Mercurial > repos > iuc > edger
comparison edger.R @ 8:3d89af8a44f0 draft
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/edger commit 215a0f27f3de87506895ac655f801c40e8c7edbc"
author | iuc |
---|---|
date | Thu, 03 Jun 2021 19:34:18 +0000 |
parents | 555659de7321 |
children | 6e53e565fc6a |
comparison
equal
deleted
inserted
replaced
7:334ce9b1bac5 | 8:3d89af8a44f0 |
---|---|
5 # ARGS: htmlPath", "R", 1, "character" -Path to html file linking to other outputs | 5 # ARGS: htmlPath", "R", 1, "character" -Path to html file linking to other outputs |
6 # outPath", "o", 1, "character" -Path to folder to write all output to | 6 # outPath", "o", 1, "character" -Path to folder to write all output to |
7 # filesPath", "j", 2, "character" -JSON list object if multiple files input | 7 # filesPath", "j", 2, "character" -JSON list object if multiple files input |
8 # matrixPath", "m", 2, "character" -Path to count matrix | 8 # matrixPath", "m", 2, "character" -Path to count matrix |
9 # factFile", "f", 2, "character" -Path to factor information file | 9 # factFile", "f", 2, "character" -Path to factor information file |
10 # factInput", "i", 2, "character" -String containing factors if manually input | 10 # factInput", "i", 2, "character" -String containing factors if manually input |
11 # annoPath", "a", 2, "character" -Path to input containing gene annotations | 11 # annoPath", "a", 2, "character" -Path to input containing gene annotations |
12 # contrastData", "C", 1, "character" -String containing contrasts of interest | 12 # contrastData", "C", 1, "character" -String containing contrasts of interest |
13 # cpmReq", "c", 2, "double" -Float specifying cpm requirement | 13 # cpmReq", "c", 2, "double" -Float specifying cpm requirement |
14 # cntReq", "z", 2, "integer" -Integer specifying minimum total count requirement | 14 # cntReq", "z", 2, "integer" -Integer specifying minimum total count requirement |
15 # sampleReq", "s", 2, "integer" -Integer specifying cpm requirement | 15 # sampleReq", "s", 2, "integer" -Integer specifying cpm requirement |
16 # normCounts", "x", 0, "logical" -String specifying if normalised counts should be output | 16 # normCounts", "x", 0, "logical" -String specifying if normalised counts should be output |
17 # rdaOpt", "r", 0, "logical" -String specifying if RData should be output | 17 # rdaOpt", "r", 0, "logical" -String specifying if RData should be output |
18 # lfcReq", "l", 1, "double" -Float specifying the log-fold-change requirement | 18 # lfcReq", "l", 1, "double" -Float specifying the log-fold-change requirement |
19 # pValReq", "p", 1, "double" -Float specifying the p-value requirement | 19 # pValReq", "p", 1, "double" -Float specifying the p-value requirement |
20 # pAdjOpt", "d", 1, "character" -String specifying the p-value adjustment method | 20 # pAdjOpt", "d", 1, "character" -String specifying the p-value adjustment method |
21 # normOpt", "n", 1, "character" -String specifying type of normalisation used | 21 # normOpt", "n", 1, "character" -String specifying type of normalisation used |
22 # robOpt", "b", 0, "logical" -String specifying if robust options should be used | 22 # robOpt", "b", 0, "logical" -String specifying if robust options should be used |
23 # lrtOpt", "t", 0, "logical" -String specifying whether to perform LRT test instead | 23 # lrtOpt", "t", 0, "logical" -String specifying whether to perform LRT test instead |
24 # | 24 # |
25 # OUT: | 25 # OUT: |
26 # MDS Plot | 26 # MDS Plot |
27 # BCV Plot | 27 # BCV Plot |
28 # QL Plot | 28 # QL Plot |
29 # MD Plot | 29 # MD Plot |
30 # Expression Table | 30 # Expression Table |
31 # HTML file linking to the ouputs | 31 # HTML file linking to the ouputs |
35 # | 35 # |
36 # Author: Shian Su - registertonysu@gmail.com - Jan 2014 | 36 # Author: Shian Su - registertonysu@gmail.com - Jan 2014 |
37 # Modified by: Maria Doyle - Oct 2017 (some code taken from the DESeq2 wrapper) | 37 # Modified by: Maria Doyle - Oct 2017 (some code taken from the DESeq2 wrapper) |
38 | 38 |
39 # Record starting time | 39 # Record starting time |
40 timeStart <- as.character(Sys.time()) | 40 time_start <- as.character(Sys.time()) |
41 | 41 |
42 # setup R error handling to go to stderr | 42 # setup R error handling to go to stderr |
43 options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) | 43 options(show.error.messages = F, error = function() { |
44 cat(geterrmessage(), file = stderr()) | |
45 q("no", 1, F) | |
46 }) | |
44 | 47 |
45 # we need that to not crash galaxy with an UTF8 error on German LC settings. | 48 # we need that to not crash galaxy with an UTF8 error on German LC settings. |
46 loc <- Sys.setlocale("LC_MESSAGES", "en_US.UTF-8") | 49 loc <- Sys.setlocale("LC_MESSAGES", "en_US.UTF-8") |
47 | 50 |
48 # Load all required libraries | 51 # Load all required libraries |
49 library(methods, quietly=TRUE, warn.conflicts=FALSE) | 52 library(methods, quietly = TRUE, warn.conflicts = FALSE) |
50 library(statmod, quietly=TRUE, warn.conflicts=FALSE) | 53 library(statmod, quietly = TRUE, warn.conflicts = FALSE) |
51 library(splines, quietly=TRUE, warn.conflicts=FALSE) | 54 library(splines, quietly = TRUE, warn.conflicts = FALSE) |
52 library(edgeR, quietly=TRUE, warn.conflicts=FALSE) | 55 library(edgeR, quietly = TRUE, warn.conflicts = FALSE) |
53 library(limma, quietly=TRUE, warn.conflicts=FALSE) | 56 library(limma, quietly = TRUE, warn.conflicts = FALSE) |
54 library(scales, quietly=TRUE, warn.conflicts=FALSE) | 57 library(scales, quietly = TRUE, warn.conflicts = FALSE) |
55 library(getopt, quietly=TRUE, warn.conflicts=FALSE) | 58 library(getopt, quietly = TRUE, warn.conflicts = FALSE) |
56 | 59 |
57 ################################################################################ | 60 ################################################################################ |
58 ### Function Delcaration | 61 ### Function Delcaration |
59 ################################################################################ | 62 ################################################################################ |
60 # Function to sanitise contrast equations so there are no whitespaces | 63 # Function to sanitise contrast equations so there are no whitespaces |
61 # surrounding the arithmetic operators, leading or trailing whitespace | 64 # surrounding the arithmetic operators, leading or trailing whitespace |
62 sanitiseEquation <- function(equation) { | 65 sanitise_equation <- function(equation) { |
63 equation <- gsub(" *[+] *", "+", equation) | 66 equation <- gsub(" *[+] *", "+", equation) |
64 equation <- gsub(" *[-] *", "-", equation) | 67 equation <- gsub(" *[-] *", "-", equation) |
65 equation <- gsub(" *[/] *", "/", equation) | 68 equation <- gsub(" *[/] *", "/", equation) |
66 equation <- gsub(" *[*] *", "*", equation) | 69 equation <- gsub(" *[*] *", "*", equation) |
67 equation <- gsub("^\\s+|\\s+$", "", equation) | 70 equation <- gsub("^\\s+|\\s+$", "", equation) |
68 return(equation) | 71 return(equation) |
69 } | 72 } |
