Mercurial > repos > iuc > edger
comparison edger.R @ 0:9bdff28ae1b1 draft
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/edger commit eac022c9c6e51e661c1513306b9fefdad673487d
author | iuc |
---|---|
date | Tue, 07 Nov 2017 08:18:14 -0500 |
parents | |
children | 2a16413ec60d |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:9bdff28ae1b1 |
---|---|
1 # This tool takes in a matrix of feature counts as well as gene annotations and | |
2 # outputs a table of top expressions as well as various plots for differential | |
3 # expression analysis | |
4 # | |
5 # ARGS: htmlPath", "R", 1, "character" -Path to html file linking to other outputs | |
6 # outPath", "o", 1, "character" -Path to folder to write all output to | |
7 # filesPath", "j", 2, "character" -JSON list object if multiple files input | |
8 # matrixPath", "m", 2, "character" -Path to count matrix | |
9 # factFile", "f", 2, "character" -Path to factor information file | |
10 # factInput", "i", 2, "character" -String containing factors if manually input | |
11 # annoPath", "a", 2, "character" -Path to input containing gene annotations | |
12 # contrastData", "C", 1, "character" -String containing contrasts of interest | |
13 # cpmReq", "c", 2, "double" -Float specifying cpm requirement | |
14 # cntReq", "z", 2, "integer" -Integer specifying minimum total count requirement | |
15 # sampleReq", "s", 2, "integer" -Integer specifying cpm requirement | |
16 # normCounts", "x", 0, "logical" -String specifying if normalised counts should be output | |
17 # rdaOpt", "r", 0, "logical" -String specifying if RData should be output | |
18 # lfcReq", "l", 1, "double" -Float specifying the log-fold-change requirement | |
19 # pValReq", "p", 1, "double" -Float specifying the p-value requirement | |
20 # pAdjOpt", "d", 1, "character" -String specifying the p-value adjustment method | |
21 # normOpt", "n", 1, "character" -String specifying type of normalisation used | |
22 # robOpt", "b", 0, "logical" -String specifying if robust options should be used | |
23 # lrtOpt", "t", 0, "logical" -String specifying whether to perform LRT test instead | |
24 # | |
25 # OUT: | |
26 # MDS Plot | |
27 # BCV Plot | |
28 # QL Plot | |
29 # MD Plot | |
30 # Expression Table | |
31 # HTML file linking to the ouputs | |
32 # Optional: | |
33 # Normalised counts Table | |
34 # RData file | |
35 # | |
36 # Author: Shian Su - registertonysu@gmail.com - Jan 2014 | |
37 # Modified by: Maria Doyle - Oct 2017 (some code taken from the DESeq2 wrapper) | |
38 | |
39 # Record starting time | |
40 timeStart <- as.character(Sys.time()) | |
41 | |
42 # setup R error handling to go to stderr | |
43 options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) | |
44 | |
45 # we need that to not crash galaxy with an UTF8 error on German LC settings. | |
46 loc <- Sys.setlocale("LC_MESSAGES", "en_US.UTF-8") | |
47 | |
48 # Load all required libraries | |
49 library(methods, quietly=TRUE, warn.conflicts=FALSE) | |
50 library(statmod, quietly=TRUE, warn.conflicts=FALSE) | |
51 library(splines, quietly=TRUE, warn.conflicts=FALSE) | |
52 library(edgeR, quietly=TRUE, warn.conflicts=FALSE) | |
53 library(limma, quietly=TRUE, warn.conflicts=FALSE) | |
54 library(scales, quietly=TRUE, warn.conflicts=FALSE) | |
55 library(getopt, quietly=TRUE, warn.conflicts=FALSE) | |
56 | |
57 ################################################################################ | |
