Mercurial > repos > iuc > limma_voom
diff test-data/out_rscript.txt @ 6:39fa12a6d885 draft
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/limma_voom commit 60cae222b10f43f830936c19298bd723ac47e43d
author | iuc |
---|---|
date | Tue, 08 May 2018 18:12:40 -0400 |
parents | d8a55b5f0de0 |
children | e6a4ff41af6b |
line wrap: on
line diff
--- a/test-data/out_rscript.txt Sat May 05 17:55:13 2018 -0400 +++ b/test-data/out_rscript.txt Tue May 08 18:12:40 2018 -0400 @@ -22,6 +22,8 @@ # robOpt", "b", 0, "logical" -String specifying if robust options should be used # trend", "t", 1, "double" -Float for prior.count if limma-trend is used instead of voom # weightOpt", "w", 0, "logical" -String specifying if voomWithQualityWeights should be used +# volhiOpt", "v", 1, "integer" -Integer specifying number of genes to highlight in volcano plot +# treatOpt", "T", 0, "logical" -String specifying if TREAT function shuld be used # # OUT: # MDS Plot @@ -49,12 +51,8 @@ library(scales, quietly=TRUE, warn.conflicts=FALSE) library(getopt, quietly=TRUE, warn.conflicts=FALSE) -if (packageVersion("limma") < "3.20.1") { - stop("Please update 'limma' to version >= 3.20.1 to run this tool") -} - ################################################################################ -### Function Delcaration +### Function Declaration ################################################################################ # Function to sanitise contrast equations so there are no whitespaces # surrounding the arithmetic operators, leading or trailing whitespace @@ -170,7 +168,9 @@ "normOpt", "n", 1, "character", "robOpt", "b", 0, "logical", "trend", "t", 1, "double", - "weightOpt", "w", 0, "logical"), + "weightOpt", "w", 0, "logical", + "volhiOpt", "v", 1, "integer", + "treatOpt", "T", 0, "logical"), byrow=TRUE, ncol=4) opt <- getopt(spec) @@ -237,6 +237,12 @@ priorCount <- opt$trend } +if (is.null(opt$treatOpt)) { + wantTreat <- FALSE +} else { + wantTreat <- TRUE +} + if (!is.null(opt$filesPath)) { # Process the separate count files (adapted from DESeq2 wrapper) @@ -311,19 +317,28 @@ contrastData <- sanitiseEquation(contrastData) contrastData <- gsub(" ", ".", contrastData, fixed=TRUE) +denOutPng <- makeOut("densityplots.png") +denOutPdf <- makeOut("DensityPlots.pdf") +boxOutPng <- makeOut("boxplots.png") +boxOutPdf <- makeOut("BoxPlots.pdf") +mdsOutPdf <- character() # Initialise character vector +mdsOutPng <- character() +for (i in 1:ncol(factors)) { + mdsOutPdf[i] <- makeOut(paste0("mdsplot_", names(factors)[i], ".pdf")) + mdsOutPng[i] <- makeOut(paste0("mdsplot_", names(factors)[i], ".png")) +} -mdsOutPdf <- makeOut("mdsplot_nonorm.pdf") -mdsOutPng <- makeOut("mdsplot_nonorm.png") -nmdsOutPdf <- makeOut("mdsplot.pdf") -nmdsOutPng <- makeOut("mdsplot.png") -mdOutPdf <- character() # Initialise character vector -mdOutPng <- character() +mdOutPdf <- character() +volOutPdf <- character() +mdvolOutPng <- character() topOut <- character() for (i in 1:length(contrastData)) { mdOutPdf[i] <- makeOut(paste0("mdplot_", contrastData[i], ".pdf")) - mdOutPng[i] <- makeOut(paste0("mdplot_", contrastData[i], ".png")) + volOutPdf[i] <- makeOut(paste0("volplot_", contrastData[i], ".pdf")) + mdvolOutPng[i] <- makeOut(paste0("mdvolplot_", contrastData[i], ".png")) topOut[i] <- makeOut(paste0(deMethod, "_", contrastData[i], ".tsv")) } + normOut <- makeOut(paste0(deMethod, "_normcounts.tsv")) rdaOut <- makeOut(paste0(deMethod, "_analysis.RData")) sessionOut <- makeOut("session_info.txt") @@ -382,13 +397,13 @@ sampleanno <- data.frame("sampleID"=samplenames, factors) -# Generating the DGEList object "data" +# Generating the DGEList object "y" print("Generating DGEList object") data$samples <- sampleanno data$samples$lib.size <- colSums(data$counts) data$samples$norm.factors <- 1 row.names(data$samples) <- colnames(data$counts) -data <- new("DGEList", data) +y <- new("DGEList", data) print("Generating Design") # Name rows of factors according to their sample @@ -406,7 +421,7 @@ # Calculating normalising factors print("Calculating Normalisation Factors") -data <- calcNormFactors(data, method=opt$normOpt) +y <- calcNormFactors(y, method=opt$normOpt) # Generate contrasts information print("Generating Contrasts") @@ -415,25 +430,120 @@ ################################################################################ ### Data Output ################################################################################ + +# Plot Density (if filtering low counts) +if (filtCPM || filtSmpCount || filtTotCount) { + nsamples <- ncol(counts) + + # PNG + png(denOutPng, width=1200, height=600) + par(mfrow=c(1,2), cex.axis=0.8) + + # before filtering + logcpm <- cpm(counts, log=TRUE) + plot(density(logcpm[,1]), col=as.numeric(factors[1, 1]), lwd=2, las=2, main="", xlab="") + title(main="Density Plot: Raw counts", xlab="Log-cpm") + for (i in 2:nsamples){ + den <- density(logcpm[,i]) + lines(den$x, den$y, col=as.numeric(factors[i, 1]), lwd=2) + } + + # after filtering + logcpm <- cpm(data$counts, log=TRUE) + plot(density(logcpm[,1]), col=as.numeric(factors[1, 1]), lwd=2, las=2, main="", xlab="") + title(main="Density Plot: Filtered counts", xlab="Log-cpm") + for (i in 2:nsamples){ + den <- density(logcpm[,i]) + lines(den$x, den$y, col=as.numeric(factors[i, 1]), lwd=2) + } + legend("topright", samplenames, text.col=as.numeric(factors[, 1]), bty="n") + imgName <- "Densityplots.png" + imgAddr <- "densityplots.png" + imageData <- rbind(imageData, data.frame(Label=imgName, Link=imgAddr, stringsAsFactors=FALSE)) + invisible(dev.off()) + + # PDF + pdf(denOutPdf, width=14) + par(mfrow=c(1,2), cex.axis=0.8) + logcpm <- cpm(counts, log=TRUE) + plot(density(logcpm[,1]), col=as.numeric(factors[1, 1]), lwd=2, las=2, main="", xlab="") + title(main="Density Plot: Raw counts", xlab="Log-cpm") + for (i in 2:nsamples){ + den <- density(logcpm[,i]) + lines(den$x, den$y, col=as.numeric(factors[i, 1]), lwd=2) + } + logcpm <- cpm(data$counts, log=TRUE) + plot(density(logcpm[,1]), col=as.numeric(factors[1, 1]), lwd=2, las=2, main="", xlab="") + title(main="Density Plot: Filtered counts", xlab="Log-cpm") + for (i in 2:nsamples){ + den <- density(logcpm[,i]) + lines(den$x, den$y, col=as.numeric(factors[i, 1]), lwd=2) + } + legend("topright", samplenames, text.col=as.numeric(factors[, 1]), bty="n") + linkName <- "DensityPlots.pdf" + linkAddr <- "densityplots.pdf" + linkData <- rbind(linkData, data.frame(Label=linkName, Link=linkAddr, stringsAsFactors=FALSE)) + invisible(dev.off()) +} + +# Plot Box plots (before and after normalisation) +if (opt$normOpt != "none") { + png(boxOutPng, width=1200, height=600) + par(mfrow=c(1,2), cex.axis=0.8) + logcpm <- cpm(y$counts, log=TRUE) + boxplot(logcpm, las=2, col=as.numeric(factors[, 1])) + abline(h=median(logcpm), col=4) + title(main="Box