70 | 73 |
71 # Function to sanitise group information | 74 # Function to sanitise group information |
72 sanitiseGroups <- function(string) { | 75 sanitise_groups <- function(string) { |
73 string <- gsub(" *[,] *", ",", string) | 76 string <- gsub(" *[,] *", ",", string) |
74 string <- gsub("^\\s+|\\s+$", "", string) | 77 string <- gsub("^\\s+|\\s+$", "", string) |
75 return(string) | 78 return(string) |
76 } | 79 } |
77 | 80 |
78 # Function to change periods to whitespace in a string | 81 # Function to change periods to whitespace in a string |
79 unmake.names <- function(string) { | 82 unmake_names <- function(string) { |
80 string <- gsub(".", " ", string, fixed=TRUE) | 83 string <- gsub(".", " ", string, fixed = TRUE) |
81 return(string) | 84 return(string) |
82 } | 85 } |
83 | 86 |
84 # Generate output folder and paths | 87 # Generate output folder and paths |
85 makeOut <- function(filename) { | 88 make_out <- function(filename) { |
86 return(paste0(opt$outPath, "/", filename)) | 89 return(paste0(out_path, "/", filename)) |
87 } | 90 } |
88 | 91 |
89 # Generating design information | 92 # Generating design information |
90 pasteListName <- function(string) { | 93 paste_listname <- function(string) { |
91 return(paste0("factors$", string)) | 94 return(paste0("factors$", string)) |
92 } | 95 } |
93 | 96 |
94 # Create cata function: default path set, default seperator empty and appending | 97 # Create cata function: default path set, default seperator empty and appending |
95 # true by default (Ripped straight from the cat function with altered argument | 98 # true by default (Ripped straight from the cat function with altered argument |
96 # defaults) | 99 # defaults) |
97 cata <- function(..., file=opt$htmlPath, sep="", fill=FALSE, labels=NULL, | 100 cata <- function(..., file = opt$htmlPath, sep = "", fill = FALSE, labels = NULL, |
98 append=TRUE) { | 101 append = TRUE) { |
99 if (is.character(file)) | 102 if (is.character(file)) { |
100 if (file == "") | 103 if (file == "") { |
101 file <- stdout() | 104 file <- stdout() |
102 else if (substring(file, 1L, 1L) == "|") { | 105 } else if (substring(file, 1L, 1L) == "|") { |
103 file <- pipe(substring(file, 2L), "w") | 106 file <- pipe(substring(file, 2L), "w") |
104 on.exit(close(file)) | 107 on.exit(close(file)) |
105 } | 108 } |
106 else { | 109 else { |
107 file <- file(file, ifelse(append, "a", "w")) | 110 file <- file(file, ifelse(append, "a", "w")) |
108 on.exit(close(file)) | 111 on.exit(close(file)) |
109 } | 112 } |
110 .Internal(cat(list(...), file, sep, fill, labels, append)) | 113 } |
114 .Internal(cat(list(...), file, sep, fill, labels, append)) | |
111 } | 115 } |
112 | 116 |
113 # Function to write code for html head and title | 117 # Function to write code for html head and title |
114 HtmlHead <- function(title) { | 118 html_head <- function(title) { |
115 cata("<head>\n") | 119 cata("<head>\n") |
116 cata("<title>", title, "</title>\n") | 120 cata("<title>", title, "</title>\n") |
117 cata("</head>\n") | 121 cata("</head>\n") |
118 } | 122 } |
119 | 123 |
120 # Function to write code for html links | 124 # Function to write code for html links |
121 HtmlLink <- function(address, label=address) { | 125 html_link <- function(address, label = address) { |
122 cata("<a href=\"", address, "\" target=\"_blank\">", label, "</a><br />\n") | 126 cata("<a href=\"", address, "\" target=\"_blank\">", label, "</a><br />\n") |
123 } | 127 } |
124 | 128 |
125 # Function to write code for html images | 129 # Function to write code for html images |
126 HtmlImage <- function(source, label=source, height=600, width=600) { | 130 html_image <- function(source, label = source, height = 600, width = 600) { |
127 cata("<img src=\"", source, "\" alt=\"", label, "\" height=\"", height) | 131 cata("<img src=\"", source, "\" alt=\"", label, "\" height=\"", height) |
128 cata("\" width=\"", width, "\"/>\n") | 132 cata("\" width=\"", width, "\"/>\n") |
129 } | 133 } |
130 | 134 |
131 # Function to write code for html list items | 135 # Function to write code for html list items |
132 ListItem <- function(...) { | 136 list_item <- function(...) { |
133 cata("<li>", ..., "</li>\n") | 137 cata("<li>", ..., "</li>\n") |
134 } | 138 } |
135 | 139 |
136 TableItem <- function(...) { | 140 table_item <- function(...) { |
137 cata("<td>", ..., "</td>\n") | 141 cata("<td>", ..., "</td>\n") |
138 } | 142 } |
139 | 143 |
140 TableHeadItem <- function(...) { | 144 table_head_item <- function(...) { |
141 cata("<th>", ..., "</th>\n") | 145 cata("<th>", ..., "</th>\n") |
142 } | 146 } |
143 | 147 |
144 ################################################################################ | 148 ################################################################################ |
145 ### Input Processing | 149 ### Input Processing |
146 ################################################################################ | 150 ################################################################################ |
147 | 151 |
148 # Collect arguments from command line | 152 # Collect arguments from command line |
149 args <- commandArgs(trailingOnly=TRUE) | 153 args <- commandArgs(trailingOnly = TRUE) |
150 | 154 |
151 # Get options, using the spec as defined by the enclosed list. | 155 # Get options, using the spec as defined by the enclosed list. |
152 # Read the options from the default: commandArgs(TRUE). | 156 # Read the options from the default: commandArgs(TRUE). |
153 spec <- matrix(c( | 157 spec <- matrix(c( |
154 "htmlPath", "R", 1, "character", | 158 "htmlPath", "R", 1, "character", |
155 "outPath", "o", 1, "character", | 159 "outPath", "o", 1, "character", |
156 "filesPath", "j", 2, "character", | 160 "filesPath", "j", 2, "character", |
157 "matrixPath", "m", 2, "character", | 161 "matrixPath", "m", 2, "character", |
158 "factFile", "f", 2, "character", | 162 "factFile", "f", 2, "character", |
159 "factInput", "i", 2, "character", | 163 "factInput", "i", 2, "character", |
160 "annoPath", "a", 2, "character", | 164 "annoPath", "a", 2, "character", |
161 "contrastData", "C", 1, "character", | 165 "contrastData", "C", 1, "character", |
162 "cpmReq", "c", 1, "double", | 166 "cpmReq", "c", 1, "double", |
163 "totReq", "y", 0, "logical", | 167 "totReq", "y", 0, "logical", |
164 "cntReq", "z", 1, "integer", | 168 "cntReq", "z", 1, "integer", |
165 "sampleReq", "s", 1, "integer", | 169 "sampleReq", "s", 1, "integer", |
166 "normCounts", "x", 0, "logical", | 170 "normCounts", "x", 0, "logical", |
167 "rdaOpt", "r", 0, "logical", | 171 "rdaOpt", "r", 0, "logical", |
168 "lfcReq", "l", 1, "double", | 172 "lfcReq", "l", 1, "double", |
169 "pValReq", "p", 1, "double", | 173 "pValReq", "p", 1, "double", |
170 "pAdjOpt", "d", 1, "character", | 174 "pAdjOpt", "d", 1, "character", |
171 "normOpt", "n", 1, "character", | 175 "normOpt", "n", 1, "character", |
172 "robOpt", "b", 0, "logical", | 176 "robOpt", "b", 0, "logical", |
173 "lrtOpt", "t", 0, "logical"), | 177 "lrtOpt", "t", 0, "logical" |
