Mercurial > repos > iuc > ena_upload
view extract_tables.py @ 14:5cb6146337d8 draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/ena_upload commit ab38fa3d5ec06729c1efa86240ec57b8143b21ed
author | iuc |
---|---|
date | Wed, 12 Jun 2024 16:01:11 +0000 |
parents | 480d9e9d156b |
children |
line wrap: on
line source
import argparse import json import pathlib from datetime import datetime """ Parse the configfile generated by the Galaxy tool. This file is JSON-formatted and should be converted to a set of tabular files. """ FILE_FORMAT = 'fastq' parser = argparse.ArgumentParser() parser.add_argument('--studies', dest='studies_json_path', required=True) parser.add_argument('--out_dir', dest='out_path', required=True) parser.add_argument('--action', dest='action', required=True) args = parser.parse_args() with open(args.studies_json_path, 'r') as studies_json_file: studies_dict = json.load(studies_json_file) studies_table = open(pathlib.Path(args.out_path) / 'studies.tsv', 'w') studies_table.write('\t'.join(['alias', 'status', 'title', 'study_type', 'study_abstract', 'pubmed_id']) + '\n') samples_table = open(pathlib.Path(args.out_path) / 'samples.tsv', 'w') experiments_table = open(pathlib.Path(args.out_path) / 'experiments.tsv', 'w') experiments_table.write('\t'.join(['alias', 'status', 'title', 'study_alias', 'sample_alias', 'design_description', 'library_name', 'library_strategy', 'library_source', 'library_selection', 'library_layout', 'insert_size', 'library_construction_protocol', 'platform', 'instrument_model', ]) + '\n') runs_table = open(pathlib.Path(args.out_path) / 'runs.tsv', 'w') runs_table.write('\t'.join(['alias', 'status', 'experiment_alias', 'file_name', 'file_format']) + '\n') action = args.action dt_oobj = datetime.now(tz=None) timestamp = dt_oobj.strftime("%Y%m%d_%H:%M:%S") for study_index, study in enumerate(studies_dict): study_alias = 'study_' + str(study_index) + '_' + timestamp studies_table.write('\t'.join([study_alias, action, study['title'], study['type'], study['abstract'], study['pubmed_id']])) if "host_subject_id" in study['samples'][0].keys(): # sample belongs to a viral sample samples_table.write('\t'.join(['alias', 'status', 'title', 'scientific_name', 'taxon_id', 'sample_description', 'collection date', 'geographic location (country and/or sea)', 'host common name', 'host subject id', 'host health state', 'host sex', 'host scientific name', 'collector name', 'collecting institution', 'isolate']) + '\n') else: samples_table.write('\t'.join(['alias', 'status', 'title', 'scientific_name', 'taxon_id', 'sample_description', 'collection date', 'geographic location (country and/or sea)']) + '\n') for sample_index, sample in enumerate(study['samples']): sample_alias = 'sample_' + str(sample_index) + '_' + timestamp if "host_subject_id" in sample.keys(): # sample belongs to a viral sample if sample['collector_name'] == '': sample['collector_name'] = 'unknown' samples_table.write('\t'.join([sample_alias, action, sample['title'], sample['tax_name'], sample['tax_id'], sample['description'], sample['collection_date'], sample['geo_location'], sample['host_common_name'], sample['host_subject_id'], sample['host_health_state'], sample['host_sex'], sample['host_scientific_name'], sample['collector_name'], sample['collecting_institution'], sample['isolate'] ]) + '\n') else: samples_table.write('\t'.join([sample_alias, action, sample['title'], sample['tax_name'], sample['tax_id'], sample['description'], sample['collection_date'], sample['geo_location']]) + '\n') for exp_index, exp in enumerate(sample['experiments']): exp_alias = 'experiment_' + str(exp_index) + '.' + str(sample_index) + '_' + timestamp lib_alias = 'library_' + str(exp_index) + '_' + str(sample_index) experiments_table.write('\t'.join([exp_alias, action, exp['title'], study_alias, sample_alias, exp['experiment_design'], lib_alias, exp['library_strategy'], exp['library_source'], exp['library_selection'], exp['library_layout'].lower(), exp['insert_size'], exp['library_construction_protocol'], exp['platform'], exp['instrument_model']]) + '\n') run_index = 0 # exp['runs'] is a list of lists for (base_run, run_files) in exp['runs']: run_index += 1 if base_run != '': run_alias = base_run else: # no alias provided, generated a unique one run_alias = '_'.join(['run_' + str(run_index), str(exp_index), str(sample_index)]) + '_' + timestamp for file_entry in run_files: runs_table.write('\t'.join([run_alias, action, exp_alias, file_entry, FILE_FORMAT]) + '\n') studies_table.close() samples_table.close() experiments_table.close() runs_table.close()