # Extract counts and annotation data | 357 # Extract counts and annotation data | 
| 347 data <- list() | 358 data <- list() | 
| 348 data$counts <- counts | 359 data$counts <- counts | 
| 349 if (haveAnno) { | 360 if (have_anno) { | 
| 350 # order annotation by genes in counts (assumes gene ids are in 1st column of geneanno) | 361 # order annotation by genes in counts (assumes gene ids are in 1st column of geneanno) | 
| 351 annoord <- geneanno[match(row.names(counts), geneanno[,1]), ] | 362 annoord <- geneanno[match(row.names(counts), geneanno[, 1]), ] | 
| 352 data$genes <- annoord | 363 data$genes <- annoord | 
| 353 } else { | 364 } else { | 
| 354 data$genes <- data.frame(GeneID=row.names(counts)) | 365 data$genes <- data.frame(GeneID = row.names(counts)) | 
| 355 } | 366 } | 
| 356 | 367 | 
| 357 # If filter crieteria set, filter out genes that do not have a required cpm/counts in a required number of | 368 # If filter crieteria set, filter out genes that do not have a required cpm/counts in a required number of | 
| 358 # samples. Default is no filtering | 369 # samples. Default is no filtering | 
| 359 preFilterCount <- nrow(data$counts) | 370 prefilter_count <- nrow(data$counts) | 
| 360 | 371 | 
| 361 if (filtCPM || filtSmpCount || filtTotCount) { | 372 if (filt_cpm || filt_smpcount || filt_totcount) { | 
| 362 | 373 if (filt_totcount) { | 
| 363 if (filtTotCount) { | 374 keep <- rowSums(data$counts) >= opt$cntReq | 
| 364 keep <- rowSums(data$counts) >= opt$cntReq | 375 } else if (filt_smpcount) { | 
| 365 } else if (filtSmpCount) { | 376 keep <- rowSums(data$counts >= opt$cntReq) >= opt$sampleReq | 
| 366 keep <- rowSums(data$counts >= opt$cntReq) >= opt$sampleReq | 377 } else if (filt_cpm) { | 
| 367 } else if (filtCPM) { | 378 keep <- rowSums(cpm(data$counts) >= opt$cpmReq) >= opt$sampleReq | 
| 368 keep <- rowSums(cpm(data$counts) >= opt$cpmReq) >= opt$sampleReq | 379 } | 
| 369 } | 380 | 
| 370 | 381 data$counts <- data$counts[keep, ] | 
| 371 data$counts <- data$counts[keep, ] | 382 data$genes <- data$genes[keep, , drop = FALSE] | 
| 372 data$genes <- data$genes[keep, , drop=FALSE] | 383 } | 
| 373 } | 384 | 
| 374 | 385 postfilter_count <- nrow(data$counts) | 
| 375 postFilterCount <- nrow(data$counts) | 386 filtered_count <- prefilter_count - postfilter_count | 
| 376 filteredCount <- preFilterCount-postFilterCount | |
| 377 | |
| 378 # Creating naming data | |
| 379 samplenames <- colnames(data$counts) | |
| 380 sampleanno <- data.frame("sampleID"=samplenames, factors) | |
| 381 | |
| 382 | |
| 383 # Generating the DGEList object "data" | |
| 384 data$samples <- sampleanno | |
| 385 data$samples$lib.size <- colSums(data$counts) | |
| 386 data$samples$norm.factors <- 1 | |
| 387 row.names(data$samples) <- colnames(data$counts) | |
| 388 data <- new("DGEList", data) | |
| 389 | 387 | 
| 390 # Name rows of factors according to their sample | 388 # Name rows of factors according to their sample | 
| 391 row.names(factors) <- names(data$counts) | 389 row.names(factors) <- names(data$counts) | 
| 392 factorList <- sapply(names(factors), pasteListName) | 390 factor_list <- sapply(names(factors), paste_listname) | 
| 393 | 391 | 
| 394 formula <- "~0" | 392 # Generating the DGEList object "data" | 
| 395 for (i in 1:length(factorList)) { | 393 samplenames <- colnames(data$counts) | 
| 396 formula <- paste(formula, factorList[i], sep="+") | 394 genes <- data$genes | 
| 395 data <- DGEList(data$counts) | |
| 396 colnames(data) <- samplenames | |
| 397 data$samples <- factors | |
| 398 data$genes <- genes | |
| 399 | |
| 400 | |
| 401 | |
| 402 formula <- "~0" | |
| 403 for (i in seq_along(factor_list)) { | |
| 404 formula <- paste(formula, factor_list[i], sep = "+") | |
| 397 } | 405 } | 
| 398 | 406 | 
| 399 formula <- formula(formula) | 407 formula <- formula(formula) | 