58 ### Function Delcaration | |
59 ################################################################################ | |
60 # Function to sanitise contrast equations so there are no whitespaces | |
61 # surrounding the arithmetic operators, leading or trailing whitespace | |
62 sanitiseEquation <- function(equation) { | |
63 equation <- gsub(" *[+] *", "+", equation) | |
64 equation <- gsub(" *[-] *", "-", equation) | |
65 equation <- gsub(" *[/] *", "/", equation) | |
66 equation <- gsub(" *[*] *", "*", equation) | |
67 equation <- gsub("^\\s+|\\s+$", "", equation) | |
68 return(equation) | |
69 } | |
70 | |
71 # Function to sanitise group information | |
72 sanitiseGroups <- function(string) { | |
73 string <- gsub(" *[,] *", ",", string) | |
74 string <- gsub("^\\s+|\\s+$", "", string) | |
75 return(string) | |
76 } | |
77 | |
78 # Function to change periods to whitespace in a string | |
79 unmake.names <- function(string) { | |
80 string <- gsub(".", " ", string, fixed=TRUE) | |
81 return(string) | |
82 } | |
83 | |
84 # Generate output folder and paths | |
85 makeOut <- function(filename) { | |
86 return(paste0(opt$outPath, "/", filename)) | |
87 } | |
88 | |
89 # Generating design information | |
90 pasteListName <- function(string) { | |
91 return(paste0("factors$", string)) | |
92 } | |
93 | |
94 # Create cata function: default path set, default seperator empty and appending | |
95 # true by default (Ripped straight from the cat function with altered argument | |
96 # defaults) | |
97 cata <- function(..., file=opt$htmlPath, sep="", fill=FALSE, labels=NULL, | |
98 append=TRUE) { | |
99 if (is.character(file)) | |
100 if (file == "") | |
101 file <- stdout() | |
102 else if (substring(file, 1L, 1L) == "|") { | |
103 file <- pipe(substring(file, 2L), "w") | |
104 on.exit(close(file)) | |
105 } | |
106 else { | |
107 file <- file(file, ifelse(append, "a", "w")) | |
108 on.exit(close(file)) | |
109 } | |
110 .Internal(cat(list(...), file, sep, fill, labels, append)) | |
111 } | |
112 | |
113 # Function to write code for html head and title | |
114 HtmlHead <- function(title) { | |
115 cata("<head>\n") | |
116 cata("<title>", title, "</title>\n") | |
117 cata("</head>\n") | |
118 } | |
119 | |
120 # Function to write code for html links | |
121 HtmlLink <- function(address, label=address) { | |
122 cata("<a href=\"", address, "\" target=\"_blank\">", label, "</a><br />\n") | |
123 } | |
124 | |
125 # Function to write code for html images | |
126 HtmlImage <- function(source, label=source, height=600, width=600) { | |
127 cata("<img src=\"", source, "\" alt=\"", label, "\" height=\"", height) | |
128 cata("\" width=\"", width, "\"/>\n") | |
129 } | |
130 | |
131 # Function to write code for html list items | |
132 ListItem <- function(...) { | |
133 cata("<li>", ..., "</li>\n") | |
134 } | |
135 | |
136 TableItem <- function(...) { | |
137 cata("<td>", ..., "</td>\n") | |
138 } | |
139 | |
140 TableHeadItem <- function(...) { | |
141 cata("<th>", ..., "</th>\n") | |
142 } | |
143 | |
144 ################################################################################ | |
145 ### Input Processing | |
146 ################################################################################ | |
147 | |
148 # Collect arguments from command line | |
149 args <- commandArgs(trailingOnly=TRUE) | |
150 | |
151 # Get options, using the spec as defined by the enclosed list. | |
