changeset 4:b34c9d6373e0 draft

planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/mageck commit 4478aabdcb10e4787450b1b23944defa7dc38ffe
author iuc
date Mon, 04 Jun 2018 10:58:04 -0400
parents 5dfc0e462f2a
children b36c85e37a48
files mageck_macros.xml mageck_mle.xml test-data/in.mle.sgrnaeff test-data/out.count.bam.txt test-data/out.count.fastq.txt test-data/out.count.txt test-data/out.count_multi.txt test-data/out.test.R test-data/out.test.log.txt test-data/out.test.report.pdf test-data/out.test.sgrna_summary.txt test-data/output.count_normalized.txt test-data/output_summary.Rnw
diffstat 13 files changed, 156 insertions(+), 3118 deletions(-) [+]
line wrap: on
line diff
--- a/mageck_macros.xml	Thu Apr 19 05:34:53 2018 -0400
+++ b/mageck_macros.xml	Mon Jun 04 10:58:04 2018 -0400
@@ -6,7 +6,6 @@
     <xml name="requirements">
         <requirements>
             <requirement type="package" version="@VERSION@">mageck</requirement>
-            <requirement type="package" version="1.14.2">numpy</requirement>
             <requirement type="package" version="3.0.1">r-gplots</requirement>
             <requirement type="package" version="1.8_2">r-xtable</requirement>
             <yield/>
@@ -15,7 +14,7 @@
 
     <xml name="version">
         <version_command><![CDATA[
-            echo $(mageck -v )", numpy version" $([python -c "import numpy; numpy.version.version"])", gplots version" $(R --vanilla --slave -e "library(gplots); cat(sessionInfo()\$otherPkgs\$gplots\$Version)" 2> /dev/null | grep -v -i "WARNING: ")", xtable version" $(R --vanilla --slave -e "library(xtable); cat(sessionInfo()\$otherPkgs\$xtable\$Version)" 2> /dev/null | grep -v -i "WARNING: ")
+            echo $(mageck -v )", gplots version" $(R --vanilla --slave -e "library(gplots); cat(sessionInfo()\$otherPkgs\$gplots\$Version)" 2> /dev/null | grep -v -i "WARNING: ")", xtable version" $(R --vanilla --slave -e "library(xtable); cat(sessionInfo()\$otherPkgs\$xtable\$Version)" 2> /dev/null | grep -v -i "WARNING: ")
         ]]></version_command>
     </xml>
 
--- a/mageck_mle.xml	Thu Apr 19 05:34:53 2018 -0400
+++ b/mageck_mle.xml	Mon Jun 04 10:58:04 2018 -0400
@@ -46,10 +46,12 @@
     --adjust-method $adv.adjust_method
 #end if
 
-#if $adv.sgrnaeff_file:
-    --sgrna-efficiency $adv.sgrnaeff_file
-    --sgrna-eff-name-column $adv.sgrnaid_col
-    --sgrna-eff-score-column $adv.sgrnaeff_col
+#if $adv.sgrnaeff.sgrnaeff_file_select == "yes":
+    #set $nindex = int(str($adv.sgrnaeff.sgrnaeff_name_col)) - 1
+    #set $sindex = int(str($adv.sgrnaeff.sgrnaeff_score_col)) - 1
+    --sgrna-efficiency $adv.sgrnaeff.sgrnaeff_file
+    --sgrna-eff-name-column $nindex
+    --sgrna-eff-score-column $sindex
 #end if
 
 $adv.remove_outliers
@@ -98,9 +100,18 @@
                 <option value="holm">Holm</option>
                 <option value="pounds">Pounds</option>
             </param>
-            <param name="sgrnaeff_file" argument="--sgrna-efficiency" type="data" format="tabular" optional="true" label="sgRNA efficiency file" help="An optional file of sgRNA efficiency prediction. The efficiency prediction will be used as an initial guess of the probability an sgRNA is efficient. Must contain at least two columns, one containing sgRNA ID, the other containing sgRNA efficiency prediction" />
-            <param name="sgrnaeff_name_col" argument="--sgrna-eff-score-column" type="data_column" data_ref="sgrnaeff_file" value="1" optional="true" label="sgRNA score column" help="The sgRNA efficiency prediction column in sgRNA efficiency prediction file (specified by the --sgrna-efficiency option). Default is 1 (the second column)." />
-            <param name="sgrnaeff_score_col" argument="--sgrna-eff-name-column" type="data_column" data_ref="sgrnaeff_file" value="0" optional="true" label="sgRNA ID column" help="The sgRNA ID column in sgRNA efficiency prediction file (specified by the --sgrna-efficiency option). Default is 0 (the first column)" />
+            <conditional name="sgrnaeff">
+                <param name="sgrnaeff_file_select" type="select" label="Incorporate sgRNA efficiency" help="Optionally sgRNA efficiency information can be incorporated into the analysis. See the MAGeCK website here for more information: https://sourceforge.net/p/mageck/wiki/Home/#tutorial-3-include-the-sgrna-efficiency-into-mle-calculation">
+                    <option value="yes">Yes</option>
+                    <option value="no" selected="True">No</option>
+                </param>
+                <when value="yes">
+                    <param name="sgrnaeff_file" argument="--sgrna-efficiency" type="data" format="tabular" label="sgRNA efficiency file" help="A file of sgRNA efficiency prediction from the SSC program. The efficiency prediction will be used as an initial guess of the probability an sgRNA is efficient. Must contain at least two columns, one containing sgRNA ID, the other containing sgRNA efficiency prediction." />
+                    <param name="sgrnaeff_name_col" argument="--sgrna-eff-name-column" type="data_column" data_ref="sgrnaeff_file" value="1" label="sgRNA ID column" help="The sgRNA ID column in sgRNA efficiency prediction file (specified by the --sgrna-efficiency option). Default is 1 (the first column)" />
+                    <param name="sgrnaeff_score_col" argument="--sgrna-eff-score-column" type="data_column" data_ref="sgrnaeff_file" value="2" label="sgRNA score column" help="The sgRNA efficiency prediction column in sgRNA efficiency prediction file (specified by the --sgrna-efficiency option). Default is 2 (the second column)." />
+                </when>
+                <when value="no"/>
+            </conditional>
             <param name="update_eff" argument="--update-efficiency" type="boolean" truevalue="--update-efficiency" falsevalue="" checked="false" optional="true"
                 label="Update efficiency" help="Iteratively update sgRNA efficiency during EM iteration" />
             <param name="out_log" type="boolean" truevalue="True" falsevalue="" checked="false"
@@ -119,10 +130,40 @@
             <param name="count_table" value="demo/demo1/sample.txt" ftype="tabular" />
             <param name="design_matrix" ftype="tabular" value="in.mle.design_matrix.txt" />
             <param name="out_log" value="True"/>
-            <output name="gene_summary" file="out.mle.gene_summary.txt" compare="sim_size"/>
-            <output name="sgrna_summary" file="out.mle.sgrna_summary.txt"/>
+            <output name="gene_summary">
+                <assert_contents>
+                    <has_text_matching expression="Gene.*sgRNA.*beta.*z.*p-value.*fdr.*wald-p-value.*wald-fdr.*beta.*p-value.*fdr.*wald-p-value.*wald-fdr" />
+                    <has_text_matching expression="A1CF.*10.*0.05018.*0.3479.*0.7278.*0.8665.*0.0927.*0.6435.*0.5198.*0.8170"/>
+                </assert_contents>
+            </output>
+            <output name="sgrna_summary">
+                <assert_contents>
+                    <has_text_matching expression="Gene.*sgRNA.*eff" />
+                    <has_text_matching expression="ADNP2.*ADNP2_m77891006.*1"/>
+                </assert_contents>
+            </output>
             <output name="log" file="out.mle.log.txt" compare="sim_size"/>
         </test>
+        <test><!-- Ensure sgRNA efficiency file works -->
+            <param name="count_table" value="demo/demo1/sample.txt" ftype="tabular" />
+            <param name="design_matrix" ftype="tabular" value="in.mle.design_matrix.txt" />
+            <param name="sgrnaeff_file_select" value="yes"/>
+            <param name="sgrnaeff_file" value="in.mle.sgrnaeff"/>
+            <param name="sgrnaeff_name_col" value="2"/>
+            <param name="sgrnaeff_score_col" value="4"/>
+            <output name="gene_summary">
+                <assert_contents>
+                    <has_text_matching expression="Gene.*sgRNA.*beta.*z.*p-value.*fdr.*wald-p-value.*wald-fdr.*beta.*p-value.*fdr.*wald-p-value.*wald-fdr" />
+                    <has_text_matching expression="A1CF.*10.*0.05018.*0.3479.*0.7278.*0.8665.*0.0927.*0.6435.*0.5198.*0.8252"/>
+                </assert_contents>
+            </output>
+            <output name="sgrna_summary">
+                <assert_contents>
+                    <has_text_matching expression="Gene.*sgRNA.*eff" />
+                    <has_text_matching expression="ADNP2.*ADNP2_m77891006.*0.646"/>
+                </assert_contents>
+            </output>
+        </test>
     </tests>
 
     <help><![CDATA[