| 400 design <- model.matrix(formula) | 408 design <- model.matrix(formula) | 
| 401 | 409 | 
| 402 for (i in 1:length(factorList)) { | 410 for (i in seq_along(factor_list)) { | 
| 403 colnames(design) <- gsub(factorList[i], "", colnames(design), fixed=TRUE) | 411 colnames(design) <- gsub(factor_list[i], "", colnames(design), fixed = TRUE) | 
| 404 } | 412 } | 
| 405 | 413 | 
| 406 # Calculating normalising factor, estimating dispersion | 414 # Calculating normalising factor, estimating dispersion | 
| 407 data <- calcNormFactors(data, method=opt$normOpt) | 415 data <- calcNormFactors(data, method = opt$normOpt) | 
| 408 | 416 | 
| 409 if (wantRobust) { | 417 if (want_robust) { | 
| 410 data <- estimateDisp(data, design=design, robust=TRUE) | 418 data <- estimateDisp(data, design = design, robust = TRUE) | 
| 411 } else { | 419 } else { | 
| 412 data <- estimateDisp(data, design=design) | 420 data <- estimateDisp(data, design = design) | 
| 413 } | 421 } | 
| 414 | 422 | 
| 415 # Generate contrasts information | 423 # Generate contrasts information | 
| 416 contrasts <- makeContrasts(contrasts=contrastData, levels=design) | 424 contrasts <- makeContrasts(contrasts = contrast_data, levels = design) | 
| 417 | 425 | 
| 418 ################################################################################ | 426 ################################################################################ | 
| 419 ### Data Output | 427 ### Data Output | 
| 420 ################################################################################ | 428 ################################################################################ | 
| 421 | 429 | 
| 422 # Plot MDS | 430 # Plot MDS | 
| 423 labels <- names(counts) | 431 labels <- names(counts) | 
| 424 | 432 | 
| 425 # MDS plot | 433 # MDS plot | 
| 426 png(mdsOutPng, width=600, height=600) | 434 png(mds_png, width = 600, height = 600) | 
| 427 plotMDS(data, labels=labels, col=as.numeric(factors[, 1]), cex=0.8, main=paste("MDS Plot:", names(factors)[1])) | 435 plotMDS(data, labels = labels, col = as.numeric(factors[, 1]), cex = 0.8, main = paste("MDS Plot:", names(factors)[1])) | 
| 428 imgName <- paste0("MDS Plot_", names(factors)[1], ".png") | 436 img_name <- paste0("MDS Plot_", names(factors)[1], ".png") | 
| 429 imgAddr <- paste0("mdsplot_", names(factors)[1], ".png") | 437 img_addr <- paste0("mdsplot_", names(factors)[1], ".png") | 
| 430 imageData[1, ] <- c(imgName, imgAddr) | 438 image_data[1, ] <- c(img_name, img_addr) | 
| 431 invisible(dev.off()) | 439 invisible(dev.off()) | 
| 432 | 440 | 
| 433 pdf(mdsOutPdf) | 441 pdf(mds_pdf) | 
| 434 plotMDS(data, labels=labels, col=as.numeric(factors[, 1]), cex=0.8, main=paste("MDS Plot:", names(factors)[1])) | 442 plotMDS(data, labels = labels, col = as.numeric(factors[, 1]), cex = 0.8, main = paste("MDS Plot:", names(factors)[1])) | 
| 435 linkName <- paste0("MDS Plot_", names(factors)[1], ".pdf") | 443 link_name <- paste0("MDS Plot_", names(factors)[1], ".pdf") | 
| 436 linkAddr <- paste0("mdsplot_", names(factors)[1], ".pdf") | 444 link_addr <- paste0("mdsplot_", names(factors)[1], ".pdf") | 
| 437 linkData[1, ] <- c(linkName, linkAddr) | 445 link_data[1, ] <- c(link_name, link_addr) | 
| 438 invisible(dev.off()) | 446 invisible(dev.off()) | 
| 439 | 447 | 
| 440 # If additional factors create additional MDS plots coloured by factor | 448 # If additional factors create additional MDS plots coloured by factor | 
| 441 if (ncol(factors) > 1) { | 449 if (ncol(factors) > 1) { | 
| 442 for (i in 2:ncol(factors)) { | 450 for (i in 2:ncol(factors)) { | 
| 443 png(mdsOutPng[i], width=600, height=600) | 451 png(mds_png[i], width = 600, height = 600) | 
| 444 plotMDS(data, labels=labels, col=as.numeric(factors[, i]), cex=0.8, main=paste("MDS Plot:", names(factors)[i])) | 452 plotMDS(data, labels = labels, col = as.numeric(factors[, i]), cex = 0.8, main = paste("MDS Plot:", names(factors)[i])) | 
