Mercurial > repos > iuc > fastspar
diff fastspar.xml @ 0:e9231fb122e9 draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/main/tools/fastspar commit 0e305d21d0634a1788b9105ec4d0ab1c2da62359
| author | iuc |
|---|---|
| date | Thu, 19 Jun 2025 21:51:32 +0000 |
| parents | |
| children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/fastspar.xml Thu Jun 19 21:51:32 2025 +0000 @@ -0,0 +1,102 @@ +<tool id="fastspar" name="FastSpar" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="@PROFILE@"> + <description> + correlation estimation for compositional data + </description> + <macros> + <import>macros.xml</import> + </macros> + <expand macro="biotools"/> + <expand macro="requirements"/> + <command detect_errors="exit_code"><![CDATA[ + fastspar + --otu_table '$otu_table' + --iterations $iterations + --exclude_iterations $exclude_iterations + --threshold $threshold + --seed $seed + --correlation '$correlation' + --covariance '$covariance' + --threads \${GALAXY_SLOTS:-1} + ## Skip warning prompt and continue analysis even if the input contains OTUs with just one permutation. + --yes + ]]></command> + <inputs> + <param argument="--otu_table" type="data" format="tabular" label="Input OTU table" + help="The table must contain absolute OTU counts in plain tabular (TSV) format, with OTUs as rows and samples as columns. Do not include any metadata rows or columns."/> + <expand macro="fastspar_tool_parameters"/> + <param argument="--seed" type="integer" value="1" label="Random number seed"/> + </inputs> + <outputs> + <data name="correlation" format="tabular" label="${tool.name} on ${on_string}: median_correlation.tsv"/> + <data name="covariance" format="tabular" label="${tool.name} on ${on_string}: median_covariance.tsv"/> + </outputs> + <tests> + <test expect_num_outputs="2"> + <param name="otu_table" ftype="tabular" value="fake_data.tsv"/> + <output name="correlation" file="fake_data_cor.tsv" compare="diff"/> + <output name="covariance" file="fake_data_cov.tsv" compare="diff"/> + </test> + <test expect_num_outputs="2"> + <param name="otu_table" ftype="tabular" value="fake_data.tsv"/> + <param name="exclude_iterations" value="20"/> + <param name="threshold" value="0.2"/> + <output name="correlation" ftype="tabular"> + <assert_contents> + <has_n_columns n="51"/> + <has_text text="1.0000"/> + </assert_contents> + </output> + <output name="covariance" ftype="tabular"> + <assert_contents> + <has_n_columns n="51"/> + <has_text text="OTU ID"/> + </assert_contents> + </output> + </test> + </tests> + <help><![CDATA[ +What it does +============ + +FastSpar is a C++ implementation of the SparCC algorithm for estimating correlations from compositional data. +This tool performs the **initial correlation and covariance matrix estimation** as the first step in the FastSpar pipeline. +**If you also want to estimate p-values** you might want to use `fastspar_pvalues` with "Recalculate the correlation matrix". + +Required Inputs +=============== + +- **OTU table** (TSV format): Contains absolute OTU counts (not relative abundances). Must be a plain tabular file with samples in columns and OTUs in rows. Metadata is not supported. + +Main Parameters +=============== + +- **Iterations** (`--iterations`): Number of correlation estimation rounds. More iterations improve stability. +- **Exclude iterations** (`--exclude_iterations`): Number of times highly correlated OTU pairs are removed. +- **Correlation threshold** (`--threshold`): Correlation strength above which to exclude OTU pairs. +- **Seed** (`--seed`): Random seed for reproducibility. + +Main Features +=============== + +- Efficient and fast computation of sparse correlations. +- Customizable exclusion and thresholding strategy. +- Designed to handle compositional count data from microbiome studies. + +Generated Outputs +================= + +- `median_correlation.tsv`: Correlation matrix between all OTUs. +- `median_covariance.tsv`: Covariance matrix between all OTUs. + +Additional Resources +==================== + +- FastSpar GitHub: [https://github.com/scwatts/fastspar] + +For a complete FastSpar analysis, follow up with: + +1. `fastspar_pvalues`: Estimate empirical p-values from bootstrap correlations. +2. `fastspar_reduce`: Filter correlation and p-value matrices to produce sparse networks. + ]]></help> + <expand macro="citations"/> +</tool> \ No newline at end of file