152 # Read the options from the default: commandArgs(TRUE). | |
153 spec <- matrix(c( | |
154 "htmlPath", "R", 1, "character", | |
155 "outPath", "o", 1, "character", | |
156 "filesPath", "j", 2, "character", | |
157 "matrixPath", "m", 2, "character", | |
158 "factFile", "f", 2, "character", | |
159 "factInput", "i", 2, "character", | |
160 "annoPath", "a", 2, "character", | |
161 "contrastData", "C", 1, "character", | |
162 "cpmReq", "c", 1, "double", | |
163 "totReq", "y", 0, "logical", | |
164 "cntReq", "z", 1, "integer", | |
165 "sampleReq", "s", 1, "integer", | |
166 "normCounts", "x", 0, "logical", | |
167 "rdaOpt", "r", 0, "logical", | |
168 "lfcReq", "l", 1, "double", | |
169 "pValReq", "p", 1, "double", | |
170 "pAdjOpt", "d", 1, "character", | |
171 "normOpt", "n", 1, "character", | |
172 "robOpt", "b", 0, "logical", | |
173 "lrtOpt", "t", 0, "logical"), | |
174 byrow=TRUE, ncol=4) | |
175 opt <- getopt(spec) | |
176 | |
177 | |
178 if (is.null(opt$matrixPath) & is.null(opt$filesPath)) { | |
179 cat("A counts matrix (or a set of counts files) is required.\n") | |
180 q(status=1) | |
181 } | |
182 | |
183 if (is.null(opt$cpmReq)) { | |
184 filtCPM <- FALSE | |
185 } else { | |
186 filtCPM <- TRUE | |
187 } | |
188 | |
189 if (is.null(opt$cntReq) || is.null(opt$sampleReq)) { | |
190 filtSmpCount <- FALSE | |
191 } else { | |
192 filtSmpCount <- TRUE | |
193 } | |
194 | |
195 if (is.null(opt$totReq)) { | |
196 filtTotCount <- FALSE | |
197 } else { | |
198 filtTotCount <- TRUE | |
199 } | |
200 | |
201 if (is.null(opt$lrtOpt)) { | |
202 wantLRT <- FALSE | |
203 } else { | |
204 wantLRT <- TRUE | |
205 } | |
206 | |
207 if (is.null(opt$rdaOpt)) { | |
208 wantRda <- FALSE | |
209 } else { | |
210 wantRda <- TRUE | |
211 } | |
212 | |
213 if (is.null(opt$annoPath)) { | |
214 haveAnno <- FALSE | |
215 } else { | |
216 haveAnno <- TRUE | |
217 } | |
218 | |
219 if (is.null(opt$normCounts)) { | |
220 wantNorm <- FALSE | |
221 } else { | |
222 wantNorm <- TRUE | |
223 } | |
224 | |
225 if (is.null(opt$robOpt)) { | |
226 wantRobust <- FALSE | |
227 } else { | |
228 wantRobust <- TRUE | |
229 } | |
230 | |
231 | |
232 if (!is.null(opt$filesPath)) { | |
233 # Process the separate count files (adapted from DESeq2 wrapper) | |
234 library("rjson") | |
235 parser <- newJSONParser() | |
236 parser$addData(opt$filesPath) | |
237 factorList <- parser$getObject() | |
238 factors <- sapply(factorList, function(x) x[[1]]) | |
239 filenamesIn <- unname(unlist(factorList[[1]][[2]])) | |
240 sampleTable <- data.frame(sample=basename(filenamesIn), | |
241 filename=filenamesIn, | |
242 row.names=filenamesIn, | |
243 stringsAsFactors=FALSE) | |
244 for (factor in factorList) { | |
245 factorName <- factor[[1]] | |
246 sampleTable[[factorName]] <- character(nrow(sampleTable)) | |
247 lvls <- sapply(factor[[2]], function(x) names(x)) | |
248 for (i in seq_along(factor[[2]])) { | |
249 files <- factor[[2]][[i]][[1]] | |
250 sampleTable[files,factorName] <- lvls[i] | |
251 } | |
252 sampleTable[[factorName]] <- factor(sampleTable[[factorName]], levels=lvls) | |
253 } | |
254 rownames(sampleTable) <- sampleTable$sample | |
255 rem <- c("sample","filename") | |
256 factors <- sampleTable[, !(names(sampleTable) %in% rem), drop=FALSE] | |
257 | |
258 #read in count files and create single table | |
259 countfiles <- lapply(sampleTable$filename, function(x){read.delim(x, row.names=1)}) | |
260 counts <- do.call("cbind", countfiles) | |