| 445 imgName <- paste0("MDS Plot_", names(factors)[i], ".png") | 453 img_name <- paste0("MDS Plot_", names(factors)[i], ".png") | 
| 446 imgAddr <- paste0("mdsplot_", names(factors)[i], ".png") | 454 img_addr <- paste0("mdsplot_", names(factors)[i], ".png") | 
| 447 imageData <- rbind(imageData, c(imgName, imgAddr)) | 455 image_data <- rbind(image_data, c(img_name, img_addr)) | 
| 448 invisible(dev.off()) | 456 invisible(dev.off()) | 
| 449 | 457 | 
| 450 pdf(mdsOutPdf[i]) | 458 pdf(mds_pdf[i]) | 
| 451 plotMDS(data, labels=labels, col=as.numeric(factors[, i]), cex=0.8, main=paste("MDS Plot:", names(factors)[i])) | 459 plotMDS(data, labels = labels, col = as.numeric(factors[, i]), cex = 0.8, main = paste("MDS Plot:", names(factors)[i])) | 
| 452 linkName <- paste0("MDS Plot_", names(factors)[i], ".pdf") | 460 link_name <- paste0("MDS Plot_", names(factors)[i], ".pdf") | 
| 453 linkAddr <- paste0("mdsplot_", names(factors)[i], ".pdf") | 461 link_addr <- paste0("mdsplot_", names(factors)[i], ".pdf") | 
| 454 linkData <- rbind(linkData, c(linkName, linkAddr)) | 462 link_data <- rbind(link_data, c(link_name, link_addr)) | 
| 455 invisible(dev.off()) | 463 invisible(dev.off()) | 
| 456 } | 464 } | 
| 457 } | 465 } | 
| 458 | 466 | 
| 459 # BCV Plot | 467 # BCV Plot | 
| 460 png(bcvOutPng, width=600, height=600) | 468 png(bcv_png, width = 600, height = 600) | 
| 461 plotBCV(data, main="BCV Plot") | 469 plotBCV(data, main = "BCV Plot") | 
| 462 imgName <- "BCV Plot" | 470 img_name <- "BCV Plot" | 
| 463 imgAddr <- "bcvplot.png" | 471 img_addr <- "bcvplot.png" | 
| 464 imageData <- rbind(imageData, c(imgName, imgAddr)) | 472 image_data <- rbind(image_data, c(img_name, img_addr)) | 
| 465 invisible(dev.off()) | 473 invisible(dev.off()) | 
| 466 | 474 | 
| 467 pdf(bcvOutPdf) | 475 pdf(bcv_pdf) | 
| 468 plotBCV(data, main="BCV Plot") | 476 plotBCV(data, main = "BCV Plot") | 
| 469 linkName <- paste0("BCV Plot.pdf") | 477 link_name <- paste0("BCV Plot.pdf") | 
| 470 linkAddr <- paste0("bcvplot.pdf") | 478 link_addr <- paste0("bcvplot.pdf") | 
| 471 linkData <- rbind(linkData, c(linkName, linkAddr)) | 479 link_data <- rbind(link_data, c(link_name, link_addr)) | 
| 472 invisible(dev.off()) | 480 invisible(dev.off()) | 
| 473 | 481 | 
| 474 # Generate fit | 482 # Generate fit | 
| 475 if (wantLRT) { | 483 if (want_lrt) { | 
| 476 | 484 fit <- glmFit(data, design) | 
| 477 fit <- glmFit(data, design) | 485 } else { | 
| 478 | 486 if (want_robust) { | 
| 479 } else { | 487 fit <- glmQLFit(data, design, robust = TRUE) | 
| 480 | 488 } else { | 
| 481 if (wantRobust) { | 489 fit <- glmQLFit(data, design) | 
| 482 fit <- glmQLFit(data, design, robust=TRUE) | 490 } | 
| 483 } else { | 491 | 
| 484 fit <- glmQLFit(data, design) | 492 # Plot QL dispersions | 
| 485 } | 493 png(ql_png, width = 600, height = 600) | 
| 486 | 494 plotQLDisp(fit, main = "QL Plot") | 
| 487 # Plot QL dispersions | 495 img_name <- "QL Plot" | 
| 488 png(qlOutPng, width=600, height=600) | 496 img_addr <- "qlplot.png" | 
| 489 plotQLDisp(fit, main="QL Plot") | 497 image_data <- rbind(image_data, c(img_name, img_addr)) | 
| 490 imgName <- "QL Plot" | 498 invisible(dev.off()) | 
| 491 imgAddr <- "qlplot.png" | 499 | 
| 492 imageData <- rbind(imageData, c(imgName, imgAddr)) | 500 pdf(ql_pdf) | 
| 493 invisible(dev.off()) | 501 plotQLDisp(fit, main = "QL Plot") | 
| 494 | 502 link_name <- "QL Plot.pdf" | 
| 495 pdf(qlOutPdf) | 503 link_addr <- "qlplot.pdf" | 
| 496 plotQLDisp(fit, main="QL Plot") | 504 link_data <- rbind(link_data, c(link_name, link_addr)) | 
| 497 linkName <- "QL Plot.pdf" | 505 invisible(dev.off()) | 
| 498 linkAddr <- "qlplot.pdf" | 506 } | 
| 499 linkData <- rbind(linkData, c(linkName, linkAddr)) | 507 | 
| 500 invisible(dev.off()) | 508 # Save normalised counts (log2cpm) | 