174 byrow=TRUE, ncol=4) | 178 ), |
179 byrow = TRUE, ncol = 4 | |
180 ) | |
175 opt <- getopt(spec) | 181 opt <- getopt(spec) |
176 | 182 |
177 | 183 |
178 if (is.null(opt$matrixPath) & is.null(opt$filesPath)) { | 184 if (is.null(opt$matrixPath) & is.null(opt$filesPath)) { |
179 cat("A counts matrix (or a set of counts files) is required.\n") | 185 cat("A counts matrix (or a set of counts files) is required.\n") |
180 q(status=1) | 186 q(status = 1) |
181 } | 187 } |
182 | 188 |
183 if (is.null(opt$cpmReq)) { | 189 if (is.null(opt$cpmReq)) { |
184 filtCPM <- FALSE | 190 filt_cpm <- FALSE |
185 } else { | 191 } else { |
186 filtCPM <- TRUE | 192 filt_cpm <- TRUE |
187 } | 193 } |
188 | 194 |
189 if (is.null(opt$cntReq) || is.null(opt$sampleReq)) { | 195 if (is.null(opt$cntReq) || is.null(opt$sampleReq)) { |
190 filtSmpCount <- FALSE | 196 filt_smpcount <- FALSE |
191 } else { | 197 } else { |
192 filtSmpCount <- TRUE | 198 filt_smpcount <- TRUE |
193 } | 199 } |
194 | 200 |
195 if (is.null(opt$totReq)) { | 201 if (is.null(opt$totReq)) { |
196 filtTotCount <- FALSE | 202 filt_totcount <- FALSE |
197 } else { | 203 } else { |
198 filtTotCount <- TRUE | 204 filt_totcount <- TRUE |
199 } | 205 } |
200 | 206 |
201 if (is.null(opt$lrtOpt)) { | 207 if (is.null(opt$lrtOpt)) { |
202 wantLRT <- FALSE | 208 want_lrt <- FALSE |
203 } else { | 209 } else { |
204 wantLRT <- TRUE | 210 want_lrt <- TRUE |
205 } | 211 } |
206 | 212 |
207 if (is.null(opt$rdaOpt)) { | 213 if (is.null(opt$rdaOpt)) { |
208 wantRda <- FALSE | 214 want_rda <- FALSE |
209 } else { | 215 } else { |
210 wantRda <- TRUE | 216 want_rda <- TRUE |
211 } | 217 } |
212 | 218 |
213 if (is.null(opt$annoPath)) { | 219 if (is.null(opt$annoPath)) { |
214 haveAnno <- FALSE | 220 have_anno <- FALSE |
215 } else { | 221 } else { |
216 haveAnno <- TRUE | 222 have_anno <- TRUE |
217 } | 223 } |
218 | 224 |
219 if (is.null(opt$normCounts)) { | 225 if (is.null(opt$normCounts)) { |
220 wantNorm <- FALSE | 226 want_norm <- FALSE |
221 } else { | 227 } else { |
222 wantNorm <- TRUE | 228 want_norm <- TRUE |
223 } | 229 } |
224 | 230 |
225 if (is.null(opt$robOpt)) { | 231 if (is.null(opt$robOpt)) { |
226 wantRobust <- FALSE | 232 want_robust <- FALSE |
227 } else { | 233 } else { |
228 wantRobust <- TRUE | 234 want_robust <- TRUE |
229 } | 235 } |
230 | 236 |
231 | 237 |
232 if (!is.null(opt$filesPath)) { | 238 if (!is.null(opt$filesPath)) { |
233 # Process the separate count files (adapted from DESeq2 wrapper) | 239 # Process the separate count files (adapted from DESeq2 wrapper) |
234 library("rjson") | 240 library("rjson") |
235 parser <- newJSONParser() | 241 parser <- newJSONParser() |
236 parser$addData(opt$filesPath) | 242 parser$addData(opt$filesPath) |
237 factorList <- parser$getObject() | 243 factor_list <- parser$getObject() |
238 factors <- sapply(factorList, function(x) x[[1]]) | 244 factors <- sapply(factor_list, function(x) x[[1]]) |
239 filenamesIn <- unname(unlist(factorList[[1]][[2]])) | 245 filenames_in <- unname(unlist(factor_list[[1]][[2]])) |
240 sampleTable <- data.frame(sample=basename(filenamesIn), | 246 sampletable <- data.frame( |
241 filename=filenamesIn, | 247 sample = basename(filenames_in), |
242 row.names=filenamesIn, | 248 filename = filenames_in, |
243 stringsAsFactors=FALSE) | 249 row.names = filenames_in, |
244 for (factor in factorList) { | 250 stringsAsFactors = FALSE |
245 factorName <- factor[[1]] | 251 ) |
246 sampleTable[[factorName]] <- character(nrow(sampleTable)) | 252 for (factor in factor_list) { |
247 lvls <- sapply(factor[[2]], function(x) names(x)) | 253 factorname <- factor[[1]] |
248 for (i in seq_along(factor[[2]])) { | 254 sampletable[[factorname]] <- character(nrow(sampletable)) |
249 files <- factor[[2]][[i]][[1]] | 255 lvls <- sapply(factor[[2]], function(x) names(x)) |
250 sampleTable[files,factorName] <- lvls[i] | 256 for (i in seq_along(factor[[2]])) { |
251 } | 257 files <- factor[[2]][[i]][[1]] |
252 sampleTable[[factorName]] <- factor(sampleTable[[factorName]], levels=lvls) | 258 sampletable[files, factorname] <- lvls[i] |
253 } | 259 } |
254 rownames(sampleTable) <- sampleTable$sample | 260 sampletable[[factorname]] <- factor(sampletable[[factorname]], levels = lvls) |
255 rem <- c("sample","filename") | 261 } |
256 factors <- sampleTable[, !(names(sampleTable) %in% rem), drop=FALSE] | 262 rownames(sampletable) <- sampletable$sample |
257 | 263 rem <- c("sample", "filename") |
258 #read in count files and create single table | 264 factors <- sampletable[, !(names(sampletable) %in% rem), drop = FALSE] |
259 countfiles <- lapply(sampleTable$filename, function(x){read.delim(x, row.names=1)}) | 265 |
260 counts <- do.call("cbind", countfiles) | 266 # read in count files and create single table |
261 | 267 countfiles <- lapply(sampletable$filename, function(x) { |
262 } else { | 268 read.delim(x, row.names = 1) |
263 # Process the single count matrix | 269 }) |
264 counts <- read.table(opt$matrixPath, header=TRUE, sep="\t", strip.white=TRUE, stringsAsFactors=FALSE) | 270 counts <- do.call("cbind", countfiles) |
265 row.names(counts) <- counts[, 1] | 271 } else { |
266 counts <- counts[ , -1] | 272 # Process the single count matrix |
267 countsRows <- nrow(counts) | 273 counts <- read.table(opt$matrixPath, header = TRUE, sep = "\t", strip.white = TRUE, stringsAsFactors = FALSE) |
268 | 274 row.names(counts) <- counts[, 1] |
269 # Process factors | 275 counts <- counts[, -1] |
270 if (is.null(opt$factInput)) { | 276 countsrows <- nrow(counts) |
271 factorData <- read.table(opt$factFile, header=TRUE, sep="\t", strip.white=TRUE) | 277 |
272 # check samples names match | 278 # Process factors |
273 if(!any(factorData[, 1] %in% colnames(counts))) | 279 if (is.null(opt$factInput)) { |
274 stop("Sample IDs in factors file and count matrix don't match") | 280 factordata <- read.table(opt$factFile, header = TRUE, sep = "\t", strip.white = TRUE) |
275 # order samples as in counts matrix | 281 # check samples names match |
276 factorData <- factorData[match(colnames(counts), factorData[, 1]), ] | 282 if (!any(factordata[, 1] %in% colnames(counts))) { |
277 factors <- factorData[, -1, drop=FALSE] | 283 stop("Sample IDs in factors file and count matrix don't match") |
278 } else { | |
279 factors <- unlist(strsplit(opt$factInput, "|", fixed=TRUE)) | |
280 factorData <- list() | |
281 for (fact in factors) { | |
282 newFact <- unlist(strsplit(fact, split="::")) | |
283 factorData <- rbind(factorData, newFact) | |
284 } # Factors have the form: FACT_NAME::LEVEL,LEVEL,LEVEL,LEVEL,... The first factor is the Primary Factor. | |
285 | |
286 # Set the row names to be the name of the factor and delete first row | |
287 row.names(factorData) <- factorData[, 1] | |
288 factorData <- factorData[, -1] | |
289 factorData <- sapply(factorData, sanitiseGroups) | |
290 factorData <- sapply(factorData, strsplit, split=",") | |
291 factorData <- sapply(factorData, make.names) | |
292 # Transform factor data into data frame of R factor objects | |
