2
|
1 <tool id="gemini_@BINARY@" name="GEMINI @BINARY@" version="@VERSION@.0">
|
0
|
2 <description>Filter LoF variants by transcript position and type</description>
|
|
3 <expand macro="requirements" />
|
|
4 <expand macro="version_command" />
|
|
5 <macros>
|
|
6 <import>gemini_macros.xml</import>
|
|
7 <token name="@BINARY@">lof_sieve</token>
|
|
8 </macros>
|
|
9 <command>
|
|
10 <![CDATA[
|
|
11 gemini @BINARY@
|
|
12 "${ infile }"
|
|
13 > "${ outfile }"
|
|
14 ]]>
|
|
15 </command>
|
|
16 <expand macro="stdio" />
|
|
17 <inputs>
|
2
|
18 <expand macro="infile" />
|
0
|
19 </inputs>
|
|
20 <outputs>
|
2
|
21 <data name="outfile" format="tabular" />
|
0
|
22 </outputs>
|
|
23 <tests>
|
|
24 <test>
|
|
25 </test>
|
|
26 </tests>
|
|
27 <help>
|
|
28 **What it does**
|
|
29
|
|
30 Not all candidate LoF variants are created equal. For e.g, a nonsense (stop gain) variant impacting the first 5% of a polypeptide is far
|
|
31 more likely to be deleterious than one affecting the last 5%. Assuming you’ve annotated your VCF with snpEff v3.0+, the lof_sieve tool
|
|
32 reports the fractional position (e.g. 0.05 for the first 5%) of the mutation in the amino acid sequence.
|
|
33 In addition, it also reports the predicted function of the transcript so that one can segregate candidate
|
|
34 LoF variants that affect protein_coding transcripts from processed RNA, etc.
|
|
35
|
|
36 @CITATION@
|
|
37 </help>
|
|
38 <expand macro="citations"/>
|
|
39 </tool>
|