| 501 } | 509 if (want_norm) { | 
| 502 | 510 normalised_counts <- cpm(data, normalized.lib.sizes = TRUE, log = TRUE) | 
| 503 # Save normalised counts (log2cpm) | 511 normalised_counts <- data.frame(data$genes, normalised_counts) | 
| 504 if (wantNorm) { | 512 write.table(normalised_counts, file = norm_out, row.names = FALSE, sep = "\t", quote = FALSE) | 
| 505 normalisedCounts <- cpm(data, normalized.lib.sizes=TRUE, log=TRUE) | 513 link_data <- rbind(link_data, c("edgeR_normcounts.tsv", "edgeR_normcounts.tsv")) | 
| 506 normalisedCounts <- data.frame(data$genes, normalisedCounts) | 514 } | 
| 507 write.table (normalisedCounts, file=normOut, row.names=FALSE, sep="\t", quote=FALSE) | 515 | 
| 508 linkData <- rbind(linkData, c("edgeR_normcounts.tsv", "edgeR_normcounts.tsv")) | 516 | 
| 509 } | 517 for (i in seq_along(contrast_data)) { | 
| 510 | 518 if (want_lrt) { | 
| 511 | 519 res <- glmLRT(fit, contrast = contrasts[, i]) | 
| 512 for (i in 1:length(contrastData)) { | 520 } else { | 
| 513 if (wantLRT) { | 521 res <- glmQLFTest(fit, contrast = contrasts[, i]) | 
| 514 res <- glmLRT(fit, contrast=contrasts[, i]) | 522 } | 
| 515 } else { | 523 | 
| 516 res <- glmQLFTest(fit, contrast=contrasts[, i]) | 524 status <- decideTestsDGE(res, | 
| 517 } | 525 adjust.method = opt$pAdjOpt, p.value = opt$pValReq, | 
| 518 | 526 lfc = opt$lfcReq | 
| 519 status = decideTestsDGE(res, adjust.method=opt$pAdjOpt, p.value=opt$pValReq, | 527 ) | 
| 520 lfc=opt$lfcReq) | 528 sum_status <- summary(status) | 
| 521 sumStatus <- summary(status) | 529 | 
| 522 | 530 # Collect counts for differential expression | 
| 523 # Collect counts for differential expression | 531 up_count[i] <- sum_status["Up", ] | 
| 524 upCount[i] <- sumStatus["Up", ] | 532 down_count[i] <- sum_status["Down", ] | 
| 525 downCount[i] <- sumStatus["Down", ] | 533 flat_count[i] <- sum_status["NotSig", ] | 
| 526 flatCount[i] <- sumStatus["NotSig", ] | 534 | 
| 527 | 535 # Write top expressions table | 
| 528 # Write top expressions table | 536 top <- topTags(res, adjust.method = opt$pAdjOpt, n = Inf, sort.by = "PValue") | 
| 529 top <- topTags(res, adjust.method=opt$pAdjOpt, n=Inf, sort.by="PValue") | 537 write.table(top, file = top_out[i], row.names = FALSE, sep = "\t", quote = FALSE) | 
| 530 write.table(top, file=topOut[i], row.names=FALSE, sep="\t", quote=FALSE) | 538 | 
| 531 | 539 link_name <- paste0("edgeR_", contrast_data[i], ".tsv") | 
| 532 linkName <- paste0("edgeR_", contrastData[i], ".tsv") | 540 link_addr <- paste0("edgeR_", contrast_data[i], ".tsv") | 
| 533 linkAddr <- paste0("edgeR_", contrastData[i], ".tsv") | 541 link_data <- rbind(link_data, c(link_name, link_addr)) | 
| 534 linkData <- rbind(linkData, c(linkName, linkAddr)) | 542 | 
| 535 | 543 # Plot MD (log ratios vs mean difference) using limma package | 
| 536 # Plot MD (log ratios vs mean difference) using limma package | 544 pdf(md_pdf[i]) | 
| 537 pdf(mdOutPdf[i]) | 545 limma::plotMD(res, | 
| 538 limma::plotMD(res, status=status, | 546 status = status, | 
| 539 main=paste("MD Plot:", unmake.names(contrastData[i])), | 547 main = paste("MD Plot:", unmake_names(contrast_data[i])), | 
| 540 hl.col=alpha(c("firebrick", "blue"), 0.4), values=c(1, -1), | 548 hl.col = alpha(c("firebrick", "blue"), 0.4), values = c(1, -1), | 
| 541 xlab="Average Expression", ylab="logFC") | 549 xlab = "Average Expression", ylab = "logFC" | 
| 542 | 550 ) | 
| 543 abline(h=0, col="grey", lty=2) | 551 | 
| 544 | 552 abline(h = 0, col = "grey", lty = 2) | 
| 545 linkName <- paste0("MD Plot_", contrastData[i], ".pdf") | 553 | 
| 546 linkAddr <- paste0("mdplot_", contrastData[i], ".pdf") | 554 link_name <- paste0("MD Plot_", contrast_data[i], ".pdf") | 
| 547 linkData <- rbind(linkData, c(linkName, linkAddr)) | 555 link_addr <- paste0("mdplot_", contrast_data[i], ".pdf") | 
