Mercurial > repos > iuc > hyphy_fubar
view hyphy_fubar.xml @ 29:1278a55205e5 draft
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/hyphy/ commit 9fa2234b56facaf70fce12e5c60638d801997594"
author | iuc |
---|---|
date | Fri, 18 Jun 2021 15:35:37 +0000 |
parents | cd41e7a4d35f |
children | 099fc3ec12d2 |
line wrap: on
line source
<?xml version="1.0"?> <tool id="hyphy_fubar" name="HyPhy-FUBAR" version="@VERSION@+galaxy1" profile="19.09"> <description>Fast Unconstrained Bayesian AppRoximation</description> <macros> <import>macros.xml</import> </macros> <expand macro="requirements"/> <command detect_errors="exit_code"><![CDATA[ @SYMLINK_FILES@ ln -s '$fubar_output' ${input_file}.FUBAR.json && hyphy fubar --alignment ./$input_file @INPUT_TREE@ --code '$gencodeid' --method '$posteriorEstimationMethod.method' --grid '$grid_points' @posteriorEstimationMethod_cmd@ --concentration_parameter '$concentration' @ERRORS@ ]]></command> <inputs> <expand macro="inputs"/> <expand macro="gencode"/> <param argument="--grid" name="grid_points" type="integer" value="20" min="5" max="50" label="Grid points" /> <expand macro="conditional_posteriorEstimationMethod" /> <param argument="--concentration_parameter" name="concentration" type="float" value="0.5" min="0.001" max="1" label="Concentration parameter of the Dirichlet prior" /> </inputs> <outputs> <data name="fubar_output" format="hyphy_results.json" /> </outputs> <tests> <test> <param name="input_file" ftype="fasta.gz" value="fubar-in1.fa.gz"/> <param name="input_nhx" ftype="nhx" value="fubar-in1.nhx"/> <param name="posterior" value="Variational-Bayes"/> <output name="fubar_output" file="fubar-out1.json" compare="sim_size"/> </test> </tests> <help><![CDATA[ FUBAR : Faste Unbiased Bayesian AppRoximation ============================================= What question does this method answer? -------------------------------------- Which site(s) in a gene are subject to pervasive, i.e. consistently across the entire phylogeny, diversifying selection? Recommended Applications ------------------------ The phenomenon of pervasive selection is generally most prevalent in pathogen evolution and any biological system influenced by evolutionary arms race dynamics (or balancing selection), including adaptive immune escape by viruses. As such, FUBAR is ideally suited to identify sites under positive selection which represent candidate sites subject to strong selective pressures across the entire phylogeny. FUBAR is our recommended method for detecting pervasive selection at individual sites on large (> 500 sequences) datasets for which other methods have prohibitive runtimes, unless you have access to a computer cluster. Brief description ----------------- Perform a Fast Unbiased AppRoximate Bayesian (FUBAR) analysis of a coding sequence alignment to determine whether some sites have been subject to pervasive purifying or diversifying selection. There are three methods for estimating the posterior distribution of grid weights: collapsed Gibbs MCMC (faster), 0-th order Variation Bayes approximation (fastest), full Metropolis-Hastings (slowest). Input ----- 1. A *FASTA* sequence alignment. 2. A phylogenetic tree in the *Newick* format Note: the names of sequences in the alignment must match the names of the sequences in the tree. Output ------ A JSON file with analysis results (http://hyphy.org/resources/json-fields.pdf). A custom visualization module for viewing these results is available (see http://vision.hyphy.org/FUBAR for an example) Further reading --------------- http://hyphy.org/methods/selection-methods/#FUBAR Tool options ------------ :: --code Which genetic code to use --grid The number of grid points Smaller : faster Larger : more precise posterior estimation but slower default value: 20 --method Inference method to use Variational-Bayes : 0-th order Variational Bayes approximation; fastest [default] Metropolis-Hastings : Full Metropolis-Hastings MCMC algorithm; orignal method [slowest] Collapsed-Gibbs : Collapsed Gibbs sampler [intermediate speed] --chains How many MCMC chains to run (does not apply to Variational-Bayes) default value: 5 --chain-length MCMC chain length (does not apply to Variational-Bayes) default value: 2,000,000 --burn-in MCMC chain burn in (does not apply to Variational-Bayes) default value: 1,000,000 --samples MCMC samples to draw (does not apply to Variational-Bayes) default value: 1,000 --concentration_parameter The concentration parameter of the Dirichlet prior default value: 0.5 ]]></help> <expand macro="citations"> <citation type="doi">10.1093/molbev/mst030</citation> </expand> </tool>