Plot: Unnormalised counts", ylab="Log-cpm") + lcpm <- cpm(y, log=TRUE) + boxplot(lcpm, las=2, col=as.numeric(factors[, 1])) + abline(h=median(lcpm), col=4) + title(main="Box Plot: Normalised counts", ylab="Log-cpm") + imgName <- "Boxplots.png" + imgAddr <- "boxplots.png" + imageData <- rbind(imageData, data.frame(Label=imgName, Link=imgAddr, stringsAsFactors=FALSE)) + invisible(dev.off()) + + pdf(boxOutPdf, width=14) + par(mfrow=c(1,2), cex.axis=0.8) + logcpm <- cpm(y$counts, log=TRUE) + boxplot(logcpm, las=2, col=as.numeric(factors[, 1])) + abline(h=median(logcpm), col=4) + title(main="Box Plot: Unnormalised counts", ylab="Log-cpm") + lcpm <- cpm(y, log=TRUE) + boxplot(lcpm, las=2, col=as.numeric(factors[, 1])) + abline(h=median(lcpm), col=4) + title(main="Box Plot: Normalised counts", ylab="Log-cpm") + linkName <- "BoxPlots.pdf" + linkAddr <- "boxplots.pdf" + linkData <- rbind(linkData, data.frame(Label=linkName, Link=linkAddr, stringsAsFactors=FALSE)) + invisible(dev.off()) +} + # Plot MDS print("Generating MDS plot") labels <- names(counts) -png(mdsOutPng, width=600, height=600) -# Currently only using a single factor -plotMDS(data, labels=labels, col=as.numeric(factors[, 1]), cex=0.8, main="MDS Plot (unnormalised)") -imageData[1, ] <- c("MDS Plot (unnormalised)", "mdsplot_nonorm.png") -invisible(dev.off()) -pdf(mdsOutPdf) -plotMDS(data, labels=labels, cex=0.5) -linkData[1, ] <- c("MDS Plot (unnormalised).pdf", "mdsplot_nonorm.pdf") -invisible(dev.off()) +for (i in 1:ncol(factors)) { + png(mdsOutPng[i], width=600, height=600) + plotMDS(y, labels=labels, col=as.numeric(factors[, i]), cex=0.8, main=paste("MDS Plot:", names(factors)[i])) + imgName <- paste0("MDSPlot_", names(factors)[i], ".png") + imgAddr <- paste0("mdsplot_", names(factors)[i], ".png") + imageData <- rbind(imageData, data.frame(Label=imgName, Link=imgAddr, stringsAsFactors=FALSE)) + invisible(dev.off()) + + pdf(mdsOutPdf[i]) + plotMDS(y, labels=labels, col=as.numeric(factors[, i]), cex=0.8, main=paste("MDS Plot:", names(factors)[i])) + linkName <- paste0("MDSPlot_", names(factors)[i], ".pdf") + linkAddr <- paste0("mdsplot_", names(factors)[i], ".pdf") + linkData <- rbind(linkData, data.frame(Label=linkName, Link=linkAddr, stringsAsFactors=FALSE)) + invisible(dev.off()) +} if (wantTrend) { # limma-trend approach - logCPM <- cpm(data, log=TRUE, prior.count=opt$trend) + logCPM <- cpm(y, log=TRUE, prior.count=opt$trend) fit <- lmFit(logCPM, design) - fit$genes <- data$genes + fit$genes <- y$genes fit <- contrasts.fit(fit, contrasts) if (wantRobust) { fit <- eBayes(fit, trend=TRUE, robust=TRUE) @@ -446,15 +556,15 @@ png(saOutPng, width=600, height=600) plotSA(fit, main="SA Plot") - imgName <- "SA Plot.png" + imgName <- "SAPlot.png" imgAddr <- "saplot.png" imageData <- rbind(imageData, c(imgName, imgAddr)) invisible(dev.off()) pdf(saOutPdf, width=14) plotSA(fit, main="SA Plot") - linkName <- paste0("SA Plot.pdf") - linkAddr <- paste0("saplot.pdf") + linkName <- "SAPlot.pdf" + linkAddr <- "saplot.pdf" linkData <- rbind(linkData, c(linkName, linkAddr)) invisible(dev.off()) @@ -473,16 +583,16 @@ if (wantWeight) { # Creating voom data object and plot png(voomOutPng, width=1000, height=600) - vData <- voomWithQualityWeights(data, design=design, plot=TRUE) - imgName <- "Voom Plot.png" + vData <- voomWithQualityWeights(y, design=design, plot=TRUE) + imgName <- "VoomPlot.png" imgAddr <- "voomplot.png" imageData <- rbind(imageData, c(imgName, imgAddr)) invisible(dev.off()) pdf(voomOutPdf, width=14) - vData <- voomWithQualityWeights(data, design=design, plot=TRUE) - linkName <- paste0("Voom Plot.pdf") - linkAddr <- paste0("voomplot.pdf") + vData <- voomWithQualityWeights(y, design=design, plot=TRUE) + linkName <- "VoomPlot.pdf" + linkAddr <- "voomplot.pdf" linkData <- rbind(linkData, c(linkName, linkAddr)) invisible(dev.off()) @@ -493,16 +603,16 @@ } else { # Creating voom data object and plot png(voomOutPng, width=600, height=600) - vData <- voom(data, design=design, plot=TRUE) - imgName <- "Voom Plot" + vData <- voom(y, design=design, plot=TRUE) + imgName <- "VoomPlot" imgAddr <- "voomplot.png" imageData <- rbind(imageData, c(imgName, imgAddr)) invisible(dev.off()) pdf(voomOutPdf) - vData <- voom(data, design=design, plot=TRUE) - linkName <- paste0("Voom Plot.pdf") - linkAddr <- paste0("voomplot.pdf") + vData <- voom(y, design=design, plot=TRUE) + linkName <- "VoomPlot.pdf" + linkAddr <- "voomplot.pdf" linkData <- rbind(linkData, c(linkName, linkAddr)) invisible(dev.off()) @@ -527,24 +637,18 @@ plotData <- vData } -print("Generating normalised MDS plot") -png(nmdsOutPng, width=600, height=600) -# Currently only using a single factor -plotMDS(plotData, labels=labels, col=as.numeric(factors[, 1]), cex=0.8, main="MDS Plot (normalised)") -imgName <- "MDS Plot (normalised)" -imgAddr <- "mdsplot.png" -imageData <- rbind(imageData, c(imgName, imgAddr)) -invisible(dev.off()) - -pdf(nmdsOutPdf) -plotMDS(plotData, labels=labels, cex=0.5) -linkName <- paste0("MDS Plot (normalised).pdf") -linkAddr <- paste0("mdsplot.pdf") -linkData <- rbind(linkData, c(linkName, linkAddr)) -invisible(dev.off()) - print("Generating DE results") + +if (wantTreat) { + print("Applying TREAT method") + if (wantRobust) { + fit <- treat(fit, lfc=opt$lfcReq, robust=TRUE) + } else { + fit <- treat(fit, lfc=opt$lfcReq, robust=FALSE) + } +} + status = decideTests(fit, adjust.method=opt$pAdjOpt, p.value=opt$pValReq, lfc=opt$lfcReq) sumStatus <- summary(status) @@ -556,7 +660,11 @@ flatCount[i] <- sumStatus["NotSig", i] # Write top expressions table - top <- topTable(fit, coef=i, number=Inf, sort.by="P") + if (wantTreat) { + top <- topTreat(fit, coef=i, number=Inf, sort.by="P") + } else{ + top <- topTable(fit, coef=i, number=Inf, sort.by="P") + } write.table(top, file=topOut[i], row.names=FALSE, sep="\t", quote=FALSE) linkName <- paste0(deMethod, "_", contrastData[i], ".tsv") @@ -572,22 +680,55 @@ abline(h=0, col="grey", lty=2) - linkName <- paste0("MD Plot_", contrastData[i], " (.pdf)") + linkName <- paste0("MDPlot_", contrastData[i], ".pdf") linkAddr <- paste0("mdplot_", contrastData[i], ".pdf") linkData <- rbind(linkData, c(linkName, linkAddr)) invisible(dev.off()) - png(mdOutPng[i], height=600, width=600) - limma::plotMD(fit, status=status[, i], coef=i, - main=paste("MD Plot:", unmake.names(contrastData[i])), - hl.col=alpha(c("firebrick", "blue"), 0.4), values=c(1, -1), - xlab="Average Expression", ylab="logFC") + # Plot Volcano + pdf(volOutPdf[i]) + if (haveAnno) { + # labels must be in second column currently + limma::volcanoplot(fit, coef=i, + main=paste("Volcano Plot:", unmake.names(contrastData[i])), + highlight=opt$volhiOpt, + names=fit$genes[, 2]) + } else { + limma::volcanoplot(fit, coef=i, + main=paste("Volcano