293 factors <- data.frame(factorData) | |
294 } | 284 } |
295 } | 285 # order samples as in counts matrix |
296 | 286 factordata <- factordata[match(colnames(counts), factordata[, 1]), ] |
297 # if annotation file provided | 287 factors <- factordata[, -1, drop = FALSE] |
298 if (haveAnno) { | 288 } else { |
299 geneanno <- read.table(opt$annoPath, header=TRUE, sep="\t", quote= "", strip.white=TRUE, stringsAsFactors=FALSE) | 289 factors <- unlist(strsplit(opt$factInput, "|", fixed = TRUE)) |
300 } | 290 factordata <- list() |
301 | 291 for (fact in factors) { |
302 #Create output directory | 292 newfact <- unlist(strsplit(fact, split = "::")) |
303 dir.create(opt$outPath, showWarnings=FALSE) | 293 factordata <- rbind(factordata, newfact) |
294 } # Factors have the form: FACT_NAME::LEVEL,LEVEL,LEVEL,LEVEL,... The first factor is the Primary Factor. | |
295 | |
296 # Set the row names to be the name of the factor and delete first row | |
297 row.names(factordata) <- factordata[, 1] | |
298 factordata <- factordata[, -1] | |
299 factordata <- sapply(factordata, sanitise_groups) | |
300 factordata <- sapply(factordata, strsplit, split = ",") | |
301 factordata <- sapply(factordata, make.names) | |
302 # Transform factor data into data frame of R factor objects | |
303 factors <- data.frame(factordata) | |
304 } | |
305 } | |
306 | |
307 # if annotation file provided | |
308 if (have_anno) { | |
309 geneanno <- read.table(opt$annoPath, header = TRUE, sep = "\t", quote = "", strip.white = TRUE, stringsAsFactors = FALSE) | |
310 } | |
311 | |
312 # Create output directory | |
313 out_path <- opt$outPath | |
314 dir.create(out_path, showWarnings = FALSE) | |
304 | 315 |
305 # Split up contrasts separated by comma into a vector then sanitise | 316 # Split up contrasts separated by comma into a vector then sanitise |
306 contrastData <- unlist(strsplit(opt$contrastData, split=",")) | 317 contrast_data <- unlist(strsplit(opt$contrastData, split = ",")) |
307 contrastData <- sanitiseEquation(contrastData) | 318 contrast_data <- sanitise_equation(contrast_data) |
308 contrastData <- gsub(" ", ".", contrastData, fixed=TRUE) | 319 contrast_data <- gsub(" ", ".", contrast_data, fixed = TRUE) |
309 | 320 |
310 bcvOutPdf <- makeOut("bcvplot.pdf") | 321 bcv_pdf <- make_out("bcvplot.pdf") |
311 bcvOutPng <- makeOut("bcvplot.png") | 322 bcv_png <- make_out("bcvplot.png") |
312 qlOutPdf <- makeOut("qlplot.pdf") | 323 ql_pdf <- make_out("qlplot.pdf") |
313 qlOutPng <- makeOut("qlplot.png") | 324 ql_png <- make_out("qlplot.png") |
314 mdsOutPdf <- character() # Initialise character vector | 325 mds_pdf <- character() # Initialise character vector |
315 mdsOutPng <- character() | 326 mds_png <- character() |
316 for (i in 1:ncol(factors)) { | 327 for (i in seq_len(ncol(factors))) { |
317 mdsOutPdf[i] <- makeOut(paste0("mdsplot_", names(factors)[i], ".pdf")) | 328 mds_pdf[i] <- make_out(paste0("mdsplot_", names(factors)[i], ".pdf")) |
318 mdsOutPng[i] <- makeOut(paste0("mdsplot_", names(factors)[i], ".png")) | 329 mds_png[i] <- make_out(paste0("mdsplot_", names(factors)[i], ".png")) |
319 } | 330 } |
320 mdOutPdf <- character() | 331 md_pdf <- character() |
321 mdOutPng <- character() | 332 md_png <- character() |
322 topOut <- character() | 333 top_out <- character() |
323 for (i in 1:length(contrastData)) { | 334 for (i in seq_along(contrast_data)) { |
324 mdOutPdf[i] <- makeOut(paste0("mdplot_", contrastData[i], ".pdf")) | 335 md_pdf[i] <- make_out(paste0("mdplot_", contrast_data[i], ".pdf")) |
325 mdOutPng[i] <- makeOut(paste0("mdplot_", contrastData[i], ".png")) | 336 md_png[i] <- make_out(paste0("mdplot_", contrast_data[i], ".png")) |
326 topOut[i] <- makeOut(paste0("edgeR_", contrastData[i], ".tsv")) | 337 top_out[i] <- make_out(paste0("edgeR_", contrast_data[i], ".tsv")) |
327 } # Save output paths for each contrast as vectors | 338 } # Save output paths for each contrast as vectors |
328 normOut <- makeOut("edgeR_normcounts.tsv") | 339 norm_out <- make_out("edgeR_normcounts.tsv") |
329 rdaOut <- makeOut("edgeR_analysis.RData") | 340 rda_out <- make_out("edgeR_analysis.RData") |
330 sessionOut <- makeOut("session_info.txt") | 341 session_out <- make_out("session_info.txt") |
331 | 342 |
332 # Initialise data for html links and images, data frame with columns Label and | 343 # Initialise data for html links and images, data frame with columns Label and |
333 # Link | 344 # Link |
334 linkData <- data.frame(Label=character(), Link=character(), stringsAsFactors=FALSE) | 345 link_data <- data.frame(Label = character(), Link = character(), stringsAsFactors = FALSE) |
335 imageData <- data.frame(Label=character(), Link=character(), stringsAsFactors=FALSE) | 346 image_data <- data.frame(Label = character(), Link = character(), stringsAsFactors = FALSE) |
336 | 347 |
337 # Initialise vectors for storage of up/down/neutral regulated counts | 348 # Initialise vectors for storage of up/down/neutral regulated counts |
338 upCount <- numeric() | 349 up_count <- numeric() |
339 downCount <- numeric() | 350 down_count <- numeric() |
340 flatCount <- numeric() | 351 flat_count <- numeric() |
341 | 352 |
342 ################################################################################ | 353 ################################################################################ |
343 ### Data Processing | 354 ### Data Processing |
344 ################################################################################ | 355 ################################################################################ |
345 | 356 |
346 # Extract counts and annotation data | 357 # Extract counts and annotation data |
347 data <- list() | 358 data <- list() |
348 data$counts <- counts | 359 data$counts <- counts |
349 if (haveAnno) { | 360 if (have_anno) { |
350 # order annotation by genes in counts (assumes gene ids are in 1st column of geneanno) | 361 # order annotation by genes in counts (assumes gene ids are in 1st column of geneanno) |
351 annoord <- geneanno[match(row.names(counts), geneanno[,1]), ] | 362 annoord <- geneanno[match(row.names(counts), geneanno[, 1]), ] |
352 data$genes <- annoord | 363 data$genes <- annoord |
353 } else { | 364 } else { |
354 data$genes <- data.frame(GeneID=row.names(counts)) | 365 data$genes <- data.frame(GeneID = row.names(counts)) |
355 } | 366 } |
356 | 367 |
357 # If filter crieteria set, filter out genes that do not have a required cpm/counts in a required number of | 368 # If filter crieteria set, filter out genes that do not have a required cpm/counts in a required number of |
358 # samples. Default is no filtering | 369 # samples. Default is no filtering |
359 preFilterCount <- nrow(data$counts) | 370 prefilter_count <- nrow(data$counts) |
360 | 371 |
361 if (filtCPM || filtSmpCount || filtTotCount) { | 372 if (filt_cpm || filt_smpcount || filt_totcount) { |
362 | 373 if (filt_totcount) { |
363 if (filtTotCount) { | 374 keep <- rowSums(data$counts) >= opt$cntReq |