| 548 invisible(dev.off()) | 556 link_data <- rbind(link_data, c(link_name, link_addr)) | 
| 549 | 557 invisible(dev.off()) | 
| 550 png(mdOutPng[i], height=600, width=600) | 558 | 
| 551 limma::plotMD(res, status=status, | 559 png(md_png[i], height = 600, width = 600) | 
| 552 main=paste("MD Plot:", unmake.names(contrastData[i])), | 560 limma::plotMD(res, | 
| 553 hl.col=alpha(c("firebrick", "blue"), 0.4), values=c(1, -1), | 561 status = status, | 
| 554 xlab="Average Expression", ylab="logFC") | 562 main = paste("MD Plot:", unmake_names(contrast_data[i])), | 
| 555 | 563 hl.col = alpha(c("firebrick", "blue"), 0.4), values = c(1, -1), | 
| 556 abline(h=0, col="grey", lty=2) | 564 xlab = "Average Expression", ylab = "logFC" | 
| 557 | 565 ) | 
| 558 imgName <- paste0("MD Plot_", contrastData[i], ".png") | 566 | 
| 559 imgAddr <- paste0("mdplot_", contrastData[i], ".png") | 567 abline(h = 0, col = "grey", lty = 2) | 
| 560 imageData <- rbind(imageData, c(imgName, imgAddr)) | 568 | 
| 561 invisible(dev.off()) | 569 img_name <- paste0("MD Plot_", contrast_data[i], ".png") | 
| 562 } | 570 img_addr <- paste0("mdplot_", contrast_data[i], ".png") | 
| 563 sigDiff <- data.frame(Up=upCount, Flat=flatCount, Down=downCount) | 571 image_data <- rbind(image_data, c(img_name, img_addr)) | 
| 564 row.names(sigDiff) <- contrastData | 572 invisible(dev.off()) | 
| 573 } | |
| 574 sig_diff <- data.frame(Up = up_count, Flat = flat_count, Down = down_count) | |
| 575 row.names(sig_diff) <- contrast_data | |
| 565 | 576 | 
| 566 # Save relevant items as rda object | 577 # Save relevant items as rda object | 
| 567 if (wantRda) { | 578 if (want_rda) { | 
| 568 if (wantNorm) { | 579 if (want_norm) { | 
| 569 save(counts, data, status, normalisedCounts, labels, factors, fit, res, top, contrasts, design, | 580 save(counts, data, status, normalised_counts, labels, factors, fit, res, top, contrasts, design, | 
| 570 file=rdaOut, ascii=TRUE) | 581 file = rda_out, ascii = TRUE | 
| 571 } else { | 582 ) | 
| 572 save(counts, data, status, labels, factors, fit, res, top, contrasts, design, | 583 } else { | 
| 573 file=rdaOut, ascii=TRUE) | 584 save(counts, data, status, labels, factors, fit, res, top, contrasts, design, | 
| 574 } | 585 file = rda_out, ascii = TRUE | 
| 575 linkData <- rbind(linkData, c("edgeR_analysis.RData", "edgeR_analysis.RData")) | 586 ) | 
| 587 } | |
| 588 link_data <- rbind(link_data, c("edgeR_analysis.RData", "edgeR_analysis.RData")) | |
| 576 } | 589 } | 
| 577 | 590 | 
| 578 # Record session info | 591 # Record session info | 
| 579 writeLines(capture.output(sessionInfo()), sessionOut) | 592 writeLines(capture.output(sessionInfo()), session_out) | 
| 580 linkData <- rbind(linkData, c("Session Info", "session_info.txt")) | 593 link_data <- rbind(link_data, c("Session Info", "session_info.txt")) | 
| 581 | 594 | 
| 582 # Record ending time and calculate total run time | 595 # Record ending time and calculate total run time | 
| 583 timeEnd <- as.character(Sys.time()) | 596 time_end <- as.character(Sys.time()) | 
| 584 timeTaken <- capture.output(round(difftime(timeEnd, timeStart), digits=3)) | 597 time_taken <- capture.output(round(difftime(time_end, time_start), digits = 3)) | 
| 585 timeTaken <- gsub("Time difference of ", "", timeTaken, fixed=TRUE) | 598 time_taken <- gsub("Time difference of ", "", time_taken, fixed = TRUE) | 
| 586 | 599 | 
| 587 ################################################################################ | 600 ################################################################################ | 
| 588 ### HTML Generation | 601 ### HTML Generation | 
| 589 ################################################################################ | 602 ################################################################################ | 
| 590 | 603 | 
