Mercurial > repos > iuc > gemini_load
view gemini_mafify.py @ 9:2270a8b83c12 draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/gemini commit f7bdf08922aaf4119aefe7041e754a69cf64aebd
author | iuc |
---|---|
date | Wed, 13 Jul 2022 15:38:57 +0000 |
parents | 45296e47d565 |
children |
line wrap: on
line source
import string import sys so_to_maf = { 'splice_acceptor_variant': 'Splice_Site', 'splice_donor_variant': 'Splice_Site', 'transcript_ablation': 'Splice_Site', 'exon_loss_variant': 'Splice_Site', 'stop_gained': 'Nonsense_Mutation', 'stop_lost': 'Nonstop_Mutation', 'frameshift_variant': 'Frame_Shift_', 'initiator_codon_variant': 'Translation_Start_Site', 'start_lost': 'Translation_Start_Site', 'inframe_insertion': 'In_Frame_Ins', 'inframe_deletion': 'In_Frame_Del', 'conservative_inframe_insertion': 'In_Frame_Ins', 'conservative_inframe_deletion': 'In_Frame_Del', 'disruptive_inframe_insertion': 'In_Frame_Ins', 'disruptive_inframe_deletion': 'In_Frame_Del', 'missense_variant': 'Missense_Mutation', 'coding_sequence_variant': 'Missense_Mutation', 'conservative_missense_variant': 'Missense_Mutation', 'rare_amino_acid_variant': 'Missense_Mutation', 'transcript_amplification': 'Intron', 'intron_variant': 'Intron', 'INTRAGENIC': 'Intron', 'intragenic_variant': 'Intron', 'splice_region_variant': 'Splice_Region', 'mature_miRNA_variant': 'RNA', 'exon_variant': 'RNA', 'non_coding_exon_variant': 'RNA', 'non_coding_transcript_exon_variant': 'RNA', 'non_coding_transcript_variant': 'RNA', 'nc_transcript_variant': 'RNA', 'stop_retained_variant': 'Silent', 'synonymous_variant': 'Silent', 'NMD_transcript_variant': 'Silent', 'incomplete_terminal_codon_variant': 'Silent', '5_prime_UTR_variant': "5'UTR", '5_prime_UTR_premature_start_codon_gain_variant': "5'UTR", '3_prime_UTR_variant': "3'UTR", 'intergenic_variant': 'IGR', 'intergenic_region': 'IGR', 'regulatory_region_variant': 'IGR', 'regulatory_region': 'IGR', 'TF_binding_site_variant': 'IGR', 'upstream_gene_variant': "5'Flank", 'downstream_gene_variant': "3'Flank", } class VariantEffect(): def __init__(self, variant_type): self.variant_type = variant_type.capitalize() assert self.variant_type in ['Snp', 'Ins', 'Del'] def __getitem__(self, so_effect): if so_effect not in so_to_maf or ( 'frame' in so_effect and self.variant_type == 'Snp' ): return 'Targeted_Region' ret = so_to_maf[so_effect] if ret == 'Frame_Shift_': ret += self.variant_type return ret infile = sys.argv[1] if len(sys.argv) > 2: tumor_sample_name = sys.argv[2] if len(sys.argv) > 3: normal_sample_name = sys.argv[3] start_pos_idx = None ref_idx = None alt_idx = None variant_type_idx = None variant_classification_idx = None gt_alt_depths_idx = {} gt_ref_depths_idx = {} gts_idx = {} samples = set() required_fields = [ 'Hugo_Symbol', 'NCBI_Build', 'Variant_Type', 'Variant_Classification', 'Tumor_Sample_Barcode', 'HGVSp_Short' ] with open(infile) as data_in: cols = data_in.readline().rstrip().split('\t') for field in required_fields: if field not in cols: raise IndexError( 'Cannot generate valid MAF without the following input ' 'columns: {0}.