364 keep <- rowSums(data$counts) >= opt$cntReq | 375 } else if (filt_smpcount) { |
365 } else if (filtSmpCount) { | 376 keep <- rowSums(data$counts >= opt$cntReq) >= opt$sampleReq |
366 keep <- rowSums(data$counts >= opt$cntReq) >= opt$sampleReq | 377 } else if (filt_cpm) { |
367 } else if (filtCPM) { | 378 keep <- rowSums(cpm(data$counts) >= opt$cpmReq) >= opt$sampleReq |
368 keep <- rowSums(cpm(data$counts) >= opt$cpmReq) >= opt$sampleReq | 379 } |
369 } | 380 |
370 | 381 data$counts <- data$counts[keep, ] |
371 data$counts <- data$counts[keep, ] | 382 data$genes <- data$genes[keep, , drop = FALSE] |
372 data$genes <- data$genes[keep, , drop=FALSE] | 383 } |
373 } | 384 |
374 | 385 postfilter_count <- nrow(data$counts) |
375 postFilterCount <- nrow(data$counts) | 386 filtered_count <- prefilter_count - postfilter_count |
376 filteredCount <- preFilterCount-postFilterCount | |
377 | |
378 # Creating naming data | |
379 samplenames <- colnames(data$counts) | |
380 sampleanno <- data.frame("sampleID"=samplenames, factors) | |
381 | |
382 | |
383 # Generating the DGEList object "data" | |
384 data$samples <- sampleanno | |
385 data$samples$lib.size <- colSums(data$counts) | |
386 data$samples$norm.factors <- 1 | |
387 row.names(data$samples) <- colnames(data$counts) | |
388 data <- new("DGEList", data) | |
389 | 387 |
390 # Name rows of factors according to their sample | 388 # Name rows of factors according to their sample |
391 row.names(factors) <- names(data$counts) | 389 row.names(factors) <- names(data$counts) |
392 factorList <- sapply(names(factors), pasteListName) | 390 factor_list <- sapply(names(factors), paste_listname) |
393 | 391 |
394 formula <- "~0" | 392 # Generating the DGEList object "data" |
395 for (i in 1:length(factorList)) { | 393 samplenames <- colnames(data$counts) |
396 formula <- paste(formula, factorList[i], sep="+") | 394 genes <- data$genes |
395 data <- DGEList(data$counts) | |
396 colnames(data) <- samplenames | |
397 data$samples <- factors | |
398 data$genes <- genes | |
399 | |
400 | |
401 | |
402 formula <- "~0" | |
403 for (i in seq_along(factor_list)) { | |
404 formula <- paste(formula, factor_list[i], sep = "+") | |
397 } | 405 } |
398 | 406 |
399 formula <- formula(formula) | 407 formula <- formula(formula) |
400 design <- model.matrix(formula) | 408 design <- model.matrix(formula) |
401 | 409 |
402 for (i in 1:length(factorList)) { | 410 for (i in seq_along(factor_list)) { |
403 colnames(design) <- gsub(factorList[i], "", colnames(design), fixed=TRUE) | 411 colnames(design) <- gsub(factor_list[i], "", colnames(design), fixed = TRUE) |
404 } | 412 } |
405 | 413 |
406 # Calculating normalising factor, estimating dispersion | 414 # Calculating normalising factor, estimating dispersion |
407 data <- calcNormFactors(data, method=opt$normOpt) | 415 data <- calcNormFactors(data, method = opt$normOpt) |
408 | 416 |
409 if (wantRobust) { | 417 if (want_robust) { |
410 data <- estimateDisp(data, design=design, robust=TRUE) | 418 data <- estimateDisp(data, design = design, robust = TRUE) |
411 } else { | 419 } else { |
412 data <- estimateDisp(data, design=design) | 420 data <- estimateDisp(data, design = design) |
413 } | 421 } |
414 | 422 |
415 # Generate contrasts information | 423 # Generate contrasts information |
416 contrasts <- makeContrasts(contrasts=contrastData, levels=design) | 424 contrasts <- makeContrasts(contrasts = contrast_data, levels = design) |
417 | 425 |
418 ################################################################################ | 426 ################################################################################ |
419 ### Data Output | 427 ### Data Output |
420 ################################################################################ | 428 ################################################################################ |
421 | 429 |
422 # Plot MDS | 430 # Plot MDS |
423 labels <- names(counts) | 431 labels <- names(counts) |
424 | 432 |
425 # MDS plot | 433 # MDS plot |
426 png(mdsOutPng, width=600, height=600) | 434 png(mds_png, width = 600, height = 600) |
427 plotMDS(data, labels=labels, col=as.numeric(factors[, 1]), cex=0.8, main=paste("MDS Plot:", names(factors)[1])) | 435 plotMDS(data, labels = labels, col = as.numeric(factors[, 1]), cex = 0.8, main = paste("MDS Plot:", names(factors)[1])) |
428 imgName <- paste0("MDS Plot_", names(factors)[1], ".png") | 436 img_name <- paste0("MDS Plot_", names(factors)[1], ".png") |
429 imgAddr <- paste0("mdsplot_", names(factors)[1], ".png") | 437 img_addr <- paste0("mdsplot_", names(factors)[1], ".png") |
430 imageData[1, ] <- c(imgName, imgAddr) | 438 image_data[1, ] <- c(img_name, img_addr) |
431 invisible(dev.off()) | 439 invisible(dev.off()) |
432 | 440 |
433 pdf(mdsOutPdf) | 441 pdf(mds_pdf) |
434 plotMDS(data, labels=labels, col=as.numeric(factors[, 1]), cex=0.8, main=paste("MDS Plot:", names(factors)[1])) | 442 plotMDS(data, labels = labels, col = as.numeric(factors[, 1]), cex = 0.8, main = paste("MDS Plot:", names(factors)[1])) |
435 linkName <- paste0("MDS Plot_", names(factors)[1], ".pdf") | 443 link_name <- paste0("MDS Plot_", names(factors)[1], ".pdf") |
436 linkAddr <- paste0("mdsplot_", names(factors)[1], ".pdf") | 444 link_addr <- paste0("mdsplot_", names(factors)[1], ".pdf") |
437 linkData[1, ] <- c(linkName, linkAddr) | 445 link_data[1, ] <- c(link_name, link_addr) |
438 invisible(dev.off()) | 446 invisible(dev.off()) |
439 | 447 |
440 # If additional factors create additional MDS plots coloured by factor | 448 # If additional factors create additional MDS plots coloured by factor |
441 if (ncol(factors) > 1) { | 449 if (ncol(factors) > 1) { |
442 for (i in 2:ncol(factors)) { | 450 for (i in 2:ncol(factors)) { |
443 png(mdsOutPng[i], width=600, height=600) | 451 png(mds_png[i], width = 600, height = 600) |
444 plotMDS(data, labels=labels, col=as.numeric(factors[, i]), cex=0.8, main=paste("MDS Plot:", names(factors)[i])) | 452 plotMDS(data, labels = labels, col = as.numeric(factors[, i]), cex = 0.8, main = paste("MDS Plot:", names(factors)[i])) |
445 imgName <- paste0("MDS Plot_", names(factors)[i], ".png") | 453 img_name <- paste0("MDS Plot_", names(factors)[i], ".png") |
446 imgAddr <- paste0("mdsplot_", names(factors)[i], ".png") | 454 img_addr <- paste0("mdsplot_", names(factors)[i], ".png") |
447 imageData <- rbind(imageData, c(imgName, imgAddr)) | 455 image_data <- rbind(image_data, c(img_name, img_addr)) |
448 invisible(dev.off()) | 456 invisible(dev.off()) |
449 | 457 |
450 pdf(mdsOutPdf[i]) | 458 pdf(mds_pdf[i]) |
451 plotMDS(data, labels=labels, col=as.numeric(factors[, i]), cex=0.8, main=paste("MDS Plot:", names(factors)[i])) | 459 plotMDS(data, labels = labels, col = as.numeric(factors[, i]), cex = 0.8, main = paste("MDS Plot:", names(factors)[i])) |
452 linkName <- paste0("MDS Plot_", names(factors)[i], ".pdf") | 460 link_name <- paste0("MDS Plot_", names(factors)[i], ".pdf") |
453 linkAddr <- paste0("mdsplot_", names(factors)[i], ".pdf") | 461 link_addr <- paste0("mdsplot_", names(factors)[i], ".pdf") |