| 591 # Clear file | 604 # Clear file | 
| 592 cat("", file=opt$htmlPath) | 605 cat("", file = opt$htmlPath) | 
| 593 | 606 | 
| 594 cata("<html>\n") | 607 cata("<html>\n") | 
| 595 | 608 | 
| 596 cata("<body>\n") | 609 cata("<body>\n") | 
| 597 cata("<h3>edgeR Analysis Output:</h3>\n") | 610 cata("<h3>edgeR Analysis Output:</h3>\n") | 
| 598 cata("Links to PDF copies of plots are in 'Plots' section below.<br />\n") | 611 cata("Links to PDF copies of plots are in 'Plots' section below.<br />\n") | 
| 599 | 612 | 
| 600 HtmlImage(imageData$Link[1], imageData$Label[1]) | 613 html_image(image_data$Link[1], image_data$Label[1]) | 
| 601 | 614 | 
| 602 for (i in 2:nrow(imageData)) { | 615 for (i in 2:nrow(image_data)) { | 
| 603 HtmlImage(imageData$Link[i], imageData$Label[i]) | 616 html_image(image_data$Link[i], image_data$Label[i]) | 
| 604 } | 617 } | 
| 605 | 618 | 
| 606 cata("<h4>Differential Expression Counts:</h4>\n") | 619 cata("<h4>Differential Expression Counts:</h4>\n") | 
| 607 | 620 | 
| 608 cata("<table border=\"1\" cellpadding=\"4\">\n") | 621 cata("<table border=\"1\" cellpadding=\"4\">\n") | 
| 609 cata("<tr>\n") | 622 cata("<tr>\n") | 
| 610 TableItem() | 623 table_item() | 
| 611 for (i in colnames(sigDiff)) { | 624 for (i in colnames(sig_diff)) { | 
| 612 TableHeadItem(i) | 625 table_head_item(i) | 
| 613 } | 626 } | 
| 614 cata("</tr>\n") | 627 cata("</tr>\n") | 
| 615 for (i in 1:nrow(sigDiff)) { | 628 for (i in seq_len(nrow(sig_diff))) { | 
| 616 cata("<tr>\n") | 629 cata("<tr>\n") | 
| 617 TableHeadItem(unmake.names(row.names(sigDiff)[i])) | 630 table_head_item(unmake_names(row.names(sig_diff)[i])) | 
| 618 for (j in 1:ncol(sigDiff)) { | 631 for (j in seq_len(ncol(sig_diff))) { | 
| 619 TableItem(as.character(sigDiff[i, j])) | 632 table_item(as.character(sig_diff[i, j])) | 
| 633 } | |
| 634 cata("</tr>\n") | |
| 635 } | |
| 636 cata("</table>") | |
| 637 | |
| 638 cata("<h4>Plots:</h4>\n") | |
| 639 for (i in seq_len(nrow(link_data))) { | |
| 640 if (grepl(".pdf", link_data$Link[i])) { | |
| 641 html_link(link_data$Link[i], link_data$Label[i]) | |
| 642 } | |
| 643 } | |
| 644 | |
| 645 cata("<h4>Tables:</h4>\n") | |
| 646 for (i in seq_len(nrow(link_data))) { | |
| 647 if (grepl(".tsv", link_data$Link[i])) { | |
| 648 html_link(link_data$Link[i], link_data$Label[i]) | |
| 649 } | |
| 650 } | |
| 651 | |
| 652 if (want_rda) { | |
| 653 cata("<h4>R Data Objects:</h4>\n") | |
| 654 for (i in seq_len(nrow(link_data))) { | |
| 655 if (grepl(".RData", link_data$Link[i])) { | |
| 656 html_link(link_data$Link[i], link_data$Label[i]) | |
| 620 } | 657 } | 
| 621 cata("</tr>\n") | 658 } | 
| 622 } | |
| 623 cata("</table>") | |
| 624 | |
| 625 cata("<h4>Plots:</h4>\n") | |
| 626 for (i in 1:nrow(linkData)) { | |
| 627 if (grepl(".pdf", linkData$Link[i])) { | |
| 628 HtmlLink(linkData$Link[i], linkData$Label[i]) | |
| 629 } | |
| 630 } | |
| 631 | |
| 632 cata("<h4>Tables:</h4>\n") | |
| 633 for (i in 1:nrow(linkData)) { | |
| 634 if (grepl(".tsv", linkData$Link[i])) { | |
| 635 HtmlLink(linkData$Link[i], linkData$Label[i]) | |
| 636 } | |
| 637 } | |
| 638 | |
| 639 if (wantRda) { | |
| 640 cata("<h4>R Data Objects:</h4>\n") | |
| 641 for (i in 1:nrow(linkData)) { | |
| 642 if (grepl(".RData", linkData$Link[i])) { | |
| 643 HtmlLink(linkData$Link[i], linkData$Label[i]) | |
| 644 } | |
| 645 } | |
| 646 } | 659 } | 
| 647 | 660 | 
| 648 cata("<p>Alt-click links to download file.</p>\n") | 661 cata("<p>Alt-click links to download file.</p>\n") | 
| 649 cata("<p>Click floppy disc icon associated history item to download ") | 662 cata("<p>Click floppy disc icon associated history item to download ") | 
| 650 cata("all files.</p>\n") | 663 cata("all files.</p>\n") | 
| 651 cata("<p>.tsv files can be viewed in Excel or any spreadsheet program.</p>\n") | 664 cata("<p>.tsv files can be viewed in Excel or any spreadsheet program.</p>\n") | 
