Mercurial > repos > iuc > egsea
view egsea.R @ 1:73281fbdf6c1 draft
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/egsea commit 225518a08941e7ef8e5c402e3696ec5fa6e592a0
author | iuc |
---|---|
date | Thu, 15 Feb 2018 02:34:59 -0500 |
parents | a8a083193440 |
children | ba2111ae6eb4 |
line wrap: on
line source
# Code based on (and inspired by) the Galaxy limma-voom/edgeR/DESeq2 wrappers options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) # we need that to not crash galaxy with an UTF8 error on German LC settings. loc <- Sys.setlocale("LC_MESSAGES", "en_US.UTF-8") suppressPackageStartupMessages({ library(EGSEA) library(limma) library(edgeR) library(optparse) }) ## Function Declaration sanitiseEquation <- function(equation) { equation <- gsub(" *[+] *", "+", equation) equation <- gsub(" *[-] *", "-", equation) equation <- gsub(" *[/] *", "/", equation) equation <- gsub(" *[*] *", "*", equation) equation <- gsub("^\\s+|\\s+$", "", equation) return(equation) } # Function to sanitise group information sanitiseGroups <- function(string) { string <- gsub(" *[,] *", ",", string) string <- gsub("^\\s+|\\s+$", "", string) return(string) } # Generating design information pasteListName <- function(string) { return(paste0("factors$", string)) } ## Input Processing option_list <- list( make_option(c("-threads", "--threads"), default=2, type="integer", help="Number of threads for egsea"), make_option(c("-filesPath", "--filesPath"), type="character", help="JSON list object if multiple files input"), make_option(c("-matrixPath", "--matrixPath"), type="character", help="Path to count matrix"), make_option(c("-factFile", "--factFile"), type="character", help="Path to factor information file"), make_option(c("-factInput", "--factInput"), type="character", help="String containing factors if manually input"), make_option(c("-contrastData", "--contrastData"), type="character", help="Contrasts of Interest (Groups to compare)"), make_option(c("-genes", "--genes"), type="character", help="Path to genes file"), make_option(c("-species", "--species"), type="character"), make_option(c("-base_methods", "--base_methods"), type="character", help="Gene set testing methods"), make_option(c("-msigdb", "--msigdb"), type="character", help="MSigDB Gene Set Collections"), make_option(c("-keggdb", "--keggdb"), type="character", help="KEGG Pathways"), make_option(c("-keggupdated", "--keggupdated"), type="logical", help="Use updated KEGG"), make_option(c("-gsdb", "--gsdb"), type="character", help = "GeneSetDB Gene Sets"), make_option(c("-display_top", "--display_top"), type="integer", help = "Number of top Gene Sets to display"), make_option(c("-min_size", "--min_size"), type="integer", help = "Minimum Size of Gene Set"), make_option(c("-fdr_cutoff", "--fdr_cutoff"), type="double", help = "FDR cutoff"), make_option(c("-combine_method", "--combine_method"), type="character", help="Method to use to combine the p-values"), make_option(c("-sort_method", "--sort_method"), type="character", help="Method to sort the results"), make_option(c("-rdaOpt", "--rdaOpt"), type="character", help="Output RData file") ) parser <- OptionParser(usage = "%prog [options] file", option_list=option_list) args = parse_args(parser) ## Read in Files if (!is.null(args$filesPath)) { # Process the separate count files (adapted from DESeq2 wrapper) library("rjson") parser <- newJSONParser() parser$addData(args$filesPath) factorList <- parser$getObject() factors <- sapply(factorList, function(x) x[[1]]) filenamesIn <- unname(unlist(factorList[[1]][[2]])) sampleTable <- data.frame(sample=basename(filenamesIn), filename=filenamesIn, row.names=filenamesIn, stringsAsFactors=FALSE) for (factor in factorList) { factorName <- factor[[1]] sampleTable[[factorName]] <- character(nrow(sampleTable)) lvls <- sapply(factor[[2]], function(x) names(x)) for (i in seq_along(factor[[2]])) { files <- factor[[2]][[i]][[1]] sampleTable[files,factorName] <- lvls[i] } sampleTable[[factorName]] <- factor(sampleTable[[factorName]], levels=lvls) } rownames(sampleTable) <- sampleTable$sample rem <- c("sample","filename") factors <- sampleTable[, !