261 | |
262 } else { | |
263 # Process the single count matrix | |
264 counts <- read.table(opt$matrixPath, header=TRUE, sep="\t", stringsAsFactors=FALSE) | |
265 row.names(counts) <- counts[, 1] | |
266 counts <- counts[ , -1] | |
267 countsRows <- nrow(counts) | |
268 | |
269 # Process factors | |
270 if (is.null(opt$factInput)) { | |
271 factorData <- read.table(opt$factFile, header=TRUE, sep="\t") | |
272 factors <- factorData[, -1, drop=FALSE] | |
273 } else { | |
274 factors <- unlist(strsplit(opt$factInput, "|", fixed=TRUE)) | |
275 factorData <- list() | |
276 for (fact in factors) { | |
277 newFact <- unlist(strsplit(fact, split="::")) | |
278 factorData <- rbind(factorData, newFact) | |
279 } # Factors have the form: FACT_NAME::LEVEL,LEVEL,LEVEL,LEVEL,... The first factor is the Primary Factor. | |
280 | |
281 # Set the row names to be the name of the factor and delete first row | |
282 row.names(factorData) <- factorData[, 1] | |
283 factorData <- factorData[, -1] | |
284 factorData <- sapply(factorData, sanitiseGroups) | |
285 factorData <- sapply(factorData, strsplit, split=",") | |
286 factorData <- sapply(factorData, make.names) | |
287 # Transform factor data into data frame of R factor objects | |
288 factors <- data.frame(factorData) | |
289 } | |
290 } | |
291 | |
292 # if annotation file provided | |
293 if (haveAnno) { | |
294 geneanno <- read.table(opt$annoPath, header=TRUE, sep="\t", stringsAsFactors=FALSE) | |
295 } | |
296 | |
297 #Create output directory | |
298 dir.create(opt$outPath, showWarnings=FALSE) | |
299 | |
300 # Split up contrasts separated by comma into a vector then sanitise | |
301 contrastData <- unlist(strsplit(opt$contrastData, split=",")) | |
302 contrastData <- sanitiseEquation(contrastData) | |
303 contrastData <- gsub(" ", ".", contrastData, fixed=TRUE) | |
304 | |
305 bcvOutPdf <- makeOut("bcvplot.pdf") | |
306 bcvOutPng <- makeOut("bcvplot.png") | |
307 qlOutPdf <- makeOut("qlplot.pdf") | |
308 qlOutPng <- makeOut("qlplot.png") | |
309 mdsOutPdf <- makeOut("mdsplot.pdf") | |
310 mdsOutPng <- makeOut("mdsplot.png") | |
311 mdOutPdf <- character() # Initialise character vector | |
312 mdOutPng <- character() | |
313 topOut <- character() | |
314 for (i in 1:length(contrastData)) { | |
315 mdOutPdf[i] <- makeOut(paste0("mdplot_", contrastData[i], ".pdf")) | |
316 mdOutPng[i] <- makeOut(paste0("mdplot_", contrastData[i], ".png")) | |
317 topOut[i] <- makeOut(paste0("edgeR_", contrastData[i], ".tsv")) | |
318 } # Save output paths for each contrast as vectors | |
319 normOut <- makeOut("edgeR_normcounts.tsv") | |
320 rdaOut <- makeOut("edgeR_analysis.RData") | |
321 sessionOut <- makeOut("session_info.txt") | |
322 | |
323 # Initialise data for html links and images, data frame with columns Label and | |
324 # Link | |
325 linkData <- data.frame(Label=character(), Link=character(), stringsAsFactors=FALSE) | |
326 imageData <- data.frame(Label=character(), Link=character(), stringsAsFactors=FALSE) | |
327 | |
328 # Initialise vectors for storage of up/down/neutral regulated counts | |
329 upCount <- numeric() | |
330 downCount <- numeric() | |
331 flatCount <- numeric() | |
332 | |
333 ################################################################################ | |
334 ### Data Processing | |
335 ################################################################################ | |
336 | |
337 # Extract counts and annotation data | |