| 652 | 665 | 
| 653 cata("<h4>Additional Information</h4>\n") | 666 cata("<h4>Additional Information</h4>\n") | 
| 654 cata("<ul>\n") | 667 cata("<ul>\n") | 
| 655 | 668 | 
| 656 if (filtCPM || filtSmpCount || filtTotCount) { | 669 if (filt_cpm || filt_smpcount || filt_totcount) { | 
| 657 if (filtCPM) { | 670 if (filt_cpm) { | 
| 658 tempStr <- paste("Genes without more than", opt$cpmReq, | 671 temp_str <- paste( | 
| 659 "CPM in at least", opt$sampleReq, "samples are insignificant", | 672 "Genes without more than", opt$cpmReq, | 
| 660 "and filtered out.") | 673 "CPM in at least", opt$sampleReq, "samples are insignificant", | 
| 661 } else if (filtSmpCount) { | 674 "and filtered out." | 
| 662 tempStr <- paste("Genes without more than", opt$cntReq, | 675 ) | 
| 663 "counts in at least", opt$sampleReq, "samples are insignificant", | 676 } else if (filt_smpcount) { | 
| 664 "and filtered out.") | 677 temp_str <- paste( | 
| 665 } else if (filtTotCount) { | 678 "Genes without more than", opt$cntReq, | 
| 666 tempStr <- paste("Genes without more than", opt$cntReq, | 679 "counts in at least", opt$sampleReq, "samples are insignificant", | 
| 667 "counts, after summing counts for all samples, are insignificant", | 680 "and filtered out." | 
| 668 "and filtered out.") | 681 ) | 
| 669 } | 682 } else if (filt_totcount) { | 
| 670 | 683 temp_str <- paste( | 
| 671 ListItem(tempStr) | 684 "Genes without more than", opt$cntReq, | 
| 672 filterProp <- round(filteredCount/preFilterCount*100, digits=2) | 685 "counts, after summing counts for all samples, are insignificant", | 
| 673 tempStr <- paste0(filteredCount, " of ", preFilterCount," (", filterProp, | 686 "and filtered out." | 
| 674 "%) genes were filtered out for low expression.") | 687 ) | 
| 675 ListItem(tempStr) | 688 } | 
| 676 } | 689 | 
| 677 ListItem(opt$normOpt, " was the method used to normalise library sizes.") | 690 list_item(temp_str) | 
| 678 if (wantLRT) { | 691 filter_prop <- round(filtered_count / prefilter_count * 100, digits = 2) | 
| 679 ListItem("The edgeR likelihood ratio test was used.") | 692 temp_str <- paste0( | 
| 680 } else { | 693 filtered_count, " of ", prefilter_count, " (", filter_prop, | 
| 681 if (wantRobust) { | 694 "%) genes were filtered out for low expression." | 
| 682 ListItem("The edgeR quasi-likelihood test was used with robust settings (robust=TRUE with estimateDisp and glmQLFit).") | 695 ) | 
| 683 } else { | 696 list_item(temp_str) | 
| 684 ListItem("The edgeR quasi-likelihood test was used.") | 697 } | 
| 685 } | 698 list_item(opt$normOpt, " was the method used to normalise library sizes.") | 
| 686 } | 699 if (want_lrt) { | 
| 687 if (opt$pAdjOpt!="none") { | 700 list_item("The edgeR likelihood ratio test was used.") | 
| 688 if (opt$pAdjOpt=="BH" || opt$pAdjOpt=="BY") { | 701 } else { | 
| 689 tempStr <- paste0("MD-Plot highlighted genes are significant at FDR ", | 702 if (want_robust) { | 
| 690 "of ", opt$pValReq," and exhibit log2-fold-change of at ", | 703 list_item("The edgeR quasi-likelihood test was used with robust settings (robust=TRUE with estimateDisp and glmQLFit).") | 
| 691 "least ", opt$lfcReq, ".") | 704 } else { | 
| 692 ListItem(tempStr) | 705 list_item("The edgeR quasi-likelihood test was used.") | 
| 693 } else if (opt$pAdjOpt=="holm") { | 706 } | 
| 694 tempStr <- paste0("MD-Plot highlighted genes are significant at adjusted ", | 707 } | 
| 695 "p-value of ", opt$pValReq," by the Holm(1979) ", | 708 if (opt$pAdjOpt != "none") { | 
| 696 "method, and exhibit log2-fold-change of at least ", | 709 if (opt$pAdjOpt == "BH" || opt$pAdjOpt == "BY") { | 
| 697 opt$lfcReq, ".") | 710 temp_str <- paste0( | 
| 698 ListItem(tempStr) | 711 "MD-Plot highlighted genes are significant at FDR ", | 
| 699 } | 712 "of ", opt$pValReq, " and exhibit log2-fold-change of at ", | 