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/in.mle.sgrnaeff	Mon Jun 04 10:58:04 2018 -0400
@@ -0,0 +1,100 @@
+CATGGCCATGGGCACCCGCC	INO80B_m74682554	INO80B	-0.005239
+AGGAGCTGCACCGCCACGCC	NHS_p17705966	NHS	-0.018779
+AACCACCAGCTGGTCCCGCC	MED14_m40594623	MED14	-0.018132
+CAGCAACAGCCACCGCCATT	MX2_p42748920	MX2	-0.012714
+CAGGCCTCACCTGCACCGCC	SH3GLB2_p131790360	SH3GLB2	-0.072219
+ATGATTCTTCACCTGCCGCT	RECQL_m21644465	RECQL	-0.106925
+CTGCACCAGCCATATCGCGC	CCDC170_p151815274	CCDC170	-0.015925
+ACGTCTCCGCCAGCCACTCC	MEIS2_p37388538	MEIS2	-0.061877
+AAGGTGGCATGGACCCGCCA	NTRK2_p87285677	NTRK2	0.062009
+GCTTCAAAGCACCCGCCGCC	AIFM1_p129299590	AIFM1	-0.116716
+AGGACGAGGGCCGCCGTGAC	PIN1_m9949250	PIN1	0.084799
+GGATTTCAGAACCGCCTGTG	SNTG1_p51306800	SNTG1	-0.002402
+CGCTGCCGTTCCCGCCGCTC	PHLPP1_m60383095	PHLPP1	-0.065516
+TCTTCATCACGCCGCCCGCC	DIS3_p73355915	DIS3	-0.178900
+TAATCCTTGCCCGCCATGTC	APLF_p68694848	APLF	-0.125824
+CGAGGAAGGCGAGAACCGCC	HNRPLL_m38829641	HNRPLL	0.208905
+TAATGATAAGCAGACCCGCC	SCRN1_m29994913	SCRN1	-0.042915
+GGAGCCGCCGCCGCCATATC	RNF11_p51702529	RNF11	-0.022538
+AAGAGCGCACCTGCCACTGG	HIST3H3_m228612925	HIST3H3	0.041563
+ACAGATGTCCAGCAACCGCC	SETD1B_p122243019	SETD1B	-0.022566
+GAACAAAGAACCGCCGGCGC	TMEM165_p56262481	TMEM165	-0.068287
+GGAACAGAAGCTGTCCCGCC	MAP2K7_p7968846	MAP2K7	-0.001348
+ACGTTCCCGCCGCCGCCGTT	TAF5_m105127878	TAF5	-0.075037
+TTATGCCCTGAACACCCGCC	FAM184B_m17711242	FAM184B	-0.060696
+TCTCCTCCACCCGCCGGGTC	ZW10_p113644288	ZW10	-0.132037
+AAAGTTGCAGCCGCCACTGC	SNAPC3_m15422944	SNAPC3	-0.064822
+GAGCTGAGCCTGCCACGCCG	MAST3_p18218399	MAST3	0.097420
+TAGTCTTGTCCCTACCCGCC	DDX31_m135545488	DDX31	-0.182423
+GACGGCGTGCAGCTCCCGCC	EIF4EBP1_p37888163	EIF4EBP1	0.027745
+CAGGACTACCGCCATATCCC	ZNF35_m44694064	ZNF35	-0.065333
+CGGCCGCTACCGCCGCTACC	DSTYK_m205180551	DSTYK	-0.121018
+GACCTTTGGAGTTCATCAAA	TCF12_p57524508	TCF12	0.075702
+TGGGAAGGCGTCCGACCGCC	C21orf33_m45553648	C21orf33	-0.011841
+CCGGGACCGCCACTGCCGAG	SYN1_m47478971	SYN1	0.168301
+CTCGGACGAGCGGCTGGGCC	TXNRD3_p126373683	TXNRD3	-0.003583
+TCTCATTGACCGGACCCGCC	SNRNP200_m96970554	SNRNP200	-0.101923
+GGAGCGCACCCGCCGCGGAA	C9orf69_p139008710	C9orf69	0.127616
+TCGCTTCCGCCGCCACTGCC	NPAS1_m47524322	NPAS1	-0.003985
+GGATGCGACCGCCACTATCG	SMARCA1_m128657283	SMARCA1	0.063867
+CCCAAATGCGCCCGCCTGCA	WDR77_m111991712	WDR77	0.023250
+CTCACGAGCCGAGCCTCTCG	PNCK_p152938458	PNCK	0.124364
+CAACGAAGACGCTCCCGCCT	SENP3_m7466474	SENP3	0.024559
+GCCGCCGAAACCGCCACGGA	RFWD2_p176175980	RFWD2	0.003107
+GCTCACCTTCACCGCCGCTC	C9orf9_p135759399	C9orf9	-0.134392
+TGAAACCCTGGCCCGCCAGT	C4orf22_p81283909	C4orf22	-0.016684
+GGGCTGCTCCTGCTTCCTCC	ZNF827_p146859532	ZNF827	-0.094275
+GTGGTGCCACCCGCCGTGGC	EPM2A_m146056593	EPM2A	-0.112144
+GTGTATCCAGTGCCTGCTCT	TMEM175_m941547	TMEM175	-0.249848
+GCAGCGCCAGTCCCGCCAGC	DUSP23_m159750934	DUSP23	-0.134388
+AGTGGCTGCTCCCGCCATAC	YLPM1_m75230212	YLPM1	-0.007259
+AGCACCACCAGCTGTTGCTC	RAB1A_p65315689	RAB1A	-0.032893
+AGTGGTTCCCGCCGCAGGAC	GSG2_p3627326	GSG2	0.033727
+CAGAACCCGCCACTTGTCCA	RPL10L_p47120303	RPL10L	0.026564
+GACCATGAACCGCAGCCGCC	PWP1_p108079672	PWP1	-0.090761
+AAGGAGGATAGAGGCCCGCC	KIAA1755_p36874470	KIAA1755	0.005710
+TCTCCAATACCTGCCGATTC	JAZF1_m28220148	JAZF1	-0.153656
+CGTTCACCCGCCGGGCCTTT	PAXBP1_p34143951	PAXBP1	-0.074149
+GGTAGCCAGGGCACCCGCCA	BMPR2_m203242221	BMPR2	0.152337
+GCCTCCACCGCCCGCCGCTT	UXT_p47518291	UXT	-0.042766
+ACTCTCACCGCCGTAGGTGC	POU2AF1_p111229504	POU2AF1	-0.026811
+CTGGACGACCGCCACGACAG	NFKBIA_m35873755	NFKBIA	0.076979
+CTGAATCCCGCCACACTCTC	LPIN1_p11905730	LPIN1	-0.025123
+TACCGGAGCCGCGACCGCCT	ZNF746_p149194600	ZNF746	0.173225
+TTTATCTGCATTTCCATGAC	SYNPO2_p119810206	SYNPO2	-0.140214
+TCACTCCTGAACAGACTTCT	LTA4H_m96421257	LTA4H	-0.030193
+GATGGTCGCCGCCTGCCGCT	TMEM87B_p112813167	TMEM87B	0.036418
+CTGGATGGAGCCGCCGCTCC	OCRL_p128674412	OCRL	-0.150457
+AGTGGACATCCGCCATAACA	RPL18_m49121112	RPL18	0.056941
+GACAAGGCGAAACCGCCGCC	PSMD3_p38137259	PSMD3	0.030238
+AGCCACACCGAGAACCGCCG	WBP2NL_p42394837	WBP2NL	0.131323
+CGGCCTCCAGCCGCCACTTG	LUZP1_m23420706	LUZP1	-0.002771
+ATTCTCTTTGGAGCCGTGAG	STRADB_p202340406	STRADB	-0.001874
+GCCTCTTCTCCGCGCTCTCG	FOXL2_p138665341	FOXL2	-0.150694
+CTGCACCCAACCGCCGGCAC	ADRA1A_m26722428	ADRA1A	-0.096324
+TCACCCAGCCATACCAGCCG	RBBP9_p18477729	RBBP9	0.064510
+AGTCCTCCCGCCGCTGCAGC	IMP3_p75932376	IMP3	-0.091312
+TGGTGTCTCATCTCCTTGCC	RABGAP1_m125719426	RABGAP1	-0.201102
+TTTAGGAGCTTCTCCAAATT	RARS_p167915662	RARS	-0.079412
+ACAGGCCCGCCACGTCCGTC	RPRM_p154335036	RPRM	0.003556
+GGACATGAAGGAGTCCCGCC	OBFC1_m105677228	OBFC1	0.039483
+GAGCTGCGGGACCCGCCACC	TINF2_p24711504	TINF2	-0.010376
+TTCTTCCAGAGAGAACTCTA	ZNF565_p36686010	ZNF565	0.131393
+CACATTCTCCACCCGCCGAG	CCDC78_p776304	CCDC78	0.076491
+TAGGCGCCCGCCGCTCTTCC	YWHAB_p43530334	YWHAB	-0.008675
+CGCTCCCGCCGCTGCTTCCT	CRX_m48339507	CRX	-0.050130
+AGCGGCACCTACACCCGCCA	EXOSC1_m99205546	EXOSC1	0.090355
+CGCGGTGGGCAAGACGAGCC	RHOU_p228871662	RHOU	0.144042
+TTCTCAAGAAATTCACCGCC	CHMP1B_m11851692	CHMP1B	-0.112913
+CACCGCCACCGCCACGACCA	U2AF1_p44513288	U2AF1	0.080210
+TCCCAACACCCGCCAAGAGA	NET1_p5494387	NET1	0.089082
+TCTGAGCTCCAGGTGCTTCT	PIAS3_p145578085	PIAS3	-0.027557
+TTCGCCCGCCGGCTCCTGCG	CMPK2_m7005801	CMPK2	0.105524
+ACCAGCCAAGATTGCCCGCC	SATB1_m18462362	SATB1	-0.070132
+GACACACCTCGCCCGCCTCC	FOXA3_m46367770	FOXA3	-0.054864
+AAATTCCCAGGAGAAATATA	ZNF627_p11725680	ZNF627	0.090453
+GTCACGGCCGCCCGCCGACA	MLLT4_m168227813	MLLT4	0.040685
+AACTGCCTGCACCGCCTCTA	FAM120A_p96214350	FAM120A	0.010379
+TTATGAAAGTATTTCTCTCC	ADNP2_m77891006	ADNP2	-0.159761
+CGCACCCTCACCGCCGGCCT	CD3EAP_m45909967	CD3EAP	-0.028605
+GTGGACCCTCGTGAGCGACC	HSF1_p145515504	HSF1	-0.051256
--- a/test-data/out.count.bam.txt	Thu Apr 19 05:34:53 2018 -0400
+++ b/test-data/out.count.bam.txt	Mon Jun 04 10:58:04 2018 -0400
@@ -1,4 +1,4 @@
-sgRNA	Gene	test1_bam
+sgRNA	Gene	test1.bam
 s_10007	CCNA1	0
 s_10008	CCNA1	0
 s_10027	CCNC	0
--- a/test-data/out.count.fastq.txt	Thu Apr 19 05:34:53 2018 -0400
+++ b/test-data/out.count.fastq.txt	Mon Jun 04 10:58:04 2018 -0400
@@ -1,4 +1,4 @@
-sgRNA	Gene	test1_fastq_gz
+sgRNA	Gene	test1.fastq.gz
 s_47512	RNF111	1
 s_24835	HCFC1R1	1
 s_14784	CYP4B1	4
--- a/test-data/out.count.txt	Thu Apr 19 05:34:53 2018 -0400
+++ b/test-data/out.count.txt	Mon Jun 04 10:58:04 2018 -0400
@@ -1,4 +1,4 @@
-sgRNA	Gene	test1_fastq_gz
+sgRNA	Gene	test1.fastq.gz
 s_47512	RNF111	1
 s_24835	HCFC1R1	1
 s_14784	CYP4B1	4
--- a/test-data/out.count_multi.txt	Thu Apr 19 05:34:53 2018 -0400
+++ b/test-data/out.count_multi.txt	Mon Jun 04 10:58:04 2018 -0400
@@ -1,4 +1,4 @@
-sgRNA	Gene	test1_fastq_gz	test2_fastq_gz
+sgRNA	Gene	test1.fastq.gz	test2.fastq.gz
 s_47512	RNF111	1	0
 s_24835	HCFC1R1	1	0
 s_14784	CYP4B1	4	0
--- a/test-data/out.test.R	Thu Apr 19 05:34:53 2018 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,930 +0,0 @@
-pdf(file='output.pdf',width=4.5,height=4.5);
-gstable=read.table('output.gene_summary.txt',header=T)
-# 
-#
-# parameters
-# Do not modify the variables beginning with "__"
-
-# gstablename='__GENE_SUMMARY_FILE__'
-startindex=3
-# outputfile='__OUTPUT_FILE__'
-targetgenelist=c("ACIN1","ACTR8","AHCY","ACLY","AATF","AGBL5","AHCTF1","ABT1","ADIRF","ABCF1")
-# samplelabel=sub('.\\w+.\\w+$','',colnames(gstable)[startindex]);
-samplelabel='HL60_final,KBM7_final_vs_HL60_initial,KBM7_initial neg.'
-
-
-# You need to write some codes in front of this code:
-# gstable=read.table(gstablename,header=T)
-# pdf(file=outputfile,width=6,height=6)
-
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-######
-# function definition
-
-plotrankedvalues<-function(val, tglist, ...){
-  
-  plot(val,log='y',ylim=c(max(val),min(val)),type='l',lwd=2, ...)
-  if(length(tglist)>0){
-    for(i in 1:length(tglist)){
-      targetgene=tglist[i];
-      tx=which(names(val)==targetgene);ty=val[targetgene];
-      points(tx,ty,col=colors[(i %% length(colors)) ],cex=2,pch=20)
-      # text(tx+50,ty,targetgene,col=colors[i])
-    }
-    legend('topright',tglist,pch=20,pt.cex = 2,cex=1,col=colors)
-  }
-}
-
-
-
-plotrandvalues<-function(val,targetgenelist, ...){
-  # choose the one with the best distance distribution
-  
-  mindiffvalue=0;
-  randval=val;
-  for(i in 1:20){
-    randval0=sample(val)
-    vindex=sort(which(names(randval0) %in% targetgenelist))
-    if(max(vindex)>0.9*length(val)){
-      # print('pass...')
-      next;
-    }
-    mindiffind=min(diff(vindex));
-    if (mindiffind > mindiffvalue){
-      mindiffvalue=mindiffind;
-      randval=randval0;
-      # print(paste('Diff: ',mindiffvalue))
-    }
-  }
-  plot(randval,log='y',ylim=c(max(randval),min(randval)),pch=20,col='grey', ...)