454 linkData <- rbind(linkData, c(linkName, linkAddr)) | 462 link_data <- rbind(link_data, c(link_name, link_addr)) |
455 invisible(dev.off()) | 463 invisible(dev.off()) |
456 } | 464 } |
457 } | 465 } |
458 | 466 |
459 # BCV Plot | 467 # BCV Plot |
460 png(bcvOutPng, width=600, height=600) | 468 png(bcv_png, width = 600, height = 600) |
461 plotBCV(data, main="BCV Plot") | 469 plotBCV(data, main = "BCV Plot") |
462 imgName <- "BCV Plot" | 470 img_name <- "BCV Plot" |
463 imgAddr <- "bcvplot.png" | 471 img_addr <- "bcvplot.png" |
464 imageData <- rbind(imageData, c(imgName, imgAddr)) | 472 image_data <- rbind(image_data, c(img_name, img_addr)) |
465 invisible(dev.off()) | 473 invisible(dev.off()) |
466 | 474 |
467 pdf(bcvOutPdf) | 475 pdf(bcv_pdf) |
468 plotBCV(data, main="BCV Plot") | 476 plotBCV(data, main = "BCV Plot") |
469 linkName <- paste0("BCV Plot.pdf") | 477 link_name <- paste0("BCV Plot.pdf") |
470 linkAddr <- paste0("bcvplot.pdf") | 478 link_addr <- paste0("bcvplot.pdf") |
471 linkData <- rbind(linkData, c(linkName, linkAddr)) | 479 link_data <- rbind(link_data, c(link_name, link_addr)) |
472 invisible(dev.off()) | 480 invisible(dev.off()) |
473 | 481 |
474 # Generate fit | 482 # Generate fit |
475 if (wantLRT) { | 483 if (want_lrt) { |
476 | 484 fit <- glmFit(data, design) |
477 fit <- glmFit(data, design) | 485 } else { |
478 | 486 if (want_robust) { |
479 } else { | 487 fit <- glmQLFit(data, design, robust = TRUE) |
480 | 488 } else { |
481 if (wantRobust) { | 489 fit <- glmQLFit(data, design) |
482 fit <- glmQLFit(data, design, robust=TRUE) | 490 } |
483 } else { | 491 |
484 fit <- glmQLFit(data, design) | 492 # Plot QL dispersions |
485 } | 493 png(ql_png, width = 600, height = 600) |
486 | 494 plotQLDisp(fit, main = "QL Plot") |
487 # Plot QL dispersions | 495 img_name <- "QL Plot" |
488 png(qlOutPng, width=600, height=600) | 496 img_addr <- "qlplot.png" |
489 plotQLDisp(fit, main="QL Plot") | 497 image_data <- rbind(image_data, c(img_name, img_addr)) |
490 imgName <- "QL Plot" | 498 invisible(dev.off()) |
491 imgAddr <- "qlplot.png" | 499 |
492 imageData <- rbind(imageData, c(imgName, imgAddr)) | 500 pdf(ql_pdf) |
493 invisible(dev.off()) | 501 plotQLDisp(fit, main = "QL Plot") |
494 | 502 link_name <- "QL Plot.pdf" |
495 pdf(qlOutPdf) | 503 link_addr <- "qlplot.pdf" |
496 plotQLDisp(fit, main="QL Plot") | 504 link_data <- rbind(link_data, c(link_name, link_addr)) |
497 linkName <- "QL Plot.pdf" | 505 invisible(dev.off()) |
498 linkAddr <- "qlplot.pdf" | 506 } |
499 linkData <- rbind(linkData, c(linkName, linkAddr)) | 507 |
500 invisible(dev.off()) | 508 # Save normalised counts (log2cpm) |
501 } | 509 if (want_norm) { |
502 | 510 normalised_counts <- cpm(data, normalized.lib.sizes = TRUE, log = TRUE) |
503 # Save normalised counts (log2cpm) | 511 normalised_counts <- data.frame(data$genes, normalised_counts) |
504 if (wantNorm) { | 512 write.table(normalised_counts, file = norm_out, row.names = FALSE, sep = "\t", quote = FALSE) |
505 normalisedCounts <- cpm(data, normalized.lib.sizes=TRUE, log=TRUE) | 513 link_data <- rbind(link_data, c("edgeR_normcounts.tsv", "edgeR_normcounts.tsv")) |
506 normalisedCounts <- data.frame(data$genes, normalisedCounts) | 514 } |
507 write.table (normalisedCounts, file=normOut, row.names=FALSE, sep="\t", quote=FALSE) | 515 |
508 linkData <- rbind(linkData, c("edgeR_normcounts.tsv", "edgeR_normcounts.tsv")) | 516 |
509 } | 517 for (i in seq_along(contrast_data)) { |
510 | 518 if (want_lrt) { |
511 | 519 res <- glmLRT(fit, contrast = contrasts[, i]) |
512 for (i in 1:length(contrastData)) { | 520 } else { |
513 if (wantLRT) { | 521 res <- glmQLFTest(fit, contrast = contrasts[, i]) |
514 res <- glmLRT(fit, contrast=contrasts[, i]) | 522 } |
515 } else { | 523 |
516 res <- glmQLFTest(fit, contrast=contrasts[, i]) | 524 status <- decideTestsDGE(res, |
517 } | 525 adjust.method = opt$pAdjOpt, p.value = opt$pValReq, |
518 | 526 lfc = opt$lfcReq |
519 status = decideTestsDGE(res, adjust.method=opt$pAdjOpt, p.value=opt$pValReq, | 527 ) |
520 lfc=opt$lfcReq) | 528 sum_status <- summary(status) |
521 sumStatus <- summary(status) | 529 |
522 | 530 # Collect counts for differential expression |
523 # Collect counts for differential expression | 531 up_count[i] <- sum_status["Up", ] |
524 upCount[i] <- sumStatus["Up", ] | 532 down_count[i] <- sum_status["Down", ] |
525 downCount[i] <- sumStatus["Down", ] | 533 flat_count[i] <- sum_status["NotSig", ] |
526 flatCount[i] <- sumStatus["NotSig", ] | 534 |
527 | 535 # Write top expressions table |
528 # Write top expressions table | 536 top <- topTags(res, adjust.method = opt$pAdjOpt, n = Inf, sort.by = "PValue") |
529 top <- topTags(res, adjust.method=opt$pAdjOpt, n=Inf, sort.by="PValue") | 537 write.table(top, file = top_out[i], row.names = FALSE, sep = "\t", quote = FALSE) |
530 write.table(top, file=topOut[i], row.names=FALSE, sep="\t", quote=FALSE) | 538 |
531 | 539 link_name <- paste0("edgeR_", contrast_data[i], ".tsv") |
532 linkName <- paste0("edgeR_", contrastData[i], ".tsv") | 540 link_addr <- paste0("edgeR_", contrast_data[i], ".tsv") |
533 linkAddr <- paste0("edgeR_", contrastData[i], ".tsv") | 541 link_data <- rbind(link_data, c(link_name, link_addr)) |
534 linkData <- rbind(linkData, c(linkName, linkAddr)) | 542 |
535 | 543 # Plot MD (log ratios vs mean difference) using limma package |
536 # Plot MD (log ratios vs mean difference) using limma package | 544 pdf(md_pdf[i]) |
537 pdf(mdOutPdf[i]) | 545 limma::plotMD(res, |
538 limma::plotMD(res, status=status, | 546 status = status, |
539 main=paste("MD Plot:", unmake.names(contrastData[i])), | 547 main = paste("MD Plot:", unmake_names(contrast_data[i])), |
540 hl.col=alpha(c("firebrick", "blue"), 0.4), values=c(1, -1), | 548 hl.col = alpha(c("firebrick", "blue"), 0.4), values = c(1, -1), |
541 xlab="Average Expression", ylab="logFC") | 549 xlab = "Average Expression", ylab = "logFC" |
542 | 550 ) |
543 abline(h=0, col="grey", lty=2) | 551 |
544 | 552 abline(h = 0, col = "grey", lty = 2) |
545 linkName <- paste0("MD Plot_", contrastData[i], ".pdf") | 553 |
546 linkAddr <- paste0("mdplot_", contrastData[i], ".pdf") | 554 link_name <- paste0("MD Plot_", contrast_data[i], ".pdf") |
547 linkData <- rbind(linkData, c(linkName, linkAddr)) | 555 link_addr <- paste0("mdplot_", contrast_data[i], ".pdf") |
548 invisible(dev.off()) | 556 link_data <- rbind(link_data, c(link_name, link_addr)) |
549 | 557 invisible(dev.off()) |
550 png(mdOutPng[i], height=600, width=600) | 558 |
551 limma::plotMD(res, status=status, | 559 png(md_png[i], height = 600, width = 600) |
552 main=paste("MD Plot:", unmake.names(contrastData[i])), | 560 limma::plotMD(res, |
553 hl.col=alpha(c("firebrick", "blue"), 0.4), values=c(1, -1), | 561 status = status, |
554 xlab="Average Expression", ylab="logFC") | 562 main = paste("MD Plot:", unmake_names(contrast_data[i])), |
555 | 563 hl.col = alpha(c("firebrick", "blue"), 0.4), values = c(1, -1), |