338 data <- list() | |
339 data$counts <- counts | |
340 if (haveAnno) { | |
341 data$genes <- geneanno | |
342 } else { | |
343 data$genes <- data.frame(GeneID=row.names(counts)) | |
344 } | |
345 | |
346 # If filter crieteria set, filter out genes that do not have a required cpm/counts in a required number of | |
347 # samples. Default is no filtering | |
348 preFilterCount <- nrow(data$counts) | |
349 | |
350 if (filtCPM || filtSmpCount || filtTotCount) { | |
351 | |
352 if (filtTotCount) { | |
353 keep <- rowSums(data$counts) >= opt$cntReq | |
354 } else if (filtSmpCount) { | |
355 keep <- rowSums(data$counts >= opt$cntReq) >= opt$sampleReq | |
356 } else if (filtCPM) { | |
357 keep <- rowSums(cpm(data$counts) >= opt$cpmReq) >= opt$sampleReq | |
358 } | |
359 | |
360 data$counts <- data$counts[keep, ] | |
361 data$genes <- data$genes[keep, , drop=FALSE] | |
362 } | |
363 | |
364 postFilterCount <- nrow(data$counts) | |
365 filteredCount <- preFilterCount-postFilterCount | |
366 | |
367 # Creating naming data | |
368 samplenames <- colnames(data$counts) | |
369 sampleanno <- data.frame("sampleID"=samplenames, factors) | |
370 | |
371 | |
372 # Generating the DGEList object "data" | |
373 data$samples <- sampleanno | |
374 data$samples$lib.size <- colSums(data$counts) | |
375 data$samples$norm.factors <- 1 | |
376 row.names(data$samples) <- colnames(data$counts) | |
377 data <- new("DGEList", data) | |
378 | |
379 # Name rows of factors according to their sample | |
380 row.names(factors) <- names(data$counts) | |
381 factorList <- sapply(names(factors), pasteListName) | |
382 | |
383 formula <- "~0" | |
384 for (i in 1:length(factorList)) { | |
385 formula <- paste(formula, factorList[i], sep="+") | |
386 } | |
387 | |
388 formula <- formula(formula) | |
389 design <- model.matrix(formula) | |
390 | |
391 for (i in 1:length(factorList)) { | |
392 colnames(design) <- gsub(factorList[i], "", colnames(design), fixed=TRUE) | |
393 } | |
394 | |
395 # Calculating normalising factor, estimating dispersion | |
396 data <- calcNormFactors(data, method=opt$normOpt) | |
397 | |
398 if (wantRobust) { | |
399 data <- estimateDisp(data, design=design, robust=TRUE) | |
400 } else { | |
401 data <- estimateDisp(data, design=design) | |
402 } | |
403 | |
404 # Generate contrasts information | |
405 contrasts <- makeContrasts(contrasts=contrastData, levels=design) | |
406 | |
407 ################################################################################ | |
408 ### Data Output | |
409 ################################################################################ | |
410 | |
411 # Plot MDS | |
412 labels <- names(counts) | |
413 png(mdsOutPng, width=600, height=600) | |
414 # Currently only using a single factor | |
415 plotMDS(data, labels=labels, col=as.numeric(factors[, 1]), cex=0.8, main="MDS Plot") | |
416 imageData[1, ] <- c("MDS Plot", "mdsplot.png") | |
417 invisible(dev.off()) | |
418 | |
419 pdf(mdsOutPdf) | |
420 plotMDS(data, labels=labels, cex=0.5) | |
421 linkData[1, ] <- c("MDS Plot.pdf", "mdsplot.pdf") | |
422 invisible(dev.off()) | |
423 | |
424 # BCV Plot | |
425 png(bcvOutPng, width=600, height=600) | |
426 plotBCV(data, main="BCV Plot") | |
427 imgName <- "BCV Plot" | |
428 imgAddr <- "bcvplot.png" | |
429 imageData <- rbind(imageData, c(imgName, imgAddr)) | |
430 invisible(dev.off()) | |
431 | |
432 pdf(bcvOutPdf) | |
433 plotBCV(data, main="BCV Plot") | |