-  
-  if(length(targetgenelist)>0){
-    for(i in 1:length(targetgenelist)){
-      targetgene=targetgenelist[i];
-      tx=which(names(randval)==targetgene);ty=randval[targetgene];
-      points(tx,ty,col=colors[(i %% length(colors)) ],cex=2,pch=20)
-      text(tx+50,ty,targetgene,col=colors[i])
-    }
-  }
-  
-}
-
-
-
-
-# set.seed(1235)
-
-
-
-pvec=gstable[,startindex]
-names(pvec)=gstable[,'id']
-pvec=sort(pvec);
-
-plotrankedvalues(pvec,targetgenelist,xlab='Genes',ylab='RRA score',main=paste('Distribution of RRA scores in \\n',samplelabel))
-
-# plotrandvalues(pvec,targetgenelist,xlab='Genes',ylab='RRA score',main=paste('Distribution of RRA scores in \\n',samplelabel))
-
-
-pvec=gstable[,startindex+1]
-names(pvec)=gstable[,'id']
-pvec=sort(pvec);
-
-plotrankedvalues(pvec,targetgenelist,xlab='Genes',ylab='p value',main=paste('Distribution of p values in \\n',samplelabel))
-
-# plotrandvalues(pvec,targetgenelist,xlab='Genes',ylab='p value',main=paste('Distribution of p values in \\n',samplelabel))
-
-
-
-# you need to write after this code:
-# dev.off()
-
-
-
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(561.4907165816957,824.0396348113272,428.37415340969943,579.047491896501),c(3424.79939695118,3818.2871009576584,1992.3498917052,690.0506672205338),c(846.6456878299913,985.6508562937211,335.0024675413113,415.97581680707134),c(2432.636481525409,2122.257249136931,1067.465489792653,155.6333179800872),c(1308.1851773762019,2186.1913587343615,1482.5909580453515,997.3120339679854),c(405.68439208520414,268.16807081144486,170.34023773287015,109.85881269182627),c(640.8637498157573,559.4234589775174,711.6436598617687,632.2603542941043),c(946.5969148654764,470.6260845366416,663.0651476194316,457.74505288260946),c(246.9383256170808,177.59474888175154,28.39003962214503,0.0),c(568.8400715107754,612.7018836420428,564.0154538266146,270.64176251684285))
-targetgene="ACIN1"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(2484.0819660289676,2349.578527705573,2172.7843657481662,910.9126552363929),c(992.1629154257711,1005.1862786707138,743.8190381001997,200.26346063614164),c(1267.0287897733551,1156.1418152202027,251.09412821363824,42.34141739164138),c(1500.738276518092,1315.977089213779,800.5991173444897,1476.2277955464156),c(1925.5309914189038,2054.7712445618654,194.94493873872918,235.16652091844063),c(351.29916561001374,781.4168950797068,227.75120674654121,624.2498158686586),c(1719.74905340467,1006.9622261595313,356.45271970026533,222.0063506480656),c(903.9706562768137,1445.6212558974576,1482.5909580453515,1055.1023468944147),c(651.152846716469,1081.552020689867,576.0023594448536,1072.2677863775127),c(285.1549712482957,408.46792242802854,99.0496937928171,44.630142656054424))
-targetgene="ACTR8"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(301.3235520922712,657.1005708624807,228.38209651592223,137.32351586478285),c(1142.0897559789987,1099.311495578042,112.92926871919911,100.70391163417409),c(789.3207193831689,671.3081507730209,723.6305654800077,588.7745742702564),c(392.45555321286054,412.0198174056636,334.37157777193033,213.99581222261992),c(2009.3136376104133,2235.917888421252,2437.1271791188055,1937.9781176417478),c(1071.5359486598327,406.69197493921104,645.4002340767636,349.602784139093),c(61.7345814042702,218.44154112455442,614.4866353770946,452.5954210376801),c(651.152846716469,879.0940069646701,237.21455328725622,18.88198343140764),c(1625.6773103124485,1410.1023061211074,2146.286995434164,1986.613529510525),c(1053.8974968300413,882.6459019423052,106.6203710253891,105.85354347910344))
-targetgene="AHCY"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(1268.498660759171,1411.8782536099247,1136.2324746551822,603.6512884889412),c(327.78122983695846,454.642557137284,51.73296108924205,24.031615276336996),c(132.28838872343613,241.5288584791821,123.02350502929512,65.80085135187511),c(495.34652221997754,586.0626713097802,279.4841678357833,243.74924065998954),c(1009.8013672555626,1102.8633905556771,1237.174837756142,1004.7503910773278),c(877.5129785321263,715.7068379934587,538.1489732819936,594.496387431289),c(1594.8100196103135,1108.1912330221296,605.6541786057605,127.59643349102738),c(314.5523909646148,252.1845434120872,88.95545748272109,359.9020478289517),c(512.984974049769,269.94401830026237,205.67006481820619,126.45207085882086),c(761.3931706526657,475.9539270030942,559.5992254409475,596.7851126957021))
-targetgene="ACLY"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(659.9720726313648,809.832054900787,880.7221180558769,802.1982051767731),c(724.6463960072668,1086.8798631563195,695.2405258578626,307.26136674745163),c(836.3565909292796,1289.3378768815162,468.75109865008346,177.94838930811443),c(367.46774645398926,571.85509139924,300.30353022535627,116.72498848506541),c(518.8644579930328,632.2373060190355,627.7353205340956,308.9779106957614),c(405.68439208520414,259.28833336735727,324.27734146183434,166.5047629860492),c(2096.0360257735547,1960.6460276545372,1573.4390848362154,629.9716290296913),c(277.8056163192159,435.1071347602913,182.32714335110919,0.0),c(995.1026573974029,477.7298744919117,728.0467938656747,275.21921304566894),c(2185.6981559083283,1482.9161531626255,1741.8866532609427,1862.4501839161173))
-targetgene="AATF"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(640.8637498157573,602.0461987091378,307.2433176885473,192.82510352679924),c(354.23890758164566,280.5997032331675,204.4082852794442,275.79139436177223),c(779.0316224824572,932.3724316291956,778.5179754161547,905.1908420753603),c(624.6951689717818,554.0956165110648,370.96318439602834,558.4489645167836),c(1133.270530064103,1394.1187787217498,639.0913363829536,1131.2024619361487),c(423.32284391499564,412.0198174056636,224.59675789963623,426.84726181303336),c(296.91393913482335,829.3674772777797,489.5704610396565,1233.0507362025292),c(684.959879390236,546.9918265557948,394.30610586312537,566.4595029422292),c(440.96129574478715,630.461358530218,434.6830511035094,457.1728715665062),c(1108.2827233052317,1969.5257650986248,1066.2037102538911,1333.7546478367033))
-targetgene="AGBL5"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(196.96271209933826,301.9110730989776,423.9579250240324,34.33087896619571),c(1106.8128523194157,1056.6887558464218,1743.1484327997048,807.3478370217025),c(748.1643317803222,488.3855594248168,239.73811236478022,477.77139894622366),c(1095.053884432888,882.6459019423052,837.8216137379688,365.05167967388104),c(677.6105244611563,316.11865300951774,613.8557456077136,819.3636446598709),c(1078.8853035889126,1609.008424868669,348.88204246769334,193.96946615900578),c(1437.533824128006,1095.759600600407,320.4920028455483,161.35513114111984),c(845.1758168441753,660.6524658401157,541.3034221288985,640.8430740356532),c(551.2016196809839,740.570102836904,1103.42620664737,622.5332719203489),c(601.1772331987264,900.4053768304803,735.6174710982467,754.1349746240991))
-targetgene="AHCTF1"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(487.9971672908978,367.6211301852257,312.2904358435953,441.15179471561487),c(358.6485205390935,394.2603425174884,593.0363832181406,268.35303725242983),c(1743.266989177725,1980.1814500315297,837.1907239685878,281.5132075228048),c(1597.7497615819454,1465.1566782744503,1065.57282048451,992.7345834391593),c(119.05954985109253,378.2768151181308,185.48159219801417,128.7407961232339),c(986.2834314825072,745.8979453033566,328.0626800781203,302.11173490252224),c(523.2740709504807,694.3954681276485,336.89513684945433,597.9294753279087),c(1562.4728579223624,763.6574201915316,422.0652557158894,220.28980669975581),c(30.8672907021351,179.37069637056908,238.47633282601822,184.81456510135357),c(339.5401977234861,447.5387671820139,310.3977665354523,205.98527379717427))
-targetgene="ABT1"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(492.4067802483456,221.99343610218943,309.7668767660713,102.99263689858714),c(243.9985836454489,239.7529109903646,130.59418226186713,174.51530141149487),c(734.9354929079785,673.0840982618383,620.7955330709046,470.9052231529845),c(1074.4756906314647,950.1319065173708,1100.902647569846,743.8357109342404),c(702.5983312200275,1010.5141211371663,1291.4313579229083,1017.3383800315995),c(1647.7253750996879,760.1055252138966,685.7771793171477,608.2287390177673),c(951.0065278229242,864.8864270541301,606.9159581445226,769.0116888427839),c(435.0818118015233,435.1071347602913,275.69882921949727,339.8757017653375),c(89.66213013477338,209.56180368046682,208.8245136651112,304.4004601669353),c(1328.7633711776252,1571.7135276035012,1122.983789498181,1356.6419004808338))
-targetgene="ADIRF"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(216.0710349149457,289.479440677255,192.42137966120518,498.36992632594104),c(1127.391046120839,1198.764554951823,371.5940741654094,370.2013115188104),c(1111.2224652768637,1038.9292809582466,948.227323379644,922.3562815584581),c(1164.137820766238,1204.0923974182756,1686.9992433247955,2089.033985093009),c(48.505742531926586,248.63264843445216,665.5887066969557,248.8988725049189),c(501.2260061632414,387.1565525622184,436.5757204116524,314.69972385679404),c(1975.5066049366465,1797.2588586833258,1628.3264947723626,1289.6966864967521),c(213.13129294331378,376.5008676293133,404.4003421732214,482.921030791153),c(2012.2533795820452,1989.0611874756173,1064.3110409457481,431.9968936579627),c(264.57677744687226,353.4135502746856,442.25372833608145,191.6807408945927))
-targetgene="ABCF1"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-# 
-#
-# parameters
-# Do not modify the variables beginning with "__"
-
-# gstablename='__GENE_SUMMARY_FILE__'
-startindex=9
-# outputfile='__OUTPUT_FILE__'
-targetgenelist=c("ACRC","AGAP3","ADCK4","AHRR","ADRBK1","ADK","ADCK1","ADARB2","ACSS2","ADNP")
-# samplelabel=sub('.\\w+.\\w+$','',colnames(gstable)[startindex]);
-samplelabel='HL60_final,KBM7_final_vs_HL60_initial,KBM7_initial pos.'
-
-
-# You need to write some codes in front of this code:
-# gstable=read.table(gstablename,header=T)
-# pdf(file=outputfile,width=6,height=6)
-
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-######
-# function definition
-
-plotrankedvalues<-function(val, tglist, ...){
-  
-  plot(val,log='y',ylim=c(max(val),min(val)),type='l',lwd=2, ...)
-  if(length(tglist)>0){
-    for(i in 1:length(tglist)){
-      targetgene=tglist[i];
-      tx=which(names(val)==targetgene);ty=val[targetgene];
-      points(tx,ty,col=colors[(i %% length(colors)) ],cex=2,pch=20)
-      # text(tx+50,ty,targetgene,col=colors[i])
-    }
-    legend('topright',tglist,pch=20,pt.cex = 2,cex=1,col=colors)
-  }
-}
-
-
-
-plotrandvalues<-function(val,targetgenelist, ...){
-  # choose the one with the best distance distribution
-  
-  mindiffvalue=0;
-  randval=val;
-  for(i in 1:20){
-    randval0=sample(val)
-    vindex=sort(which(names(randval0) %in% targetgenelist))
-    if(max(vindex)>0.9*length(val)){
-      # print('pass...')
-      next;
-    }
-    mindiffind=min(diff(vindex));
-    if (mindiffind > mindiffvalue){
-      mindiffvalue=mindiffind;
-      randval=randval0;
-      # print(paste('Diff: ',mindiffvalue))
-    }
-  }
-  plot(randval,log='y',ylim=c(max(randval),min(randval)),pch=20,col='grey', ...)