\n' 'Missing column: "{1}"' .format(required_fields, field) ) for i, col in enumerate(cols): if col == 'Variant_Type': variant_type_idx = i elif col == 'Variant_Classification': variant_classification_idx = i elif col == 'Start_Position': start_pos_idx = i elif col == 'Reference_Allele': ref_idx = i elif col == 'alt': alt_idx = i else: column, _, sample = col.partition('.') if sample: if column == 'gt_alt_depths': gt_alt_depths_idx[sample] = i elif column == 'gt_ref_depths': gt_ref_depths_idx[sample] = i elif column == 'gts': gts_idx[sample] = i else: # not a recognized sample-specific column continue samples.add(sample) if ref_idx is None: raise IndexError('Input file does not have a column "Reference_Allele".') if not tumor_sample_name: if normal_sample_name: raise ValueError( 'Normal sample name requires the tumor sample name to be ' 'specified, too.' ) if len(samples) > 1: raise ValueError( 'A tumor sample name is required with more than one sample ' 'in the input.' ) if samples: # There is a single sample with genotype data. # Assume its the tumor sample. tumor_sample_name = next(iter(samples)) else: if tumor_sample_name not in samples: raise ValueError( 'Could not find information about the specified tumor sample ' 'in the input.' ) if tumor_sample_name == normal_sample_name: raise ValueError( 'Need different names for the normal and the tumor sample.' ) if normal_sample_name and normal_sample_name not in samples: raise ValueError( 'Could not find information about the specified normal sample ' 'in the input.' ) # All input data checks passed! # Now extract just the relevant index numbers for the tumor/normal pair gts_idx = ( gts_idx.get(tumor_sample_name, alt_idx), gts_idx.get(normal_sample_name) ) gt_alt_depths_idx = ( gt_alt_depths_idx.get(tumor_sample_name), gt_alt_depths_idx.get(normal_sample_name) ) gt_ref_depths_idx = ( gt_ref_depths_idx.get(tumor_sample_name), gt_ref_depths_idx.get(normal_sample_name) ) # Echo all MAF column names cols_to_print = [] for n in range(len(cols)): if n in gts_idx: continue if n in gt_alt_depths_idx: continue if n in gt_ref_depths_idx: continue if n != alt_idx: cols_to_print.append(n) print('\t'.join([cols[n] for n in cols_to_print])) for line in data_in: cols = line.rstrip().split('\t') gt_alt_depths = [ int(cols[ad_idx]) if ad_idx else '' for ad_idx in gt_alt_depths_idx ] gt_ref_depths = [ int(cols[rd_idx]) if rd_idx else '' for rd_idx in gt_ref_depths_idx ] gts = [ ['', ''], ['', ''] ] for n, gt_idx in enumerate(gts_idx): if gt_idx: gt_sep = '/' if '/' in cols[gt_idx] else '|' allele1, _, allele2 = [ '' if allele == '.' else allele for allele in cols[gt_idx].partition(gt_sep) ] # follow cBioportal recommendation to leave allele1 empty # when information is not avaliable if not allele2: gts[n] = [allele2, allele1] else: gts[n] = [allele1, allele2] if not gts: gts = [['', ''], ['', '']] if cols[variant_type_idx].lower() in ['ins', 'del']: # transform VCF-style indel representations into MAF ones ref_allele = cols[ref_idx] for n, nucs in enumerate( zip( ref_allele, *[allele for gt in gts for allele in gt if allele] ) ): if any(nuc != nucs[0] for nuc in nucs[1:]): break else: n += 1 if n > 0: cols[ref_idx] = cols[ref_idx][n:] or '-' for gt in gts: for idx, allele in enumerate(gt): if allele: gt[idx] = allele[n:] or '-' if cols[ref_idx] == '-': n -= 1 cols[start_pos_idx] = str(int(cols[start_pos_idx]) + n) # in-place substitution of so_effect with MAF effect cols[variant_classification_idx] = VariantEffect( cols[variant_type_idx] )[cols[variant_classification_idx]] ret_line = '\t'.join([cols[n] for n in cols_to_print]) field_formatters = { 'tumor_seq_allele1': gts[0][0], 'tumor_seq_allele2': gts[0][1], 'match_norm_seq_allele1': gts[1][0], 'match_norm_seq_allele2': gts[1][1], 't_alt_count': gt_alt_depths[0], 'n_alt_count': gt_alt_depths[1], 't_ref_count': gt_ref_depths[0], 'n_ref_count': gt_ref_depths[1], } print( # use safe_substitute here to avoid key errors with column content # looking like unknown placeholders string.Template(ret_line).safe_substitute(field_formatters) )