434 linkName <- paste0("BCV Plot.pdf") | |
435 linkAddr <- paste0("bcvplot.pdf") | |
436 linkData <- rbind(linkData, c(linkName, linkAddr)) | |
437 invisible(dev.off()) | |
438 | |
439 # Generate fit | |
440 if (wantLRT) { | |
441 | |
442 fit <- glmFit(data, design) | |
443 | |
444 } else { | |
445 | |
446 if (wantRobust) { | |
447 fit <- glmQLFit(data, design, robust=TRUE) | |
448 } else { | |
449 fit <- glmQLFit(data, design) | |
450 } | |
451 | |
452 # Plot QL dispersions | |
453 png(qlOutPng, width=600, height=600) | |
454 plotQLDisp(fit, main="QL Plot") | |
455 imgName <- "QL Plot" | |
456 imgAddr <- "qlplot.png" | |
457 imageData <- rbind(imageData, c(imgName, imgAddr)) | |
458 invisible(dev.off()) | |
459 | |
460 pdf(qlOutPdf) | |
461 plotQLDisp(fit, main="QL Plot") | |
462 linkName <- "QL Plot.pdf" | |
463 linkAddr <- "qlplot.pdf" | |
464 linkData <- rbind(linkData, c(linkName, linkAddr)) | |
465 invisible(dev.off()) | |
466 } | |
467 | |
468 # Save normalised counts (log2cpm) | |
469 if (wantNorm) { | |
470 normalisedCounts <- cpm(data, normalized.lib.sizes=TRUE, log=TRUE) | |
471 normalisedCounts <- data.frame(data$genes, normalisedCounts) | |
472 write.table (normalisedCounts, file=normOut, row.names=FALSE, sep="\t") | |
473 linkData <- rbind(linkData, c("edgeR_normcounts.tsv", "edgeR_normcounts.tsv")) | |
474 } | |
475 | |
476 | |
477 for (i in 1:length(contrastData)) { | |
478 if (wantLRT) { | |
479 res <- glmLRT(fit, contrast=contrasts[, i]) | |
480 } else { | |
481 res <- glmQLFTest(fit, contrast=contrasts[, i]) | |
482 } | |
483 | |
484 status = decideTestsDGE(res, adjust.method=opt$pAdjOpt, p.value=opt$pValReq, | |
485 lfc=opt$lfcReq) | |
486 sumStatus <- summary(status) | |
487 | |
488 # Collect counts for differential expression | |
489 upCount[i] <- sumStatus["1", ] | |
490 downCount[i] <- sumStatus["-1", ] | |
491 flatCount[i] <- sumStatus["0", ] | |
492 | |
493 # Write top expressions table | |
494 top <- topTags(res, n=Inf, sort.by="PValue") | |
495 write.table(top, file=topOut[i], row.names=FALSE, sep="\t") | |
496 | |
497 linkName <- paste0("edgeR_", contrastData[i], ".tsv") | |
498 linkAddr <- paste0("edgeR_", contrastData[i], ".tsv") | |
499 linkData <- rbind(linkData, c(linkName, linkAddr)) | |
500 | |
501 # Plot MD (log ratios vs mean difference) using limma package | |
502 pdf(mdOutPdf[i]) | |
503 limma::plotMD(res, status=status, | |
504 main=paste("MD Plot:", unmake.names(contrastData[i])), | |
505 col=alpha(c("firebrick", "blue"), 0.4), values=c("1", "-1"), | |
506 xlab="Average Expression", ylab="logFC") | |
507 | |
508 abline(h=0, col="grey", lty=2) | |
509 | |
510 linkName <- paste0("MD Plot_", contrastData[i], ".pdf") | |
511 linkAddr <- paste0("mdplot_", contrastData[i], ".pdf") | |
512 linkData <- rbind(linkData, c(linkName, linkAddr)) | |
513 invisible(dev.off()) | |
514 | |
515 png(mdOutPng[i], height=600, width=600) | |
516 limma::plotMD(res, status=status, | |
517 main=paste("MD Plot:", unmake.names(contrastData[i])), | |
518 col=alpha(c("firebrick", "blue"), 0.4), values=c("1", "-1"), | |
519 xlab="Average Expression", ylab="logFC") | |
520 | |
521 abline(h=0, col="grey", lty=2) | |
522 | |
523 imgName <- paste0("MD Plot_", contrastData[i], ".png") | |
524 imgAddr <- paste0("mdplot_", contrastData[i], ".png") | |
525 imageData <- rbind(imageData, c(imgName, imgAddr)) | |
526 invisible(dev.off()) | |
527 } | |