-  
-  if(length(targetgenelist)>0){
-    for(i in 1:length(targetgenelist)){
-      targetgene=targetgenelist[i];
-      tx=which(names(randval)==targetgene);ty=randval[targetgene];
-      points(tx,ty,col=colors[(i %% length(colors)) ],cex=2,pch=20)
-      text(tx+50,ty,targetgene,col=colors[i])
-    }
-  }
-  
-}
-
-
-
-
-# set.seed(1235)
-
-
-
-pvec=gstable[,startindex]
-names(pvec)=gstable[,'id']
-pvec=sort(pvec);
-
-plotrankedvalues(pvec,targetgenelist,xlab='Genes',ylab='RRA score',main=paste('Distribution of RRA scores in \\n',samplelabel))
-
-# plotrandvalues(pvec,targetgenelist,xlab='Genes',ylab='RRA score',main=paste('Distribution of RRA scores in \\n',samplelabel))
-
-
-pvec=gstable[,startindex+1]
-names(pvec)=gstable[,'id']
-pvec=sort(pvec);
-
-plotrankedvalues(pvec,targetgenelist,xlab='Genes',ylab='p value',main=paste('Distribution of p values in \\n',samplelabel))
-
-# plotrandvalues(pvec,targetgenelist,xlab='Genes',ylab='p value',main=paste('Distribution of p values in \\n',samplelabel))
-
-
-
-# you need to write after this code:
-# dev.off()
-
-
-
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(461.5394895462105,502.5931393353569,445.40817718298644,889.1697652244688),c(76.43329126242978,90.5733219296933,447.30084649112945,357.0411412484354),c(258.6972935036084,685.515730683561,533.7327448963265,560.7376897811967),c(232.23961575892122,681.9638357059259,275.69882921949727,467.47213525636494),c(1393.4376945535273,1472.2604682297203,1039.706339939889,532.7008052921368),c(2395.88970688001,2441.927797124084,2462.9936596634266,2461.5240218762324),c(495.34652221997754,605.5980936867728,1159.575396122279,1617.5565806239213),c(682.0201374186041,822.2636873225097,1572.1773052974536,1333.7546478367033),c(961.2956247236359,1097.5355480892247,959.5833392285019,905.1908420753603),c(1940.2297012770634,1289.3378768815162,942.5493154552149,1103.737758763192))
-targetgene="ACRC"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(1387.5582106102636,1120.6228654438523,1214.4628060584262,1111.1761158725344),c(388.0459402554127,509.69692929062694,933.0859689144999,750.1297054113762),c(326.3113588511425,635.7892009966705,960.8451187672639,615.6670961271097),c(1328.7633711776252,1038.9292809582466,1346.3187678590552,1596.3858719281006),c(352.7690365958297,234.42506852391205,310.3977665354523,429.1359870774464),c(693.7791053051318,678.4119407282909,784.1959833405838,895.4637597016048),c(837.8264619150956,719.2587329710938,374.74852301231437,993.8789460713658),c(365.99787546817333,369.3970776740432,333.74068800254935,746.6966175147567),c(707.0079441774753,635.7892009966705,837.1907239685878,1465.3563505404536),c(486.5272963050818,673.0840982618383,784.8268731099647,734.6808098765882))
-targetgene="AGAP3"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(830.4771069860158,864.8864270541301,1349.4732167059603,740.974804353724),c(1481.6299537024847,1994.38902994207,2044.082852794442,1810.9538654668238),c(1234.6916280854039,1299.9935618144214,1357.6747837079133,2232.6514954349277),c(224.89026082984142,188.25043381465665,700.2876440129107,81.24974688666317),c(812.8386551562243,845.3510046771374,946.334654071501,999.6007592323984),c(1978.4463469082782,1751.0842239740703,2659.2003779409174,2851.1794981425537),c(565.9003295391435,776.0890526132542,878.1985589783528,445.72924524444096),c(680.5502664327881,534.5601941340722,550.7667686696135,1025.9210997731484),c(161.68580843975528,333.87812789769293,275.0679394501163,465.18340999195186),c(2523.768482645998,2445.4796921017187,2153.226782897355,1516.8526689897471))
-targetgene="ADCK4"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(345.4196816667499,163.38716897121142,474.42910657451245,481.2044868428432),c(415.9734889859159,372.9489726516783,212.6098522813972,349.03060282298975),c(1.469870985815957,83.46953197442323,0.0,62.9399447713588),c(351.29916561001374,150.9555365494888,288.9475143764983,416.54799812317464),c(561.4907165816957,170.49095892648148,199.3611671243962,411.97054759434855),c(251.34793857452865,221.99343610218943,1564.6066280648815,1502.5481360871656),c(736.4053638937945,893.3015868752103,1114.782222496228,459.46159683091923),c(338.07032673767014,607.3740411755903,378.5338616286004,65.22867003577186),c(1230.2820151279561,525.6804566899846,837.1907239685878,945.2435342025885))
-targetgene="AHRR"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(371.87735941143717,877.3180594758527,2395.4884543396593,1564.9158995424211),c(1109.7525942910477,1138.3823403320275,970.308465307979,999.0285779162951),c(1462.5216308868773,1209.420239884728,1537.4783679814984,1519.14139425416),c(586.4785233405669,987.4268037825386,743.8190381001997,1312.0117578247794),c(1018.6205931704583,717.4827854822763,1070.619938639558,1144.3626322065236),c(1269.9685317449869,1212.9721348623632,1591.1039983788835,1624.9949377332637),c(1321.4140162485455,1795.4829111945082,1478.8056194290655,1237.056005415252),c(908.3802692342615,832.9193722554148,1639.6825106212207,1268.5259778009315),c(923.078979092421,758.3295777250792,1479.4365091984464,1275.964334910274),c(680.5502664327881,634.013253507853,318.5993335374053,631.1159916618979))
-targetgene="ADRBK1"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(1472.810727787589,1829.225913482041,1263.0413183007631,1315.444845721399),c(208.7216799858659,65.71005708624807,292.1019632234033,350.17496545519623),c(1011.2712382413785,1166.7975001531076,652.9709113093356,860.5606994193058),c(557.0811036242477,685.515730683561,875.0441101314478,1019.6271052960126),c(363.0581334965414,825.8155823001447,736.8792506370087,349.602784139093),c(1505.14788947554,451.09066215964896,653.6018010787167,991.0180394908496),c(198.43258308515422,28.41515982108025,249.83234867487624,114.43626322065236),c(438.02155377315523,74.58979453033565,254.87946682992424,231.16125170571777),c(804.0194292413286,472.4020320254591,1336.2245315489592,1203.2973077651598),c(454.19013461713075,490.1615069136343,896.4943622904019,685.4732166917076))
-targetgene="ADK"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(662.9118146029966,1008.7381736483488,1101.533537339227,1694.8010582978616),c(1547.7741480642028,1965.9738701209897,1869.9572764452857,2353.9539344488194),c(1459.5818889152454,1179.2291325748304,1296.4784760779562,1222.1792911965672),c(1193.5352404825571,1355.0479339677643,1622.0175970785526,1905.9359639399652),c(868.6937526172306,701.4992580829187,720.4761166331027,603.6512884889412),c(798.1399452980647,768.9852626579842,1478.8056194290655,1756.0244591209105),c(1168.5474337236858,907.5091667857504,879.4603385171149,977.8578692204745),c(809.8989131845924,687.2916781723785,678.8373918539567,865.7103312642352),c(1246.4505959719315,753.0017352586266,1301.5255942330043,1264.5207085882087),c(826.0674940285679,797.4004224790644,977.8791425405509,2066.7189137649816))
-targetgene="ADCK1"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(1863.7964100146337,1585.9211075140413,1761.4442361117538,1464.211987908247),c(742.2848478370584,598.4943037315028,943.8110949939769,820.5080072920774),c(1568.3523418656262,2083.1864043829455,1810.6536381234716,1887.6261618246608),c(1018.6205931704583,513.248824268262,679.4682816233377,824.5132765048003),c(1140.6198849931827,1191.6607649965529,880.0912282864958,977.8578692204745),c(135.22813069506805,118.98848175077354,351.40560154521734,399.95473995618005),c(665.8515565746286,701.4992580829187,986.7115993118849,746.6966175147567),c(418.9132309575478,300.1351256101601,376.6411923204574,645.4205245644794),c(561.4907165816957,543.4399315781598,881.9838975946388,580.7640358448108),c(442.4311667306031,229.0972260574595,395.5678854018874,651.142337725512))
-targetgene="ADARB2"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(734.9354929079785,358.74139274113816,541.9343118982795,378.7840312603593),c(595.2977492554626,591.3905137762326,1061.787481868224,887.4532212761591),c(1655.0747300287676,943.0281165621008,1069.358159100796,2038.1098479598186),c(626.1650399575977,884.4218494311227,517.3296108924205,858.2719741548927),c(680.5502664327881,747.673892792174,533.1018551269456,1016.194017399393),c(662.9118146029966,777.8650001020718,864.9498738213518,787.3214909580882),c(880.4527205037583,621.5816210861304,671.8976043907657,1040.7978139918332),c(94.07174309222125,447.5387671820139,711.6436598617687,927.5059134033875),c(399.80490814194036,806.280159923152,1147.58849050404,1059.1076161071376),c(698.1887182625796,531.0082991564371,504.0809257354195,347.8862401907832))
-targetgene="ACSS2"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(408.62413405683606,523.9045092011671,483.89245311522745,701.494293542599),c(1805.0015705819953,1434.9655709645526,1712.2348341000356,2152.546111180471),c(3017.64513388016,2642.609863360463,1834.6274493599499,3573.2723190648703),c(1649.1952460855039,783.1928425685244,773.4708572611067,1332.0381038883936),c(959.82575373782,1397.6706736993847,1429.5962174173474,2811.126806015325),c(495.34652221997754,301.9110730989776,336.89513684945433,555.015876620164),c(1491.9190506031964,1331.9606166131366,2087.614246881731,1983.1804416139055),c(429.2023278582595,889.7496918975753,567.8007924429005,1132.9190058844583),c(427.7324568724435,573.6310388880576,655.4944703868597,899.4690289143276),c(690.8393633334998,767.2093151691668,1040.33722970927,993.3067647552625))
-targetgene="ADNP"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-dev.off()
-Sweave("output_summary.Rnw");
-library(tools);
-
-texi2dvi("output_summary.tex",pdf=TRUE);
-
--- a/test-data/out.test.log.txt	Thu Apr 19 05:34:53 2018 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,109 +0,0 @@
-INFO  @ Mon, 26 Mar 2018 08:37:53: Parameters: /Users/doylemaria/miniconda3/envs/mulled-v1-9ee130591ca78526e74a59d8d6dc03cb7db20645470975762936caeac62972dc/bin/mageck test -k /private/var/folders/zn/m_qvr9zd7tq0wdtsbq255f8xypj_zg/T/tmpTX65kA/files/000/dataset_4.dat -t HL60_final,KBM7_final -c HL60_initial,KBM7_initial -n output --normcounts-to-file --pdf-report --norm-method median --adjust-method fdr --sort-criteria neg --remove-zero both --gene-lfc-method median 
-INFO  @ Mon, 26 Mar 2018 08:37:53: Welcome to MAGeCK v0.5.7. Command: test 
-INFO  @ Mon, 26 Mar 2018 08:37:53: Loading count table from /private/var/folders/zn/m_qvr9zd7tq0wdtsbq255f8xypj_zg/T/tmpTX65kA/files/000/dataset_4.dat  
-INFO  @ Mon, 26 Mar 2018 08:37:53: Processing 1 lines.. 
-DEBUG @ Mon, 26 Mar 2018 08:37:53: Parsing error in line 1 (usually the header line). Skip this line. 
-INFO  @ Mon, 26 Mar 2018 08:37:53: Loaded 999 records. 
-INFO  @ Mon, 26 Mar 2018 08:37:53: Loading R template file: /Users/doylemaria/miniconda3/envs/mulled-v1-9ee130591ca78526e74a59d8d6dc03cb7db20645470975762936caeac62972dc/lib/python3.6/site-packages/mageck/plot_template.RTemplate. 
-INFO  @ Mon, 26 Mar 2018 08:37:53: Loading R template file: /Users/doylemaria/miniconda3/envs/mulled-v1-9ee130591ca78526e74a59d8d6dc03cb7db20645470975762936caeac62972dc/lib/python3.6/site-packages/mageck/plot_template_indvgene.RTemplate. 
-INFO  @ Mon, 26 Mar 2018 08:37:53: Loading Rnw template file: /Users/doylemaria/miniconda3/envs/mulled-v1-9ee130591ca78526e74a59d8d6dc03cb7db20645470975762936caeac62972dc/lib/python3.6/site-packages/mageck/plot_template.Rnw. 
-DEBUG @ Mon, 26 Mar 2018 08:37:53: Setting up the visualization module... 
-DEBUG @ Mon, 26 Mar 2018 08:37:53: Given sample labels: HL60_final,KBM7_final 
-DEBUG @ Mon, 26 Mar 2018 08:37:53: Converted index: 2 3 
-INFO  @ Mon, 26 Mar 2018 08:37:53: Treatment samples:HL60_final,KBM7_final 
-INFO  @ Mon, 26 Mar 2018 08:37:53: Treatment sample index:2,3 
-DEBUG @ Mon, 26 Mar 2018 08:37:53: Given sample labels: HL60_initial,KBM7_initial 
-DEBUG @ Mon, 26 Mar 2018 08:37:53: Converted index: 0 1 
-INFO  @ Mon, 26 Mar 2018 08:37:53: Control samples:HL60_initial,KBM7_initial 
-INFO  @ Mon, 26 Mar 2018 08:37:53: Control sample index:0,1 
-DEBUG @ Mon, 26 Mar 2018 08:37:53: Initial (total) size factor: 1.6666455325878438 2.027372749328462 0.7198064117880387 0.6589869375844738 
-DEBUG @ Mon, 26 Mar 2018 08:37:53: Median factor: 1.469870985815957 1.7759474888175155 0.6308897693810006 0.5721813161032618 
-INFO  @ Mon, 26 Mar 2018 08:37:53: Final size factor: 1.469870985815957 1.7759474888175155 0.6308897693810006 0.5721813161032618 
-INFO  @ Mon, 26 Mar 2018 08:37:53: Writing normalized read counts to output.normalized.txt 
-DEBUG @ Mon, 26 Mar 2018 08:37:53: Adjusted model: 1.1175084644498339	3.4299551007579927 
-INFO  @ Mon, 26 Mar 2018 08:37:53: Raw variance calculation: 0.5 for control, 0.5 for treatment 
-INFO  @ Mon, 26 Mar 2018 08:37:53: Adjusted variance calculation: 0.3333333333333333 for raw variance, 0.6666666666666667 for modeling 
-INFO  @ Mon, 26 Mar 2018 08:37:53: Use qnorm to reversely calculate sgRNA scores ... 
-DEBUG @ Mon, 26 Mar 2018 08:37:53: lower test FDR cutoff: 0.3283283283283283 
-DEBUG @ Mon, 26 Mar 2018 08:37:53: higher test FDR cutoff: 0.34534534534534533 
-INFO  @ Mon, 26 Mar 2018 08:37:53: Running command: RRA -i output.plow.txt -o output.gene.low.txt -p 0.3283283283283283 --skip-gene NA --skip-gene na  
-INFO  @ Mon, 26 Mar 2018 08:37:53: Command message: 
-INFO  @ Mon, 26 Mar 2018 08:37:53:   Welcome to RRA v 0.5.7. 
-INFO  @ Mon, 26 Mar 2018 08:37:53:   Skipping gene NA for permutation ... 
-INFO  @ Mon, 26 Mar 2018 08:37:53:   Skipping gene na for permutation ... 