556 abline(h=0, col="grey", lty=2) | 564 xlab = "Average Expression", ylab = "logFC" |
557 | 565 ) |
558 imgName <- paste0("MD Plot_", contrastData[i], ".png") | 566 |
559 imgAddr <- paste0("mdplot_", contrastData[i], ".png") | 567 abline(h = 0, col = "grey", lty = 2) |
560 imageData <- rbind(imageData, c(imgName, imgAddr)) | 568 |
561 invisible(dev.off()) | 569 img_name <- paste0("MD Plot_", contrast_data[i], ".png") |
562 } | 570 img_addr <- paste0("mdplot_", contrast_data[i], ".png") |
563 sigDiff <- data.frame(Up=upCount, Flat=flatCount, Down=downCount) | 571 image_data <- rbind(image_data, c(img_name, img_addr)) |
564 row.names(sigDiff) <- contrastData | 572 invisible(dev.off()) |
573 } | |
574 sig_diff <- data.frame(Up = up_count, Flat = flat_count, Down = down_count) | |
575 row.names(sig_diff) <- contrast_data | |
565 | 576 |
566 # Save relevant items as rda object | 577 # Save relevant items as rda object |
567 if (wantRda) { | 578 if (want_rda) { |
568 if (wantNorm) { | 579 if (want_norm) { |
569 save(counts, data, status, normalisedCounts, labels, factors, fit, res, top, contrasts, design, | 580 save(counts, data, status, normalised_counts, labels, factors, fit, res, top, contrasts, design, |
570 file=rdaOut, ascii=TRUE) | 581 file = rda_out, ascii = TRUE |
571 } else { | 582 ) |
572 save(counts, data, status, labels, factors, fit, res, top, contrasts, design, | 583 } else { |
573 file=rdaOut, ascii=TRUE) | 584 save(counts, data, status, labels, factors, fit, res, top, contrasts, design, |
574 } | 585 file = rda_out, ascii = TRUE |
575 linkData <- rbind(linkData, c("edgeR_analysis.RData", "edgeR_analysis.RData")) | 586 ) |
587 } | |
588 link_data <- rbind(link_data, c("edgeR_analysis.RData", "edgeR_analysis.RData")) | |
576 } | 589 } |
577 | 590 |
578 # Record session info | 591 # Record session info |
579 writeLines(capture.output(sessionInfo()), sessionOut) | 592 writeLines(capture.output(sessionInfo()), session_out) |
580 linkData <- rbind(linkData, c("Session Info", "session_info.txt")) | 593 link_data <- rbind(link_data, c("Session Info", "session_info.txt")) |
581 | 594 |
582 # Record ending time and calculate total run time | 595 # Record ending time and calculate total run time |
583 timeEnd <- as.character(Sys.time()) | 596 time_end <- as.character(Sys.time()) |
584 timeTaken <- capture.output(round(difftime(timeEnd, timeStart), digits=3)) | 597 time_taken <- capture.output(round(difftime(time_end, time_start), digits = 3)) |
585 timeTaken <- gsub("Time difference of ", "", timeTaken, fixed=TRUE) | 598 time_taken <- gsub("Time difference of ", "", time_taken, fixed = TRUE) |
586 | 599 |
587 ################################################################################ | 600 ################################################################################ |
588 ### HTML Generation | 601 ### HTML Generation |
589 ################################################################################ | 602 ################################################################################ |
590 | 603 |
591 # Clear file | 604 # Clear file |
592 cat("", file=opt$htmlPath) | 605 cat("", file = opt$htmlPath) |
593 | 606 |
594 cata("<html>\n") | 607 cata("<html>\n") |
595 | 608 |
596 cata("<body>\n") | 609 cata("<body>\n") |
597 cata("<h3>edgeR Analysis Output:</h3>\n") | 610 cata("<h3>edgeR Analysis Output:</h3>\n") |
598 cata("Links to PDF copies of plots are in 'Plots' section below.<br />\n") | 611 cata("Links to PDF copies of plots are in 'Plots' section below.<br />\n") |
599 | 612 |
600 HtmlImage(imageData$Link[1], imageData$Label[1]) | 613 html_image(image_data$Link[1], image_data$Label[1]) |
601 | 614 |
602 for (i in 2:nrow(imageData)) { | 615 for (i in 2:nrow(image_data)) { |
603 HtmlImage(imageData$Link[i], imageData$Label[i]) | 616 html_image(image_data$Link[i], image_data$Label[i]) |
604 } | 617 } |
605 | 618 |
606 cata("<h4>Differential Expression Counts:</h4>\n") | 619 cata("<h4>Differential Expression Counts:</h4>\n") |
607 | 620 |
608 cata("<table border=\"1\" cellpadding=\"4\">\n") | 621 cata("<table border=\"1\" cellpadding=\"4\">\n") |
609 cata("<tr>\n") | 622 cata("<tr>\n") |
610 TableItem() | 623 table_item() |
611 for (i in colnames(sigDiff)) { | 624 for (i in colnames(sig_diff)) { |
612 TableHeadItem(i) | 625 table_head_item(i) |
613 } | 626 } |
614 cata("</tr>\n") | 627 cata("</tr>\n") |
615 for (i in 1:nrow(sigDiff)) { | 628 for (i in seq_len(nrow(sig_diff))) { |
616 cata("<tr>\n") | 629 cata("<tr>\n") |
617 TableHeadItem(unmake.names(row.names(sigDiff)[i])) | 630 table_head_item(unmake_names(row.names(sig_diff)[i])) |
618 for (j in 1:ncol(sigDiff)) { | 631 for (j in seq_len(ncol(sig_diff))) { |
619 TableItem(as.character(sigDiff[i, j])) | 632 table_item(as.character(sig_diff[i, j])) |
633 } | |
634 cata("</tr>\n") | |
635 } | |
636 cata("</table>") | |
637 | |
638 cata("<h4>Plots:</h4>\n") | |
639 for (i in seq_len(nrow(link_data))) { | |
640 if (grepl(".pdf", link_data$Link[i])) { | |
641 html_link(link_data$Link[i], link_data$Label[i]) | |
642 } | |
643 } | |
644 | |
645 cata("<h4>Tables:</h4>\n") | |
646 for (i in seq_len(nrow(link_data))) { | |
647 if (grepl(".tsv", link_data$Link[i])) { | |
648 html_link(link_data$Link[i], link_data$Label[i]) | |
649 } | |
650 } | |
651 | |
652 if (want_rda) { | |
653 cata("<h4>R Data Objects:</h4>\n") | |
654 for (i in seq_len(nrow(link_data))) { | |
655 if (grepl(".RData", link_data$Link[i])) { | |
656 html_link(link_data$Link[i], link_data$Label[i]) | |
620 } | 657 } |
621 cata("</tr>\n") | 658 } |
622 } | |
623 cata("</table>") | |
624 | |
625 cata("<h4>Plots:</h4>\n") | |
626 for (i in 1:nrow(linkData)) { | |
627 if (grepl(".pdf", linkData$Link[i])) { | |
628 HtmlLink(linkData$Link[i], linkData$Label[i]) | |
629 } | |
630 } | |
631 | |
632 cata("<h4>Tables:</h4>\n") | |
633 for (i in 1:nrow(linkData)) { | |
634 if (grepl(".tsv", linkData$Link[i])) { | |
635 HtmlLink(linkData$Link[i], linkData$Label[i]) | |
636 } | |
637 } | |
638 | |
639 if (wantRda) { | |
640 cata("<h4>R Data Objects:</h4>\n") | |
641 for (i in 1:nrow(linkData)) { | |
642 if (grepl(".RData", linkData$Link[i])) { | |
643 HtmlLink(linkData$Link[i], linkData$Label[i]) | |
644 } | |
645 } | |
646 } | 659 } |
647 | 660 |
648 cata("<p>Alt-click links to download file.</p>\n") | 661 cata("<p>Alt-click links to download file.</p>\n") |
649 cata("<p>Click floppy disc icon associated history item to download ") | 662 cata("<p>Click floppy disc icon associated history item to download ") |
650 cata("all files.</p>\n") | 663 cata("all files.</p>\n") |
651 cata("<p>.tsv files can be viewed in Excel or any spreadsheet program.</p>\n") | 664 cata("<p>.tsv files can be viewed in Excel or any spreadsheet program.</p>\n") |
652 | 665 |
653 cata("<h4>Additional Information</h4>\n") | 666 cata("<h4>Additional Information</h4>\n") |
654 cata("<ul>\n") | 667 cata("<ul>\n") |
655 | 668 |
656 if (filtCPM || filtSmpCount || filtTotCount) { | 669 if (filt_cpm || filt_smpcount || filt_totcount) { |