528 sigDiff <- data.frame(Up=upCount, Flat=flatCount, Down=downCount) | |
529 row.names(sigDiff) <- contrastData | |
530 | |
531 # Save relevant items as rda object | |
532 if (wantRda) { | |
533 if (wantNorm) { | |
534 save(counts, data, status, normalisedCounts, labels, factors, fit, res, top, contrasts, design, | |
535 file=rdaOut, ascii=TRUE) | |
536 } else { | |
537 save(counts, data, status, labels, factors, fit, res, top, contrasts, design, | |
538 file=rdaOut, ascii=TRUE) | |
539 } | |
540 linkData <- rbind(linkData, c("edgeR_analysis.RData", "edgeR_analysis.RData")) | |
541 } | |
542 | |
543 # Record session info | |
544 writeLines(capture.output(sessionInfo()), sessionOut) | |
545 linkData <- rbind(linkData, c("Session Info", "session_info.txt")) | |
546 | |
547 # Record ending time and calculate total run time | |
548 timeEnd <- as.character(Sys.time()) | |
549 timeTaken <- capture.output(round(difftime(timeEnd, timeStart), digits=3)) | |
550 timeTaken <- gsub("Time difference of ", "", timeTaken, fixed=TRUE) | |
551 | |
552 ################################################################################ | |
553 ### HTML Generation | |
554 ################################################################################ | |
555 | |
556 # Clear file | |
557 cat("", file=opt$htmlPath) | |
558 | |
559 cata("<html>\n") | |
560 | |
561 cata("<body>\n") | |
562 cata("<h3>edgeR Analysis Output:</h3>\n") | |
563 cata("Links to PDF copies of plots are in 'Plots' section below.<br />\n") | |
564 | |
565 HtmlImage(imageData$Link[1], imageData$Label[1]) | |
566 | |
567 for (i in 2:nrow(imageData)) { | |
568 HtmlImage(imageData$Link[i], imageData$Label[i]) | |
569 } | |
570 | |
571 cata("<h4>Differential Expression Counts:</h4>\n") | |
572 | |
573 cata("<table border=\"1\" cellpadding=\"4\">\n") | |
574 cata("<tr>\n") | |
575 TableItem() | |
576 for (i in colnames(sigDiff)) { | |
577 TableHeadItem(i) | |
578 } | |
579 cata("</tr>\n") | |
580 for (i in 1:nrow(sigDiff)) { | |
581 cata("<tr>\n") | |
582 TableHeadItem(unmake.names(row.names(sigDiff)[i])) | |
583 for (j in 1:ncol(sigDiff)) { | |
584 TableItem(as.character(sigDiff[i, j])) | |
585 } | |
586 cata("</tr>\n") | |
587 } | |
588 cata("</table>") | |
589 | |
590 cata("<h4>Plots:</h4>\n") | |
591 for (i in 1:nrow(linkData)) { | |
592 if (grepl(".pdf", linkData$Link[i])) { | |
593 HtmlLink(linkData$Link[i], linkData$Label[i]) | |
594 } | |
595 } | |
596 | |
597 cata("<h4>Tables:</h4>\n") | |
598 for (i in 1:nrow(linkData)) { | |
599 if (grepl(".tsv", linkData$Link[i])) { | |
600 HtmlLink(linkData$Link[i], linkData$Label[i]) | |
601 } | |
602 } | |
603 | |
604 if (wantRda) { | |
605 cata("<h4>R Data Objects:</h4>\n") | |
606 for (i in 1:nrow(linkData)) { | |
607 if (grepl(".RData", linkData$Link[i])) { | |
608 HtmlLink(linkData$Link[i], linkData$Label[i]) | |
609 } | |
610 } | |
611 } | |
612 | |
613 cata("<p>Alt-click links to download file.</p>\n") | |
614 cata("<p>Click floppy disc icon associated history item to download ") | |
615 cata("all files.</p>\n") | |
616 cata("<p>.tsv files can be viewed in Excel or any spreadsheet program.</p>\n") | |
617 | |
618 cata("<h4>Additional Information</h4>\n") | |
619 cata("<ul>\n") | |
620 | |
621 if (filtCPM || filtSmpCount || filtTotCount) { | |
622 if (filtCPM) { | |
623 tempStr <- paste("Genes without more than", opt$cmpReq, | |
624 "CPM in at least", opt$sampleReq, "samples are insignificant", | |