-INFO  @ Mon, 26 Mar 2018 08:37:53:   Reading input file... 
-INFO  @ Mon, 26 Mar 2018 08:37:53:   Summary: 999 sgRNAs, 100 genes, 1 lists; skipped sgRNAs:0 
-INFO  @ Mon, 26 Mar 2018 08:37:53:   Computing lo-values for each group... 
-INFO  @ Mon, 26 Mar 2018 08:37:53:   Computing false discovery rate... 
-INFO  @ Mon, 26 Mar 2018 08:37:53:   Increase the number of permutations to 1001 to get precise p values. To avoid this, use the --permutation option. 
-INFO  @ Mon, 26 Mar 2018 08:37:53:   Permuting genes with 9 sgRNAs... 
-INFO  @ Mon, 26 Mar 2018 08:37:53:   Permuting genes with 10 sgRNAs... 
-INFO  @ Mon, 26 Mar 2018 08:37:53:   Number of genes under FDR adjustment: 100 
-INFO  @ Mon, 26 Mar 2018 08:37:53:   Saving to output file... 
-INFO  @ Mon, 26 Mar 2018 08:37:53:   RRA completed. 
-INFO  @ Mon, 26 Mar 2018 08:37:53:    
-INFO  @ Mon, 26 Mar 2018 08:37:53: End command message. 
-INFO  @ Mon, 26 Mar 2018 08:37:53: Running command: RRA -i output.phigh.txt -o output.gene.high.txt -p 0.34534534534534533 --skip-gene NA --skip-gene na  
-INFO  @ Mon, 26 Mar 2018 08:37:53: Command message: 
-INFO  @ Mon, 26 Mar 2018 08:37:53:   Welcome to RRA v 0.5.7. 
-INFO  @ Mon, 26 Mar 2018 08:37:53:   Skipping gene NA for permutation ... 
-INFO  @ Mon, 26 Mar 2018 08:37:53:   Skipping gene na for permutation ... 
-INFO  @ Mon, 26 Mar 2018 08:37:53:   Reading input file... 
-INFO  @ Mon, 26 Mar 2018 08:37:53:   Summary: 999 sgRNAs, 100 genes, 1 lists; skipped sgRNAs:0 
-INFO  @ Mon, 26 Mar 2018 08:37:53:   Computing lo-values for each group... 
-INFO  @ Mon, 26 Mar 2018 08:37:53:   Computing false discovery rate... 
-INFO  @ Mon, 26 Mar 2018 08:37:53:   Increase the number of permutations to 1001 to get precise p values. To avoid this, use the --permutation option. 
-INFO  @ Mon, 26 Mar 2018 08:37:53:   Permuting genes with 9 sgRNAs... 
-INFO  @ Mon, 26 Mar 2018 08:37:53:   Permuting genes with 10 sgRNAs... 
-INFO  @ Mon, 26 Mar 2018 08:37:53:   Number of genes under FDR adjustment: 100 
-INFO  @ Mon, 26 Mar 2018 08:37:53:   Saving to output file... 
-INFO  @ Mon, 26 Mar 2018 08:37:53:   RRA completed. 
-INFO  @ Mon, 26 Mar 2018 08:37:53:    
-INFO  @ Mon, 26 Mar 2018 08:37:53: End command message. 
-DEBUG @ Mon, 26 Mar 2018 08:37:53: Sorting the merged items by negative selection... 
-INFO  @ Mon, 26 Mar 2018 08:37:53: Loading top 10 genes from output.gene.low.txt: ACIN1,ACTR8,AHCY,ACLY,AATF,AGBL5,AHCTF1,ABT1,ADIRF,ABCF1 
-DEBUG @ Mon, 26 Mar 2018 08:37:53: Column index:3 
-INFO  @ Mon, 26 Mar 2018 08:37:53: Loading top 10 genes from output.gene.high.txt: ACRC,AGAP3,ADCK4,AHRR,ADRBK1,ADK,ADCK1,ADARB2,ACSS2,ADNP 
-DEBUG @ Mon, 26 Mar 2018 08:37:53: Column index:9 
-INFO  @ Mon, 26 Mar 2018 08:37:53: Running command: rm output.plow.txt 
-INFO  @ Mon, 26 Mar 2018 08:37:53: Running command: rm output.phigh.txt 
-INFO  @ Mon, 26 Mar 2018 08:37:54: Running command: rm output.gene.low.txt 
-INFO  @ Mon, 26 Mar 2018 08:37:54: Running command: rm output.gene.high.txt 
-INFO  @ Mon, 26 Mar 2018 08:37:54: Running command: cd ./; Rscript output.R 
-INFO  @ Mon, 26 Mar 2018 08:37:59: Command message: 
-INFO  @ Mon, 26 Mar 2018 08:37:59:   null device  
-INFO  @ Mon, 26 Mar 2018 08:37:59:             1  
-INFO  @ Mon, 26 Mar 2018 08:37:59:   Writing to file output_summary.tex 
-INFO  @ Mon, 26 Mar 2018 08:37:59:   Processing code chunks with options ... 
-INFO  @ Mon, 26 Mar 2018 08:37:59:    1 : keep.source term verbatim (label = funcdef, output_summary.Rnw:27) 
-INFO  @ Mon, 26 Mar 2018 08:37:59:    2 : keep.source term tex (label = tab1, output_summary.Rnw:37) 
-INFO  @ Mon, 26 Mar 2018 08:37:59:    3 : keep.source term verbatim (output_summary.Rnw:77) 
-INFO  @ Mon, 26 Mar 2018 08:37:59:    4 : keep.source term verbatim pdf  (output_summary.Rnw:83) 
-INFO  @ Mon, 26 Mar 2018 08:37:59:    5 : keep.source term verbatim pdf  (output_summary.Rnw:201) 
-INFO  @ Mon, 26 Mar 2018 08:37:59:    6 : keep.source term verbatim pdf  (output_summary.Rnw:345) 
-INFO  @ Mon, 26 Mar 2018 08:37:59:    7 : keep.source term verbatim pdf  (output_summary.Rnw:489) 
-INFO  @ Mon, 26 Mar 2018 08:37:59:    8 : keep.source term verbatim (output_summary.Rnw:567) 
-INFO  @ Mon, 26 Mar 2018 08:37:59:    9 : keep.source term verbatim pdf  (output_summary.Rnw:573) 
-INFO  @ Mon, 26 Mar 2018 08:37:59:   10 : keep.source term verbatim pdf  (output_summary.Rnw:691) 
-INFO  @ Mon, 26 Mar 2018 08:37:59:   11 : keep.source term verbatim pdf  (output_summary.Rnw:835) 
-INFO  @ Mon, 26 Mar 2018 08:37:59:   12 : keep.source term verbatim pdf  (output_summary.Rnw:979) 
-INFO  @ Mon, 26 Mar 2018 08:37:59:    
-INFO  @ Mon, 26 Mar 2018 08:37:59:   You can now run (pdf)latex on ‘output_summary.tex’ 
-INFO  @ Mon, 26 Mar 2018 08:37:59:    
-INFO  @ Mon, 26 Mar 2018 08:37:59: End command message. 
-INFO  @ Mon, 26 Mar 2018 08:37:59: Running command: cd ./; rm -rf output_summary-*.pdf 
-INFO  @ Mon, 26 Mar 2018 08:37:59: Command message: 
-INFO  @ Mon, 26 Mar 2018 08:37:59:    
-INFO  @ Mon, 26 Mar 2018 08:37:59: End command message. 
-INFO  @ Mon, 26 Mar 2018 08:37:59: Running command: cd ./; rm -rf output_summary.aux 
-INFO  @ Mon, 26 Mar 2018 08:37:59: Command message: 
-INFO  @ Mon, 26 Mar 2018 08:37:59:    
-INFO  @ Mon, 26 Mar 2018 08:37:59: End command message. 
-INFO  @ Mon, 26 Mar 2018 08:37:59: Running command: cd ./; rm -rf output_summary.tex 
-INFO  @ Mon, 26 Mar 2018 08:37:59: Command message: 
-INFO  @ Mon, 26 Mar 2018 08:37:59:    
-INFO  @ Mon, 26 Mar 2018 08:37:59: End command message. 
-INFO  @ Mon, 26 Mar 2018 08:37:59: Running command: cd ./; rm -rf output_summary.toc 
-INFO  @ Mon, 26 Mar 2018 08:37:59: Command message: 
-INFO  @ Mon, 26 Mar 2018 08:37:59:    
-INFO  @ Mon, 26 Mar 2018 08:37:59: End command message. 
Binary file test-data/out.test.report.pdf has changed
--- a/test-data/out.test.sgrna_summary.txt	Thu Apr 19 05:34:53 2018 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1000 +0,0 @@
-sgrna	Gene	control_count	treatment_count	control_mean	treat_mean	LFC	control_var	adj_var	score	p.low	p.high	p.twosided	FDR	high_in_treatment
-AHRR_p344008	AHRR	251.35/221.99	1564.6/1502.5	236.67	1533.6	2.6908	1178.2	5085.6	18.186	1	3.3319e-74	6.6638e-74	6.6571e-71	True
-ACAD9_m128598565	ACAD9	739.35/925.27	2528/2050.7	832.31	2289.3	1.4586	65590	35597	7.7226	1	5.7002e-15	1.14e-14	5.6945e-12	True
-ACTR8_m53916081	ACTR8	1925.5/2054.8	194.94/235.17	1990.2	215.06	-3.2041	4580.2	54357	7.6137	1.3311e-14	1	2.6622e-14	7.8608e-12	False
-ACRC_m70814198	ACRC	76.433/90.573	447.3/357.04	83.503	402.17	2.2543	2086.7	1760.4	7.5952	1	1.5737e-14	3.1475e-14	7.8608e-12	True
-ABCC1_p16101710	ABCC1	52.915/26.639	203.78/224.3	39.777	214.04	2.3987	277.85	700.66	6.5833	1	2.465e-11	4.93e-11	9.8502e-09	True
-ACTR8_m53916067	ACTR8	1267/1156.1	251.09/42.341	1211.6	146.72	-3.0372	13968	31286	6.021	8.6646e-10	1	1.7329e-09	2.3419e-07	False
-AAK1_m69870125	AAK1	402.74/621.58	1149.5/1202.2	512.16	1175.8	1.1974	12666	12223	6.0027	1	9.7009e-10	1.9402e-09	2.3419e-07	True
-ADCK1_p78285331	ADCK1	798.14/768.99	1478.8/1756	783.56	1617.4	1.0446	19425	19317	5.9996	1	9.8882e-10	1.9776e-09	2.3419e-07	True
-AHCY_m32883247	AHCY	1142.1/1099.3	112.93/100.7	1120.7	106.82	-3.379	494.86	28685	5.9891	1.0549e-09	1	2.1098e-09	2.3419e-07	False
-AHCTF1_m247070995	AHCTF1	1437.5/1095.8	320.49/161.36	1266.6	240.92	-2.3895	35534	33759	5.5826	1.1847e-08	1	2.3695e-08	2.3671e-06	False
-AHCY_p32883309	AHCY	1053.9/882.65	106.62/105.85	968.27	106.24	-3.1761	7331.9	24378	5.524	1.6565e-08	1	3.3129e-08	3.0087e-06	False
-ADCY1_p45614315	ADCY1	2.9397/72.814	210.72/187.1	37.877	198.91	2.3624	1360	895.72	5.3806	1	4.1374e-08	8.2747e-08	6.6138e-06	True
-ACTN4_p39138476	ACTN4	449.78/475.95	1056.7/977.86	462.87	1017.3	1.1344	1726.9	10724	5.3539	1	4.3033e-08	8.6065e-08	6.6138e-06	True
-ADAM12_m128076658	ADAM12	768.74/767.21	1432.1/1562.6	767.98	1497.4	0.96239	4258.6	18836	5.3145	1	5.3464e-08	1.0693e-07	7.63e-06	True
-ABT1_m26597388	ABT1	1743.3/1980.2	837.19/281.51	1861.7	559.35	-1.733	91226	64053	5.1459	1.3309e-07	1	2.6618e-07	1.7727e-05	False
-ACRC_p70814182	ACRC	682.02/822.26	1572.2/1333.8	752.14	1453	0.949	19128	18646	5.1324	1	1.4307e-07	2.8614e-07	1.7866e-05	True
-ACBD6_p180471256	ACBD6	107.3/285.93	553.29/687.76	196.61	620.53	1.6531	12498	6924.5	5.0942	1	1.7666e-07	3.5333e-07	2.0382e-05	True