Plot:", unmake.names(contrastData[i])),, + highlight=opt$volhiOpt, + names=fit$genes$GeneID) + } + linkName <- paste0("VolcanoPlot_", contrastData[i], ".pdf") + linkAddr <- paste0("volplot_", contrastData[i], ".pdf") + linkData <- rbind(linkData, c(linkName, linkAddr)) + invisible(dev.off()) + + # PNG of MD and Volcano + png(mdvolOutPng[i], width=1200, height=600) + par(mfrow=c(1, 2), mar=c(5,4,2,2)+0.1, oma=c(0,0,3,0)) + limma::plotMD(fit, status=status[, i], coef=i, main="MD Plot", + hl.col=alpha(c("firebrick", "blue"), 0.4), values=c(1, -1), + xlab="Average Expression", ylab="logFC") abline(h=0, col="grey", lty=2) - imgName <- paste0("MD Plot_", contrastData[i]) - imgAddr <- paste0("mdplot_", contrastData[i], ".png") + # Volcano plots + if (haveAnno) { + # labels must be in second column currently + limma::volcanoplot(fit, coef=i, main="Volcano Plot", + highlight=opt$volhiOpt, + names=fit$genes[, 2]) + } else { + limma::volcanoplot(fit, coef=i, main="Volcano Plot", + highlight=opt$volhiOpt, + names=fit$genes$GeneID) + } + + imgName <- paste0("MDVolPlot_", contrastData[i]) + imgAddr <- paste0("mdvolplot_", contrastData[i], ".png") imageData <- rbind(imageData, c(imgName, imgAddr)) + title(paste0("Contrast: ", unmake.names(contrastData[i])), outer=TRUE, cex.main=1.5) invisible(dev.off()) } sigDiff <- data.frame(Up=upCount, Flat=flatCount, Down=downCount) @@ -597,11 +738,10 @@ if (wantRda) { print("Saving RData") if (wantWeight) { - save(data, status, plotData, labels, factors, wts, fit, top, contrasts, - design, + save(counts, data, y, status, plotData, labels, factors, wts, fit, top, contrasts, design, file=rdaOut, ascii=TRUE) } else { - save(data, status, plotData, labels, factors, fit, top, contrasts, design, + save(counts, data, y, status, plotData, labels, factors, fit, top, contrasts, design, file=rdaOut, ascii=TRUE) } linkData <- rbind(linkData, c((paste0(deMethod, "_analysis.RData")), (paste0(deMethod, "_analysis.RData")))) @@ -626,15 +766,16 @@ cata("<body>\n") cata("<h3>Limma Analysis Output:</h3>\n") -cata("Links to PDF copies of plots are in 'Plots' section below />\n") -if (wantWeight) { - HtmlImage(imageData$Link[1], imageData$Label[1], width=1000) -} else { - HtmlImage(imageData$Link[1], imageData$Label[1]) -} +cata("Links to PDF copies of plots are in 'Plots' section below <br />\n") -for (i in 2:nrow(imageData)) { - HtmlImage(imageData$Link[i], imageData$Label[i]) +for (i in 1:nrow(imageData)) { + if (grepl("density|box|mdvol", imageData$Link[i])) { + HtmlImage(imageData$Link[i], imageData$Label[i], width=1200) + } else if (wantWeight) { + HtmlImage(imageData$Link[i], imageData$Label[i], width=1000) + } else { + HtmlImage(imageData$Link[i], imageData$Label[i]) + } } cata("<h4>Differential Expression Counts:</h4>\n") @@ -719,8 +860,15 @@ } else { ListItem("Weights were not applied to samples.") } +if (wantTreat) { + ListItem(paste("Testing significance relative to a fold-change threshold (TREAT) was performed using a threshold of log2 =", opt$lfcReq, "at FDR of", opt$pValReq, ".")) +} if (wantRobust) { - ListItem("eBayes was used with robust settings (robust=TRUE).") + if (wantTreat) { + ListItem("TREAT was used with robust settings (robust=TRUE).") + } else { + ListItem("eBayes was used with robust settings (robust=TRUE).") + } } if (opt$pAdjOpt!="none") { if (opt$pAdjOpt=="BH" || opt$pAdjOpt=="BY") {