657 if (filtCPM) { | 670 if (filt_cpm) { |
658 tempStr <- paste("Genes without more than", opt$cpmReq, | 671 temp_str <- paste( |
659 "CPM in at least", opt$sampleReq, "samples are insignificant", | 672 "Genes without more than", opt$cpmReq, |
660 "and filtered out.") | 673 "CPM in at least", opt$sampleReq, "samples are insignificant", |
661 } else if (filtSmpCount) { | 674 "and filtered out." |
662 tempStr <- paste("Genes without more than", opt$cntReq, | 675 ) |
663 "counts in at least", opt$sampleReq, "samples are insignificant", | 676 } else if (filt_smpcount) { |
664 "and filtered out.") | 677 temp_str <- paste( |
665 } else if (filtTotCount) { | 678 "Genes without more than", opt$cntReq, |
666 tempStr <- paste("Genes without more than", opt$cntReq, | 679 "counts in at least", opt$sampleReq, "samples are insignificant", |
667 "counts, after summing counts for all samples, are insignificant", | 680 "and filtered out." |
668 "and filtered out.") | 681 ) |
669 } | 682 } else if (filt_totcount) { |
670 | 683 temp_str <- paste( |
671 ListItem(tempStr) | 684 "Genes without more than", opt$cntReq, |
672 filterProp <- round(filteredCount/preFilterCount*100, digits=2) | 685 "counts, after summing counts for all samples, are insignificant", |
673 tempStr <- paste0(filteredCount, " of ", preFilterCount," (", filterProp, | 686 "and filtered out." |
674 "%) genes were filtered out for low expression.") | 687 ) |
675 ListItem(tempStr) | 688 } |
676 } | 689 |
677 ListItem(opt$normOpt, " was the method used to normalise library sizes.") | 690 list_item(temp_str) |
678 if (wantLRT) { | 691 filter_prop <- round(filtered_count / prefilter_count * 100, digits = 2) |
679 ListItem("The edgeR likelihood ratio test was used.") | 692 temp_str <- paste0( |
680 } else { | 693 filtered_count, " of ", prefilter_count, " (", filter_prop, |
681 if (wantRobust) { | 694 "%) genes were filtered out for low expression." |
682 ListItem("The edgeR quasi-likelihood test was used with robust settings (robust=TRUE with estimateDisp and glmQLFit).") | 695 ) |
683 } else { | 696 list_item(temp_str) |
684 ListItem("The edgeR quasi-likelihood test was used.") | 697 } |
685 } | 698 list_item(opt$normOpt, " was the method used to normalise library sizes.") |
686 } | 699 if (want_lrt) { |
687 if (opt$pAdjOpt!="none") { | 700 list_item("The edgeR likelihood ratio test was used.") |
688 if (opt$pAdjOpt=="BH" || opt$pAdjOpt=="BY") { | 701 } else { |
689 tempStr <- paste0("MD-Plot highlighted genes are significant at FDR ", | 702 if (want_robust) { |
690 "of ", opt$pValReq," and exhibit log2-fold-change of at ", | 703 list_item("The edgeR quasi-likelihood test was used with robust settings (robust=TRUE with estimateDisp and glmQLFit).") |
691 "least ", opt$lfcReq, ".") | 704 } else { |
692 ListItem(tempStr) | 705 list_item("The edgeR quasi-likelihood test was used.") |
693 } else if (opt$pAdjOpt=="holm") { | 706 } |
694 tempStr <- paste0("MD-Plot highlighted genes are significant at adjusted ", | 707 } |
695 "p-value of ", opt$pValReq," by the Holm(1979) ", | 708 if (opt$pAdjOpt != "none") { |
696 "method, and exhibit log2-fold-change of at least ", | 709 if (opt$pAdjOpt == "BH" || opt$pAdjOpt == "BY") { |
697 opt$lfcReq, ".") | 710 temp_str <- paste0( |
698 ListItem(tempStr) | 711 "MD-Plot highlighted genes are significant at FDR ", |
699 } | 712 "of ", opt$pValReq, " and exhibit log2-fold-change of at ", |
700 } else { | 713 "least ", opt$lfcReq, "." |
701 tempStr <- paste0("MD-Plot highlighted genes are significant at p-value ", | 714 ) |
702 "of ", opt$pValReq," and exhibit log2-fold-change of at ", | 715 list_item(temp_str) |
703 "least ", opt$lfcReq, ".") | 716 } else if (opt$pAdjOpt == "holm") { |
704 ListItem(tempStr) | 717 temp_str <- paste0( |
718 "MD-Plot highlighted genes are significant at adjusted ", | |
719 "p-value of ", opt$pValReq, " by the Holm(1979) ", | |
720 "method, and exhibit log2-fold-change of at least ", | |
721 opt$lfcReq, "." | |
722 ) | |
723 list_item(temp_str) | |
724 } | |
725 } else { | |
726 temp_str <- paste0( | |
727 "MD-Plot highlighted genes are significant at p-value ", | |
728 "of ", opt$pValReq, " and exhibit log2-fold-change of at ", | |
729 "least ", opt$lfcReq, "." | |
730 ) | |
731 list_item(temp_str) | |
705 } | 732 } |
706 cata("</ul>\n") | 733 cata("</ul>\n") |
707 | 734 |
708 cata("<h4>Summary of experimental data:</h4>\n") | 735 cata("<h4>Summary of experimental data:</h4>\n") |
709 | 736 |
710 cata("<p>*CHECK THAT SAMPLES ARE ASSOCIATED WITH CORRECT GROUP(S)*</p>\n") | 737 cata("<p>*CHECK THAT SAMPLES ARE ASSOCIATED WITH CORRECT GROUP(S)*</p>\n") |
711 | 738 |
712 cata("<table border=\"1\" cellpadding=\"3\">\n") | 739 cata("<table border=\"1\" cellpadding=\"3\">\n") |
713 cata("<tr>\n") | 740 cata("<tr>\n") |
714 TableHeadItem("SampleID") | 741 table_head_item("SampleID") |
715 TableHeadItem(names(factors)[1], " (Primary Factor)") | 742 table_head_item(names(factors)[1], " (Primary Factor)") |
716 | 743 |
717 if (ncol(factors) > 1) { | 744 if (ncol(factors) > 1) { |
718 for (i in names(factors)[2:length(names(factors))]) { | 745 for (i in names(factors)[2:length(names(factors))]) { |
719 TableHeadItem(i) | 746 table_head_item(i) |
720 } | 747 } |
721 cata("</tr>\n") | 748 cata("</tr>\n") |
722 } | 749 } |
723 | 750 |
724 for (i in 1:nrow(factors)) { | 751 for (i in seq_len(nrow((factors)))) { |
725 cata("<tr>\n") | 752 cata("<tr>\n") |
726 TableHeadItem(row.names(factors)[i]) | 753 table_head_item(row.names(factors)[i]) |
727 for (j in 1:ncol(factors)) { | 754 for (j in seq_len(ncol(factors))) { |
728 TableItem(as.character(unmake.names(factors[i, j]))) | 755 table_item(as.character(unmake_names(factors[i, j]))) |
729 } | 756 } |
730 cata("</tr>\n") | 757 cata("</tr>\n") |
731 } | 758 } |
732 cata("</table>") | 759 cata("</table>") |
733 | 760 |
734 for (i in 1:nrow(linkData)) { | 761 for (i in seq_len(nrow(link_data))) { |
735 if (grepl("session_info", linkData$Link[i])) { | 762 if (grepl("session_info", link_data$Link[i])) { |
736 HtmlLink(linkData$Link[i], linkData$Label[i]) | 763 html_link(link_data$Link[i], link_data$Label[i]) |
737 } | 764 } |
738 } | 765 } |
739 | 766 |
740 cata("<table border=\"0\">\n") | 767 cata("<table border=\"0\">\n") |
741 cata("<tr>\n") | 768 cata("<tr>\n") |
742 TableItem("Task started at:"); TableItem(timeStart) | 769 table_item("Task started at:") |
770 table_item(time_start) | |
743 cata("</tr>\n") | 771 cata("</tr>\n") |
744 cata("<tr>\n") | 772 cata("<tr>\n") |
745 TableItem("Task ended at:"); TableItem(timeEnd) | 773 table_item("Task ended at:") |
774 table_item(time_end) | |
746 cata("</tr>\n") | 775 cata("</tr>\n") |
747 cata("<tr>\n") | 776 cata("<tr>\n") |
748 TableItem("Task run time:"); TableItem(timeTaken) | 777 table_item("Task run time:") |
778 table_item(time_taken) | |
749 cata("<tr>\n") | 779 cata("<tr>\n") |
750 cata("</table>\n") | 780 cata("</table>\n") |
751 | 781 |
752 cata("</body>\n") | 782 cata("</body>\n") |
753 cata("</html>") | 783 cata("</html>") |