-ACRC_p70811990	ACRC	495.35/605.6	1159.6/1617.6	550.47	1388.6	1.3333	55476	27162	5.0853	1	1.8362e-07	3.6724e-07	2.0382e-05	True
-ADRA1B_m159344001	ADRA1B	329.25/309.01	881.98/676.32	319.13	779.15	1.2851	10677	8286.5	5.0535	1	2.1699e-07	4.3398e-07	2.2818e-05	True
-AHCY_p32883238	AHCY	61.735/218.44	614.49/452.6	140.09	533.54	1.9217	12691	6123	5.0282	1	2.5699e-07	5.1398e-07	2.5673e-05	True
-ACTR5_m37377141	ACTR5	865.75/935.92	1595.5/1695.4	900.84	1645.4	0.86841	3723.6	22496	4.9645	1	3.4447e-07	6.8893e-07	3.2774e-05	True
-ADARB2_m1779330	ADARB2	135.23/118.99	351.41/399.95	127.11	375.68	1.556	655.19	2547.9	4.9245	1	4.2536e-07	8.5071e-07	3.863e-05	True
-ADRB1_m115804012	ADRB1	2166.6/1942.9	1093.3/705.5	2054.7	899.42	-1.191	50114	56324	4.8681	5.6346e-07	1	1.1269e-06	4.8948e-05	False
-AHCTF1_m247070906	AHCTF1	1078.9/1609	348.88/193.97	1343.9	271.43	-2.3036	76257	48827	4.8539	6.0526e-07	1	1.2105e-06	5.0388e-05	False
-ACIN1_m23538803	ACIN1	2432.6/2122.3	1067.5/155.63	2277.4	611.55	-1.8952	2.3194e+05	1.1942e+05	4.8207	7.1537e-07	1	1.4307e-06	5.7173e-05	False
-ACIN1_m23538698	ACIN1	3424.8/3818.3	1992.3/690.05	3621.5	1341.2	-1.4324	4.627e+05	2.2481e+05	4.8094	7.5677e-07	1	1.5135e-06	5.8155e-05	False
-ABCF1_p30545878	ABCF1	2012.3/1989.1	1064.3/432	2000.7	748.15	-1.4179	1.0009e+05	69814	4.7403	1.0669e-06	1	2.1338e-06	7.8951e-05	False
-ABCF1_p30539251	ABCF1	1127.4/1198.8	371.59/370.2	1163.1	370.9	-1.6462	1274	29895	4.5817	2.3062e-06	1	4.6124e-06	0.00016456	False
-ACTR1A_m104250365	ACTR1A	402.74/161.61	711.64/716.37	282.18	714.01	1.3362	14542	8970.1	4.5595	1	2.5679e-06	5.1359e-06	0.00017692	True
-ADRBK1_m67034181	ADRBK1	371.88/877.32	2395.5/1564.9	624.6	1980.2	1.6631	2.3633e+05	88755	4.5503	1	2.728e-06	5.4561e-06	0.00018042	True
-AGL_m100327135	AGL	221.95/118.99	418.91/461.75	170.47	440.33	1.3639	3109.1	3531	4.5414	1	2.7993e-06	5.5987e-06	0.00018042	True
-AHCY_p32883253	AHCY	651.15/879.09	237.21/18.882	765.12	128.05	-2.5697	24907	20808	4.4189	4.9594e-06	1	9.9187e-06	0.00030965	False
-AGTPBP1_m88296213	AGTPBP1	780.5/873.77	1431.5/1476.2	827.13	1453.9	0.81294	2675	20458	4.3817	0.99999	5.8866e-06	1.1773e-05	0.00035641	True
-ADK_p76153940	ADK	804.02/472.4	1336.2/1203.3	638.21	1269.8	0.99133	31910	20857	4.373	0.99999	6.1269e-06	1.2254e-05	0.00036004	True
-ACD_m67694254	ACD	1174.4/934.15	1644.1/1830.4	1054.3	1737.3	0.72	23111	26800	4.1719	0.99998	1.5104e-05	3.0208e-05	0.00086223	True
-ACTR1A_p104262383	ACTR1A	1240.6/836.47	215.76/358.76	1038.5	287.26	-1.8505	45936	32881	4.1431	1.7134e-05	0.99998	3.4269e-05	0.00094812	False
-AAK1_p69870105	AAK1	279.28/289.48	581.68/639.7	284.38	610.69	1.0999	867.56	6237.8	4.1316	0.99998	1.8016e-05	3.6033e-05	0.00094812	True
-ACTR8_m53916096	ACTR8	1719.7/1007	356.45/222.01	1363.4	289.23	-2.233	1.3154e+05	67630	4.1313	1.8032e-05	0.99998	3.6065e-05	0.00094812	False
-ACSS2_p33500893	ACSS2	94.072/447.54	711.64/927.51	270.81	819.57	1.5941	42884	18233	4.0641	0.99998	2.4667e-05	4.9333e-05	0.0012637	True
-ACHE_p100491821	ACHE	864.28/1113.5	382.32/331.29	988.9	356.81	-1.4681	16180	24957	4.0012	3.1512e-05	0.99997	6.3025e-05	0.001574	False
-ACSL6_m131326651	ACSL6	630.57/692.62	1066.8/1423.6	661.6	1245.2	0.91134	32780	21565	3.9742	0.99996	3.5303e-05	7.0606e-05	0.0017204	True
-ADCK4_m41220474	ADCK4	1978.4/1751.1	2659.2/2851.2	1864.8	2755.2	0.56291	22137	50558	3.9601	0.99996	3.7465e-05	7.4931e-05	0.0017823	True
-ACLY_p40070033	ACLY	1594.8/1108.2	605.65/127.6	1351.5	366.63	-1.8793	1.1633e+05	62333	3.945	3.9906e-05	0.99996	7.9812e-05	0.0018542	False
-ACTRT3_m169487204	ACTRT3	377.76/277.05	599.35/716.94	327.4	658.14	1.0051	5992.9	7296	3.8721	0.99995	5.3953e-05	0.00010791	0.00245	True
-ADRB1_m115804005	ADRB1	1346.4/1584.1	791.77/633.98	1465.3	712.87	-1.0384	20355	38658	3.8267	6.4926e-05	0.99994	0.00012985	0.0028827	False
-ABCF1_p30545181	ABCF1	1164.1/1204.1	1687/2089	1184.1	1888	0.67261	40807	33934	3.8212	0.99993	6.6413e-05	0.00013283	0.0028846	True
-ABTB1_m127395813	ABTB1	492.41/353.41	863.06/731.82	422.91	797.44	0.91342	9135.6	9699.2	3.8029	0.99993	7.1501e-05	0.000143	0.0030341	True
-ACLY_m40070008	ACLY	327.78/454.64	51.733/24.032	391.21	37.882	-3.3344	4215.3	8894	3.7981	7.2891e-05	0.99993	0.00014578	0.0030341	False
-AGAP3_p150783818	AGAP3	388.05/509.7	933.09/750.13	448.87	841.61	0.90535	12068	10932	3.7563	0.99991	8.624e-05	0.00017248	0.003464	True
-ABT1_p26597266	ABT1	986.28/745.9	328.06/302.11	866.09	315.09	-1.4559	14615	21533	3.755	8.6686e-05	0.99991	0.00017337	0.003464	False
-ACTR3_p114691894	ACTR3	2171/2250.1	1406.3/1163.8	2210.6	1285	-0.78214	16259	61099	3.7443	9.0443e-05	0.99991	0.00018089	0.0035432	False
-ADCK5_m145608343	ADCK5	936.31/790.3	1459.9/1358.4	863.3	1409.1	0.70621	7906.4	21456	3.7263	0.9999	9.7163e-05	0.00019433	0.0037333	True
-ADRBK1_p67034199	ADRBK1	923.08/758.33	1479.4/1276	840.7	1377.7	0.71192	17136	20832	3.7206	0.9999	9.9387e-05	0.00019877	0.0037467	True
-ACAT2_p160183972	ACAT2	138.17/277.05	441.62/673.46	207.61	557.54	1.4209	18259	9017	3.6851	0.99988	0.00011596	0.00023192	0.0042905	True
-ADRA1A_m26722399	ADRA1A	161.69/230.87	376.64/490.36	196.28	433.5	1.1391	4429.7	4230	3.6474	0.99987	0.00013263	0.00026527	0.0047957	True
-AGAP2_p58129171	AGAP2	508.58/907.51	1324.9/1248.5	708.04	1286.7	0.86084	41245	25220	3.6436	0.99987	0.00013441	0.00026883	0.0047957	True
-ACVR1C_m158443841	ACVR1C	474.77/515.02	895.23/869.72	494.9	882.47	0.83315	567.92	11553	3.606	0.99984	0.0001555	0.00031101	0.0054509	True
-AATF_m35306482	AATF	836.36/1289.3	468.75/177.95	1062.8	323.35	-1.7137	72440	42175	3.6011	0.00015844	0.99984	0.00031689	0.0054581	False
-ADRBK1_p67034193	ADRBK1	908.38/832.92	1639.7/1268.5	870.65	1454.1	0.7393	35863	26394	3.5913	0.99984	0.00016449	0.00032897	0.0055702	True
-ACIN1_m23538715	ACIN1	846.65/985.65	335/415.98	916.15	375.49	-1.2845	6469.8	22922	3.5711	0.00017778	0.99982	0.00035555	0.0059199	False
-ADRA1A_m26722428	ADRA1A	0/0	68.136/184.24	4.4399	126.19	4.5473	3370.2	1164.4	3.568	0.99967	0.00032598	0.00065196	0.0095886	True
-ADAP1_m994071	ADAP1	1148/719.26	262.45/345.03	933.61	303.74	-1.6168	47653	31490	3.5496	0.00019291	0.99981	0.00038582	0.0063186	False
-ADRB3_m37823829	ADRB3	314.55/280.6	690.82/507.52	297.58	599.17	1.0073	8687.9	7269.7	3.5373	0.9998	0.00020218	0.00040435	0.0065153	True
-ADNP2_p77891042	ADNP2	238.12/232.65	417.65/547.01	235.38	482.33	1.0319	4190.7	5054.9	3.4733	0.99974	0.00025717	0.00051434	0.008156	True
-ACVR1_m158637033	ACVR1	958.36/756.55	1619.5/1261.1	857.45	1440.3	0.74755	42295	28294	3.465	0.99973	0.00026516	0.00053033	0.0082203	True
-ADD1_p2877627	ADD1	236.65/310.79	502.82/804.49	273.72	653.65	1.2528	24125	12027	3.4644	0.99973	0.00026743	0.00053485	0.0082203	True
-ABCB8_p150730712	ABCB8	249.88/381.83	630.26/574.47	315.85	602.36	0.92921	5130.8	7010.3	3.4219	0.99969	0.0003109	0.00062181	0.0094119	True
-AHNAK2_m105423836	AHNAK2	293.97/816.94	1369/1079.1	555.46	1224.1	1.1385	89382	38551	3.4054	0.99967	0.00033114	0.00066227	0.0095886	True
-ACVRL1_m52306276	ACVRL1	921.61/880.87	1418.9/1405.3	901.24	1412.1	0.64725	461.12	22507	3.405	0.99967	0.00033082	0.00066164	0.0095886	True
-A1CF_m52596017	A1CF	432.14/731.69	980.4/1082	581.92	1031.2	0.82436	25013	17560	3.3905	0.99965	0.00034889	0.00069778	0.0099583	True
-ACVR1C_p158443781	ACVR1C	492.41/459.97	729.31/981.29	476.19	855.3	0.84356	16137	12757	3.3565	0.99961	0.0003947	0.00078941	0.011107	True
-AFF4_p132272844	AFF4	599.71/941.25	1211.3/1385.3	770.48	1298.3	0.75201	36727	24846	3.3485	0.99959	0.00040631	0.00081262	0.011275	True
-ACHE_m100491767	ACHE	1556.6/1758.2	970.94/942.95	1657.4	956.95	-0.79177	10356	44340	3.3264	0.00043988	0.99956	0.00087977	0.01204	False
-AATK_m79102281	AATK	683.49/816.94	1095.2/1516.9	750.21	1306	0.79901	48894	28533	3.2905	0.9995	0.00050001	0.001	0.0135	True
-AFAP1L2_p116100418	AFAP1L2	388.05/362.29	687.67/664.87	375.17	676.27	0.84835	295.7	8489.3	3.268	0.99946	0.0005416	0.0010832	0.014428	True
-ADCK5_m145608301	ADCK5	1051/703.28	1509.7/1321.2	877.12	1415.4	0.68979	39109	27595	3.2406	0.9994	0.00059631	0.0011926	0.01567	True
-ADNP_p49510899	ADNP	1491.9/1332	2087.6/1983.2	1411.9	2035.4	0.52732	9123.3	37095	3.237	0.9994	0.00060389	0.0012078	0.01567	True
-AFMID_m76187074	AFMID	898.09/880.87	506.6/310.69	889.48	408.65	-1.1202	9669.3	22181	3.2285	0.00062217	0.99938	0.0012443	0.015746	False
-ACSS2_p33500928	ACSS2	399.8/806.28	1147.6/1059.1	603.04	1103.3	0.87047	43263	24017	3.2283	0.99938	0.00062259	0.0012452	0.015746	True