625 "and filtered out.") | |
626 } else if (filtSmpCount) { | |
627 tempStr <- paste("Genes without more than", opt$cntReq, | |
628 "counts in at least", opt$sampleReq, "samples are insignificant", | |
629 "and filtered out.") | |
630 } else if (filtTotCount) { | |
631 tempStr <- paste("Genes without more than", opt$cntReq, | |
632 "counts, after summing counts for all samples, are insignificant", | |
633 "and filtered out.") | |
634 } | |
635 | |
636 ListItem(tempStr) | |
637 filterProp <- round(filteredCount/preFilterCount*100, digits=2) | |
638 tempStr <- paste0(filteredCount, " of ", preFilterCount," (", filterProp, | |
639 "%) genes were filtered out for low expression.") | |
640 ListItem(tempStr) | |
641 } | |
642 ListItem(opt$normOpt, " was the method used to normalise library sizes.") | |
643 if (wantLRT) { | |
644 ListItem("The edgeR likelihood ratio test was used.") | |
645 } else { | |
646 if (wantRobust) { | |
647 ListItem("The edgeR quasi-likelihood test was used with robust settings (robust=TRUE with estimateDisp and glmQLFit).") | |
648 } else { | |
649 ListItem("The edgeR quasi-likelihood test was used.") | |
650 } | |
651 } | |
652 if (opt$pAdjOpt!="none") { | |
653 if (opt$pAdjOpt=="BH" || opt$pAdjOpt=="BY") { | |
654 tempStr <- paste0("MD-Plot highlighted genes are significant at FDR ", | |
655 "of ", opt$pValReq," and exhibit log2-fold-change of at ", | |
656 "least ", opt$lfcReq, ".") | |
657 ListItem(tempStr) | |
658 } else if (opt$pAdjOpt=="holm") { | |
659 tempStr <- paste0("MD-Plot highlighted genes are significant at adjusted ", | |
660 "p-value of ", opt$pValReq," by the Holm(1979) ", | |
661 "method, and exhibit log2-fold-change of at least ", | |
662 opt$lfcReq, ".") | |
663 ListItem(tempStr) | |
664 } | |
665 } else { | |
666 tempStr <- paste0("MD-Plot highlighted genes are significant at p-value ", | |
667 "of ", opt$pValReq," and exhibit log2-fold-change of at ", | |
668 "least ", opt$lfcReq, ".") | |
669 ListItem(tempStr) | |
670 } | |
671 cata("</ul>\n") | |
672 | |
673 cata("<h4>Summary of experimental data:</h4>\n") | |
674 | |
675 cata("<p>*CHECK THAT SAMPLES ARE ASSOCIATED WITH CORRECT GROUP(S)*</p>\n") | |
676 | |
677 cata("<table border=\"1\" cellpadding=\"3\">\n") | |
678 cata("<tr>\n") | |
679 TableHeadItem("SampleID") | |
680 TableHeadItem(names(factors)[1], " (Primary Factor)") | |
681 | |
682 if (ncol(factors) > 1) { | |
683 for (i in names(factors)[2:length(names(factors))]) { | |
684 TableHeadItem(i) | |
685 } | |
686 cata("</tr>\n") | |
687 } | |
688 | |
689 for (i in 1:nrow(factors)) { | |
690 cata("<tr>\n") | |
691 TableHeadItem(row.names(factors)[i]) | |
692 for (j in 1:ncol(factors)) { | |
693 TableItem(as.character(unmake.names(factors[i, j]))) | |
694 } | |
695 cata("</tr>\n") | |
696 } | |
697 cata("</table>") | |
698 | |
699 for (i in 1:nrow(linkData)) { | |
700 if (grepl("session_info", linkData$Link[i])) { | |
701 HtmlLink(linkData$Link[i], linkData$Label[i]) | |
702 } | |
703 } | |
704 | |
705 cata("<table border=\"0\">\n") | |
706 cata("<tr>\n") | |
707 TableItem("Task started at:"); TableItem(timeStart) | |
708 cata("</tr>\n") | |
709 cata("<tr>\n") | |
710 TableItem("Task ended at:"); TableItem(timeEnd) | |
711 cata("</tr>\n") | |
712 cata("<tr>\n") | |
713 TableItem("Task run time:"); TableItem(timeTaken) | |
714 cata("<tr>\n") | |
715 cata("</table>\n") | |
716 | |
717 cata("</body>\n") | |
718 cata("</html>") |