| 700 } else { | 713 "least ", opt$lfcReq, "." | 
| 701 tempStr <- paste0("MD-Plot highlighted genes are significant at p-value ", | 714 ) | 
| 702 "of ", opt$pValReq," and exhibit log2-fold-change of at ", | 715 list_item(temp_str) | 
| 703 "least ", opt$lfcReq, ".") | 716 } else if (opt$pAdjOpt == "holm") { | 
| 704 ListItem(tempStr) | 717 temp_str <- paste0( | 
| 718 "MD-Plot highlighted genes are significant at adjusted ", | |
| 719 "p-value of ", opt$pValReq, " by the Holm(1979) ", | |
| 720 "method, and exhibit log2-fold-change of at least ", | |
| 721 opt$lfcReq, "." | |
| 722 ) | |
| 723 list_item(temp_str) | |
| 724 } | |
| 725 } else { | |
| 726 temp_str <- paste0( | |
| 727 "MD-Plot highlighted genes are significant at p-value ", | |
| 728 "of ", opt$pValReq, " and exhibit log2-fold-change of at ", | |
| 729 "least ", opt$lfcReq, "." | |
| 730 ) | |
| 731 list_item(temp_str) | |
| 705 } | 732 } | 
| 706 cata("</ul>\n") | 733 cata("</ul>\n") | 
| 707 | 734 | 
| 708 cata("<h4>Summary of experimental data:</h4>\n") | 735 cata("<h4>Summary of experimental data:</h4>\n") | 
| 709 | 736 | 
| 710 cata("<p>*CHECK THAT SAMPLES ARE ASSOCIATED WITH CORRECT GROUP(S)*</p>\n") | 737 cata("<p>*CHECK THAT SAMPLES ARE ASSOCIATED WITH CORRECT GROUP(S)*</p>\n") | 
| 711 | 738 | 
| 712 cata("<table border=\"1\" cellpadding=\"3\">\n") | 739 cata("<table border=\"1\" cellpadding=\"3\">\n") | 
| 713 cata("<tr>\n") | 740 cata("<tr>\n") | 
| 714 TableHeadItem("SampleID") | 741 table_head_item("SampleID") | 
| 715 TableHeadItem(names(factors)[1], " (Primary Factor)") | 742 table_head_item(names(factors)[1], " (Primary Factor)") | 
| 716 | 743 | 
| 717 if (ncol(factors) > 1) { | 744 if (ncol(factors) > 1) { | 
| 718 for (i in names(factors)[2:length(names(factors))]) { | 745 for (i in names(factors)[2:length(names(factors))]) { | 
| 719 TableHeadItem(i) | 746 table_head_item(i) | 
| 720 } | 747 } | 
| 721 cata("</tr>\n") | 748 cata("</tr>\n") | 
| 722 } | 749 } | 
| 723 | 750 | 
| 724 for (i in 1:nrow(factors)) { | 751 for (i in seq_len(nrow((factors)))) { | 
| 725 cata("<tr>\n") | 752 cata("<tr>\n") | 
| 726 TableHeadItem(row.names(factors)[i]) | 753 table_head_item(row.names(factors)[i]) | 
| 727 for (j in 1:ncol(factors)) { | 754 for (j in seq_len(ncol(factors))) { | 
| 728 TableItem(as.character(unmake.names(factors[i, j]))) | 755 table_item(as.character(unmake_names(factors[i, j]))) | 
| 729 } | 756 } | 
| 730 cata("</tr>\n") | 757 cata("</tr>\n") | 
| 731 } | 758 } | 
| 732 cata("</table>") | 759 cata("</table>") | 
| 733 | 760 | 
| 734 for (i in 1:nrow(linkData)) { | 761 for (i in seq_len(nrow(link_data))) { | 
| 735 if (grepl("session_info", linkData$Link[i])) { | 762 if (grepl("session_info", link_data$Link[i])) { | 
| 736 HtmlLink(linkData$Link[i], linkData$Label[i]) | 763 html_link(link_data$Link[i], link_data$Label[i]) | 
| 737 } | 764 } | 
| 738 } | 765 } | 
| 739 | 766 | 
| 740 cata("<table border=\"0\">\n") | 767 cata("<table border=\"0\">\n") | 
| 741 cata("<tr>\n") | 768 cata("<tr>\n") | 
| 742 TableItem("Task started at:"); TableItem(timeStart) | 769 table_item("Task started at:") | 
| 770 table_item(time_start) | |
| 743 cata("</tr>\n") | 771 cata("</tr>\n") | 
| 744 cata("<tr>\n") | 772 cata("<tr>\n") | 
| 745 TableItem("Task ended at:"); TableItem(timeEnd) | 773 table_item("Task ended at:") | 
| 774 table_item(time_end) | |
| 746 cata("</tr>\n") | 775 cata("</tr>\n") | 
| 747 cata("<tr>\n") | 776 cata("<tr>\n") | 
| 748 TableItem("Task run time:"); TableItem(timeTaken) | 777 table_item("Task run time:") | 
| 778 table_item(time_taken) | |
| 749 cata("<tr>\n") | 779 cata("<tr>\n") | 
| 750 cata("</table>\n") | 780 cata("</table>\n") | 
| 751 | 781 | 
| 752 cata("</body>\n") | 782 cata("</body>\n") | 
| 753 cata("</html>") | 783 cata("</html>") | 