-ACSS2_m33500924	ACSS2	595.3/591.39	1061.8/887.45	593.34	974.62	0.71502	7601.9	14136	3.2068	0.99933	0.0006711	0.0013422	0.016501	True
-ACTR5_p37377211	ACTR5	1021.6/738.79	476.32/281.51	880.18	378.92	-1.2137	29477	24441	3.2063	0.00067225	0.99933	0.0013445	0.016501	False
-ACVR1_m158637046	ACVR1	712.89/678.41	1296.5/986.44	695.65	1141.5	0.71364	24328	19358	3.2042	0.99932	0.00067723	0.0013545	0.016501	True
-ACTL6B_p100253066	ACTL6B	983.34/1022.9	560.86/438.86	1003.1	499.86	-1.0035	4113	25357	3.1605	0.00078736	0.99921	0.0015747	0.018954	False
-ACIN1_p23538735	ACIN1	246.94/177.59	28.39/0	212.27	14.195	-3.811	1403.6	4505.9	3.1549	0.00080283	0.9992	0.0016057	0.019092	False
-ACTR1A_p104250290	ACTR1A	605.59/738.79	2045.3/1120.9	672.19	1583.1	1.2346	2.1808e+05	83522	3.152	0.99918	0.000819	0.001638	0.019092	True
-ADH5_p100003219	ADH5	316.02/586.06	44.793/127.6	451.04	86.195	-2.3741	19945	13595	3.1481	0.00082178	0.99918	0.0016436	0.019092	False
-ACTR8_m53916121	ACTR8	285.15/408.47	99.05/44.63	346.81	71.84	-2.2555	4541.9	7778.6	3.1316	0.00086926	0.99913	0.0017385	0.019963	False
-ACTL6A_p179287878	ACTL6A	518.86/502.59	99.05/238.6	510.73	168.82	-1.5913	4934.7	11964	3.1263	0.00088515	0.99911	0.0017703	0.020097	False
-ADRB3_p37823908	ADRB3	471.83/399.59	733.09/761.57	435.71	747.33	0.77701	1507.4	10026	3.1122	0.99907	0.00092859	0.0018572	0.020846	True
-AGFG1_m228337276	AGFG1	2382.7/2260.8	1567.8/1499.1	2321.7	1533.4	-0.59811	4891.7	64529	3.1032	0.00095731	0.99904	0.0019146	0.021204	False
-ACTL7A_m111624736	ACTL7A	873.1/829.37	364.65/436.57	851.24	400.61	-1.0854	1771.3	21122	3.1006	0.00096573	0.99903	0.0019315	0.021204	False
-ADAM10_p58974401	ADAM10	968.64/864.89	590.51/256.34	916.77	423.43	-1.1126	30610	25496	3.0897	0.001002	0.999	0.0020039	0.02176	False
-AFF3_m100625363	AFF3	1159.7/761.88	505.34/304.97	960.8	405.16	-1.2437	49608	32648	3.0752	0.0010519	0.99895	0.0021038	0.022599	False
-ADCK3_p227149165	ADCK3	558.55/838.25	1063.7/1170.7	698.4	1117.2	0.67697	22420	18772	3.0566	0.99888	0.0011193	0.0022387	0.023792	True
-ABT1_p26597300	ABT1	1562.5/763.66	422.07/220.29	1163.1	321.18	-1.8532	1.697e+05	76498	3.0473	0.0011547	0.99885	0.0023093	0.02425	False
-AGBL5_m27275887	AGBL5	640.86/602.05	307.24/192.83	621.45	250.03	-1.3101	3649.6	14883	3.0445	0.0011652	0.99883	0.0023304	0.02425	False
-ADARB1_m46595721	ADARB1	229.3/735.24	1186.1/914.35	482.27	1050.2	1.1211	82453	34968	3.0372	0.9988	0.0012001	0.0024001	0.024531	True
-ABHD14B_m52004122	ABHD14B	1793.2/1836.3	983.56/1301.7	1814.8	1142.6	-0.66697	25770	49052	3.0349	0.0012032	0.9988	0.0024065	0.024531	False
-ADK_p76154015	ADK	454.19/490.16	896.49/685.47	472.18	790.98	0.74309	11456	11128	3.0222	0.99875	0.0012548	0.0025096	0.025324	True
-AGPAT5_m6566233	AGPAT5	3338.1/3873.3	2840.3/2366	3605.7	2603.1	-0.46989	1.2787e+05	1.1285e+05	2.9845	0.0014203	0.99858	0.0028405	0.028377	False
-ACRC_p70800703	ACRC	1393.4/1472.3	1039.7/532.7	1432.8	786.2	-0.86508	65817	47077	2.9803	0.0014398	0.99856	0.0028796	0.028482	False
-ADK_m75960590	ADK	208.72/65.71	292.1/350.17	137.22	321.14	1.2208	5956.2	3834.8	2.9701	0.99849	0.0015089	0.0030177	0.029556	True
-ACTR1A_p104248866	ACTR1A	975.99/665.98	467.49/172.23	820.99	319.86	-1.3572	45822	28800	2.9531	0.0015732	0.99843	0.0031463	0.030516	False
-ACSL6_m131329908	ACSL6	1011.3/866.66	557.71/419.98	938.97	488.84	-0.94029	9970	23558	2.9326	0.0016805	0.99832	0.0033609	0.032284	False
-ACTN1_m69445700	ACTN1	699.66/571.86	1036.6/953.25	635.76	994.9	0.64526	5818.1	15265	2.9069	0.99817	0.0018254	0.0036508	0.034735	True
-ADH5_m100006267	ADH5	1339.1/1610.8	2090.1/2003.8	1474.9	2047	0.47257	20324	38942	2.8988	0.99813	0.0018729	0.0037458	0.035196	True
-ACO2_p41903797	ACO2	567.37/665.98	377.27/100.13	616.68	238.7	-1.3656	21633	17048	2.895	0.0018957	0.9981	0.0037915	0.035196	False
-ACBD6_m180471338	ACBD6	1123/815.16	436.58/573.33	969.07	504.95	-0.93909	28364	25721	2.8939	0.0019025	0.9981	0.003805	0.035196	False
-ACTL6B_m100253086	ACTL6B	637.92/925.27	1187.3/1186.7	781.6	1187	0.60222	20642	19686	2.8895	0.99807	0.0019291	0.0038582	0.035361	True
-ADAR_m154574103	ADAR	132.29/133.2	278.22/658.58	132.74	468.4	1.8114	36168	13839	2.8533	0.99751	0.0024852	0.0049703	0.043556	True
-ADCK3_p227149155	ADCK3	2275.4/2228.8	2932.4/2994.2	2252.1	2963.3	0.39579	1498	62378	2.8476	0.9978	0.0022023	0.0044046	0.040002	True
-ADARB1_p46595645	ADARB1	1084.8/1005.2	1514.8/1497.4	1045	1506.1	0.52691	1658.6	26537	2.8306	0.99768	0.002323	0.004646	0.04146	True
-ACAD9_m128598636	ACAD9	570.31/527.46	308.51/144.76	548.88	226.63	-1.2724	7162.1	12963	2.8305	0.0023241	0.99768	0.0046481	0.04146	False
-ACVRL1_p52306296	ACVRL1	1331.7/1124.2	725.52/727.81	1227.9	726.67	-0.75606	10768	31756	2.8129	0.0024547	0.99755	0.0049093	0.043402	False
-ACO2_m41895810	ACO2	2229.8/1791.9	1452.9/1241.6	2010.9	1347.3	-0.5774	59094	56356	2.7953	0.0025929	0.99741	0.0051858	0.045049	False
-AHRR_m344006	AHRR	345.42/163.39	474.43/481.2	254.4	477.82	0.9067	8295.4	6439.2	2.7842	0.99731	0.0026854	0.0053709	0.045895	True
-ADD3_m111860427	ADD3	283.69/518.58	682.62/695.77	401.13	689.2	0.77934	13837	10709	2.7837	0.99731	0.0026875	0.0053751	0.045895	True
-AATF_p35306410	AATF	2096/1960.6	1573.4/629.97	2028.3	1101.7	-0.87996	2.2712e+05	1.1272e+05	2.76	0.0028899	0.99711	0.0057797	0.048932	False
-ACVR1B_m52369170	ACVR1B	411.56/831.14	970.31/1637	621.35	1303.7	1.0679	1.5513e+05	61632	2.7484	0.99699	0.0030131	0.0060263	0.050502	True
-ABI1_p27149701	ABI1	698.19/779.64	1791.1/1034.5	738.91	1412.8	0.93415	1.4477e+05	60285	2.7446	0.99697	0.0030332	0.0060664	0.050502	True
-AHCY_p32883304	AHCY	1625.7/1410.1	2146.3/1986.6	1517.9	2066.5	0.44484	17992	40206	2.7358	0.99689	0.0031119	0.0062238	0.051385	True
-AHNAK2_p105423983	AHNAK2	363.06/388.93	977.25/556.16	376	766.7	1.026	44496	20505	2.7285	0.9968	0.0031953	0.0063905	0.052329	True
-ACO2_m41895784	ACO2	824.6/866.66	1135/1341.2	845.63	1238.1	0.54947	11074	20967	2.7103	0.99664	0.0033614	0.0067228	0.054602	True
-AHNAK_p62303470	AHNAK	379.23/731.69	881.35/997.31	555.46	939.33	0.7569	34419	20230	2.6989	0.99652	0.0034785	0.0069571	0.056049	True
-ADCK1_m78285413	ADCK1	1193.5/1355	1622/1905.9	1274.3	1764	0.46882	26674	33093	2.6918	0.99645	0.003553	0.007106	0.056334	True
-ACVR2A_m148602752	ACVR2A	1403.7/996.31	745.71/644.28	1200	694.99	-0.78711	44070	35326	2.687	0.003605	0.9964	0.00721	0.056334	False
-ADCK5_p145608311	ADCK5	601.18/742.35	1225.2/901.19	671.76	1063.2	0.66158	31227	21229	2.6865	0.99639	0.0036103	0.0072206	0.056334	True
-ACHE_m100491773	ACHE	564.43/388.93	162.14/226.01	476.68	194.08	-1.292	8719.8	11080	2.685	0.0036263	0.99637	0.0072527	0.056334	False
-AATK_p79104864	AATK	877.51/1136.6	1415.7/1455.1	1007.1	1435.4	0.51086	17169	25467	2.684	0.99636	0.0036372	0.0072744	0.056334	True
-ADRB3_m37823894	ADRB3	1215.6/1864.7	2161.4/2267.6	1540.2	2214.5	0.52361	1.0817e+05	63299	2.6802	0.99632	0.0036785	0.0073569	0.056535	True
-ADI1_m3523246	ADI1	801.08/665.98	1251.7/971.56	733.53	1111.6	0.59907	24180	19992	2.674	0.99625	0.0037472	0.0074944	0.056772	True
-ADK_m76154033	ADK	557.08/685.52	875.04/1019.6	621.3	947.34	0.60779	9349.9	14879	2.6729	0.99624	0.0037603	0.0075206	0.056772	True
-ACTL6A_p179287966	ACTL6A	1478.7/728.14	548.24/173.94	1103.4	361.09	-1.6088	1.7586e+05	77415	2.6712	0.0037791	0.99622	0.0075583	0.056772	False
-AEBP1_m44144319	AEBP1	992.16/896.85	488.94/579.05	944.51	533.99	-0.82157	4300.8	23713	2.6658	0.0038398	0.99616	0.0076796	0.057253	False
-AAAS_m53714382	AAAS	1034.8/1191.7	504.08/815.93	1113.2	660.01	-0.75331	30465	29136	2.6552	0.0039636	0.99604	0.0079272	0.058661	False
-AATF_p35306466	AATF	277.81/435.11	182.33/0	356.46	91.164	-1.9555	14497	10179	2.6462	0.0040705	0.99593	0.008141	0.0598	False
-ACTR3_m114688941	ACTR3	1148/1046	811.32/186.53	1097	498.93	-1.1351	1.0019e+05	52070	2.621	0.0043835	0.99562	0.0087669	0.063928	False
-ACTL7A_p111624631	ACTL7A	659.97/717.48	377.9/325	688.73	351.45	-0.9686	1526.6	16687	2.611	0.0045142	0.99549	0.0090284	0.065358	False
-AEN_m89169489	AEN	94.072/0	175.39/122.45	47.036	148.92	1.642	2913	1533.7	2.6015	0.99476	0.0052434	0.010487	0.071756	True
-ACTL6A_m179287950	ACTL6A	380.7/387.16	191.79/90.977	383.93	141.38	-1.4348	2551.3	8710	2.6003	0.0046575	0.99534	0.0093151	0.066777	False
-AFF1_p87967338	AFF1	620.29/641.12	825.83/1159.8	630.7	992.82	0.65375	27994	19418	2.5987	0.99532	0.0046791	0.0093581	0.066777	True
-ACTL7A_p111624691	ACTL7A	335.13/497.27	601.24/779.88	416.2	690.56	0.72912	14550	11202	2.5922	0.99523	0.004768	0.0095361	0.067564	True