(names(sampleTable) %in% rem), drop=FALSE] #read in count files and create single table countfiles <- lapply(sampleTable$filename, function(x){read.delim(x, row.names=1)}) counts <- do.call("cbind", countfiles) } else { # Process the single count matrix counts <- read.table(args$matrixPath, header=TRUE, sep="\t", stringsAsFactors=FALSE) row.names(counts) <- counts[, 1] counts <- counts[ , -1] countsRows <- nrow(counts) # Process factors if (is.null(args$factInput)) { factorData <- read.table(args$factFile, header=TRUE, sep="\t") factors <- factorData[, -1, drop=FALSE] } else { factors <- unlist(strsplit(args$factInput, "|", fixed=TRUE)) factorData <- list() for (fact in factors) { newFact <- unlist(strsplit(fact, split="::")) factorData <- rbind(factorData, newFact) } # Factors have the form: FACT_NAME::LEVEL,LEVEL,LEVEL,LEVEL,... The first factor is the Primary Factor. # Set the row names to be the name of the factor and delete first row row.names(factorData) <- factorData[, 1] factorData <- factorData[, -1] factorData <- sapply(factorData, sanitiseGroups) factorData <- sapply(factorData, strsplit, split=",") factorData <- sapply(factorData, make.names) # Transform factor data into data frame of R factor objects factors <- data.frame(factorData) } } # Create a DGEList object counts <- DGEList(counts) # Set group to be the Primary Factor input group <- factors[, 1, drop=FALSE] # Split up contrasts separated by comma into a vector then sanitise contrastData <- unlist(strsplit(args$contrastData, split=",")) contrastData <- sanitiseEquation(contrastData) contrastData <- gsub(" ", ".", contrastData, fixed=TRUE) # Creating design row.names(factors) <- colnames(counts) factorList <- sapply(names(factors), pasteListName) formula <- "~0" for (i in 1:length(factorList)) { formula <- paste(formula, factorList[i], sep="+") } formula <- formula(formula) design <- model.matrix(formula) for (i in 1:length(factorList)) { colnames(design) <- gsub(factorList[i], "", colnames(design), fixed=TRUE) } ## Generate Contrasts information contrasts <- makeContrasts(contrasts=contrastData, levels=design) ## Add Gene Symbol information genes <- read.table(args$genes, sep='\t', header=TRUE) ## Set Gene Set Testing Methods base_methods <- unlist(strsplit(args$base_methods, ",")) ## Set Gene Sets if (args$msigdb != "None") { msigdb <- unlist(strsplit(args$msigdb, ",")) } else { msigdb <- "none" } if (args$keggdb != "None") { keggdb <- unlist(strsplit(args$keggdb, ",")) kegg_all <- c("Metabolism"="keggmet", "Signaling"="keggsig", "Disease"="keggdis") kegg_exclude <- names(kegg_all[!(kegg_all %in% keggdb)]) } else { kegg_exclude <- "all" } if (args$gsdb != "None") { gsdb <- unlist(strsplit(args$gsdb, ",")) } else { gsdb <- "none" } ## Index gene sets gs.annots <- buildIdx(entrezIDs=rownames(counts), species=args$species, msigdb.gsets=msigdb, gsdb.gsets=gsdb, kegg.exclude=kegg_exclude, kegg.updated=args$keggupdated) ## Run egsea.cnt gsa <- egsea.cnt(counts=counts, group=group, design=design, contrasts=contrasts, gs.annots=gs.annots, symbolsMap=genes, baseGSEAs=base_methods, minSize=args$min_size, display.top=args$display_top, combineMethod=args$combine_method, sort.by=args$sort_method, report.dir='./report_dir', fdr.cutoff=args$fdr_cutoff, num.threads=args$threads, report=TRUE) ## Output RData file if (!is.null(args$rdaOpt)) { save.image(file = "EGSEA_analysis.RData") }