-ACTR8_m53916057	ACTR8	992.16/1005.2	743.82/200.26	998.67	472.04	-1.0795	73906	41456	2.5865	0.0048472	0.99515	0.0096944	0.068202	False
-AAK1_m69870056	AAK1	933.37/1255.6	1409.4/2011.2	1094.5	1710.3	0.64354	1.165e+05	57460	2.5691	0.9949	0.0050983	0.010197	0.071234	True
-ADAD1_m123301366	ADAD1	526.21/557.65	897.76/765.01	541.93	831.38	0.61648	4652.6	12780	2.5604	0.99477	0.005228	0.010456	0.071756	True
-ACAT2_p160183107	ACAT2	2034.3/2248.3	1099.6/1749.7	2141.3	1424.7	-0.58752	1.1711e+05	78351	2.5602	0.0052302	0.99477	0.01046	0.071756	False
-AGL_p100327219	AGL	196.96/287.7	41.639/78.389	242.33	60.014	-1.9957	2396.1	5221.1	2.5479	0.0054181	0.99458	0.010836	0.073642	False
-AHNAK_m62303488	AHNAK	399.8/504.37	781.04/643.13	452.09	712.09	0.65429	7488.2	10446	2.5438	0.99452	0.0054821	0.010964	0.074008	True
-ADCK3_m227149163	ADCK3	1115.6/1063.8	1343.8/1829.3	1089.7	1586.5	0.54151	59592	38400	2.5353	0.99438	0.0056173	0.011235	0.075325	True
-ACAD9_p128598545	ACAD9	829.01/1099.3	676.31/403.96	964.16	540.14	-0.83477	36810	28445	2.5141	0.0059667	0.99403	0.011933	0.079477	False
-ACAD9_p128598592	ACAD9	921.61/774.31	499.03/469.76	847.96	484.4	-0.80653	5638.3	21032	2.5069	0.0060892	0.99391	0.012178	0.080572	False
-ACTN4_p39138482	ACTN4	1362.6/1005.2	1596.2/1653.6	1183.9	1624.9	0.45648	32756	31246	2.4948	0.9937	0.0063007	0.012601	0.082247	True
-AFTPH_m64778905	AFTPH	463.01/353.41	618.9/679.18	408.21	649.04	0.66768	3911.1	9324.9	2.4939	0.99368	0.0063167	0.012633	0.082247	True
-ABT1_p26597221	ABT1	1597.7/1465.2	1065.6/992.73	1531.5	1029.2	-0.57298	5721.6	40607	2.4927	0.0063393	0.99366	0.012679	0.082247	False
-AES_m3056311	AES	756.98/616.25	892.08/1161.5	686.62	1026.8	0.57988	23102	18787	2.4819	0.99347	0.0065342	0.013068	0.083824	True
-AEBP2_p19615465	AEBP2	257.23/429.78	158.98/81.822	343.5	120.4	-1.5047	8932	8108.1	2.4813	0.0065448	0.99346	0.01309	0.083824	False
-ADAP1_m994066	ADAP1	167.57/67.486	204.41/355.9	117.53	280.15	1.2462	8241.2	4303.9	2.4789	0.99316	0.0068396	0.013679	0.085409	True
-ACTR3_m114684932	ACTR3	1024.5/1362.2	883.88/396.52	1193.3	640.2	-0.89735	87881	49801	2.4786	0.0065951	0.9934	0.01319	0.08393	False
-A1CF_p52595881	A1CF	714.36/671.31	1119.8/906.91	692.83	1013.4	0.54792	11797	16797	2.4732	0.9933	0.0066957	0.013391	0.08445	True
-ACLY_m40070097	ACLY	495.35/586.06	279.48/243.75	540.7	261.62	-1.0445	2376.6	12748	2.4719	0.0067205	0.99328	0.013441	0.08445	False
-ADCY1_m45614243	ADCY1	1011.3/1211.2	485.15/843.4	1111.2	664.27	-0.74144	42077	32969	2.4616	0.0069165	0.99308	0.013833	0.085833	False
-ACTL6A_p179287892	ACTL6A	415.97/669.53	750.76/1074.6	542.75	912.66	0.7487	42284	22629	2.459	0.99303	0.0069678	0.013936	0.085936	True
-ADAMTS5_p28338585	ADAMTS5	973.05/939.48	538.15/613.38	956.27	575.76	-0.73094	1696.7	24042	2.454	0.0070641	0.99294	0.014128	0.086472	False
-AGL_m100327128	AGL	122/248.63	318.6/366.2	185.32	342.4	0.88213	4575.4	4108.1	2.4508	0.99286	0.0071411	0.014282	0.086472	True
-AHNAK2_m105444536	AHNAK2	382.17/454.64	707.86/608.8	418.4	658.33	0.65266	3766.3	9584.3	2.4507	0.99287	0.0071284	0.014257	0.086472	True
-ADCK1_m78285328	ADCK1	662.91/1008.7	1101.5/1694.8	835.82	1398.2	0.74157	1.1789e+05	53095	2.4405	0.99266	0.0073351	0.01467	0.088286	True
-ADAP1_m994042	ADAP1	292.5/369.4	454.24/709.5	330.95	581.87	0.81221	17768	10845	2.4094	0.99201	0.0079943	0.015989	0.095645	True
-ADNP2_p77875475	ADNP2	248.41/106.56	286.42/461.18	177.48	373.8	1.0703	12665	6683.6	2.4013	0.99171	0.0082915	0.016583	0.097623	True
-AEBP1_m44144326	AEBP1	1149.4/1149	1616.3/1506.6	1149.2	1561.4	0.44187	3013.3	29499	2.4	0.9918	0.0081976	0.016395	0.097493	True
-ACVR2B_m38518828	ACVR2B	404.21/1095.8	1399.9/1221	749.99	1310.5	0.80435	1.2756e+05	54751	2.3954	0.99169	0.0083063	0.016613	0.097623	True
-ABI1_m27149751	ABI1	1233.2/868.44	720.48/531.56	1050.8	626.02	-0.74633	42189	31864	2.3798	0.0086604	0.99134	0.017321	0.10099	False
-ABCB8_m150725643	ABCB8	598.24/1035.4	1096.5/1688.5	816.81	1392.5	0.76888	1.3539e+05	58581	2.3785	0.99131	0.0086939	0.017388	0.10099	True
-AGFG1_p228337221	AGFG1	449.78/428	713.54/641.99	438.89	677.76	0.62576	1398.4	10108	2.3759	0.99125	0.0087524	0.017505	0.10108	True
-ADRB3_p37823813	ADRB3	1267/703.28	528.05/453.17	985.15	490.61	-1.0043	80857	43520	2.3707	0.0088784	0.99112	0.017757	0.10195	False
-ACTRT3_p169487206	ACTRT3	35.277/406.69	451.09/596.79	220.98	523.94	1.2417	39794	16406	2.3652	0.99059	0.0094075	0.018815	0.1068	True
-ACD_m67694376	ACD	1855/1420.8	1083.9/1183.8	1637.9	1133.9	-0.53019	49635	45718	2.3572	0.0092066	0.99079	0.018413	0.10511	False
-AFF3_p100623773	AFF3	1902/1825.7	1573.4/850.83	1863.8	1212.1	-0.62031	1.32e+05	77686	2.3382	0.0096884	0.99031	0.019377	0.10936	False
-AHNAK_m62303548	AHNAK	868.69/980.32	721.11/327.86	924.51	524.48	-0.8166	41776	29362	2.3345	0.0097848	0.99022	0.01957	0.10983	False
-ACTRT3_m169487242	ACTRT3	2171/1610.8	1054.8/1460.2	1890.9	1257.5	-0.58809	1.1954e+05	74078	2.3271	0.0099808	0.99002	0.019962	0.11141	False
-ACTR1A_m104250350	ACTR1A	417.44/223.77	119.24/110.43	320.61	114.83	-1.4732	9396.8	7884.1	2.323	0.010089	0.98991	0.020177	0.11198	False
-ADCK3_p227149104	ADCK3	1628.6/1669.4	2129.3/2142.2	1649	2135.7	0.37295	457.83	44091	2.3181	0.98978	0.010222	0.020445	0.11284	True
-AHNAK2_m105423829	AHNAK2	737.88/879.09	561.49/402.82	808.48	482.15	-0.74452	11280	19945	2.3107	0.010425	0.98957	0.020851	0.11445	False
-ACRC_p70814200	ACRC	1940.2/1289.3	942.55/1103.7	1614.8	1023.1	-0.65782	1.1241e+05	66186	2.2997	0.010732	0.98927	0.021464	0.11689	False
-AGPAT3_p45379592	AGPAT3	1078.9/451.09	300.3/251.19	764.99	275.75	-1.4688	99135	45548	2.2982	0.010774	0.98923	0.021549	0.11689	False
-ADNP_p49511011	ADNP	427.73/573.63	655.49/899.47	500.68	777.48	0.63389	20202	14536	2.2958	0.98916	0.010843	0.021685	0.11689	True
-ADCK2_m140373210	ADCK2	862.81/628.69	1499.6/940.67	745.75	1220.1	0.70954	91813	42758	2.2942	0.98911	0.010891	0.021782	0.11689	True
-ADH5_m100003154	ADH5	560.02/753	262.45/456.6	656.51	359.53	-0.86691	18734	16792	2.2919	0.010956	0.98904	0.021913	0.11689	False
-AGPAT5_m6566202	AGPAT5	286.62/570.08	193.68/129.89	428.35	161.78	-1.3992	21104	13593	2.2904	0.010999	0.989	0.021998	0.11689	False
-ADCK4_p41220480	ADCK4	2523.8/2445.5	2153.2/1516.9	2484.6	1835	-0.43701	1.0278e+05	80651	2.2873	0.011088	0.98891	0.022176	0.11722	False
-AGAP3_p150784007	AGAP3	707.01/635.79	837.19/1465.4	671.4	1151.3	0.77709	99916	44119	2.2846	0.98883	0.011175	0.02235	0.11751	True
-ACBD6_p180471279	ACBD6	792.26/1243.2	681.99/462.32	1017.7	572.16	-0.82974	62892	38142	2.2814	0.011263	0.98874	0.022525	0.11782	False
-ABL2_p179100524	ABL2	692.31/472.4	755.81/1107.2	582.36	931.49	0.67671	42954	23548	2.2752	0.98855	0.011449	0.022898	0.11914	True
-ACIN1_p23538701	ACIN1	405.68/268.17	170.34/109.86	336.93	140.1	-1.26	5642.2	7532.4	2.2695	0.011618	0.98838	0.023235	0.12027	False
-ADAR_p154574114	ADAR	99.951/195.35	38.484/20.026	147.65	29.255	-2.2967	2360.6	3009.6	2.259	0.011943	0.98806	0.023885	0.123	False
-ADAM12_p128076641	ADAM12	1128.9/1333.7	1475.7/1837.3	1231.3	1656.5	0.42762	43186	35631	2.2524	0.98785	0.012149	0.024297	0.12417	True
-ABLIM2_p8108299	ABLIM2	939.25/1484.7	1625.2/1782.3	1212	1703.8	0.49102	80553	47716	2.2514	0.98782	0.012181	0.024362	0.12417	True
-ACVR2A_p148602720	ACVR2A	1412.5/715.71	1485.1/1809.8	1064.1	1647.5	0.6301	1.4775e+05	67303	2.2485	0.98773	0.012271	0.024542	0.1243	True
-ACTN4_m39138430	ACTN4	163.16/264.62	376.01/354.75	213.89	365.38	0.76978	2686.5	4544.2	2.2474	0.98768	0.012318	0.024636	0.1243	True
-AATF_m35306509	AATF	367.47/571.86	300.3/116.72	469.66	208.51	-1.1676	18869	13556	2.2438	0.012422	0.98758	0.024844	0.12472	False
-ACAD11_p132378460	ACAD11	1621.3/1113.5	816.37/951.54	1367.4	883.95	-0.62881	69020	46870	2.233	0.012773	0.98723	0.025547	0.12761	False
-AHNAK_m62303560	AHNAK	704.07/959.01	1027.7/1504.8	831.54	1266.3	0.60614	73159	38106	2.2271	0.98703	0.012972	0.025943	0.12879	True
-ACTN1_m69392359	ACTN1	545.32/353.41	897.76/593.35	449.37	745.55	0.72914	32373	17709	2.2257	0.98698	0.013021	0.026042	0.12879	True
-ADRBK2_m26057580	ADRBK2	610/815.16	1209.4/892.6	712.58	1051	0.56	35616	23426	2.2112	0.98649	0.013512	0.027024	0.13299	True
-ABCB8_p150725612	ABCB8	368.94/190.03	700.29/391.94	279.48	546.12	0.96394	31771	14669	2.2015	0.986	0.013999	0.027998	0.13711	True
-ABCF1_p30545587	ABCF1	48.506/248.63	665.59/248.9	148.57	457.24	1.6153	53420	19827	2.1922	0.9834	0.016603	0.033206	0.15509	True
-ACVRL1_p52306281	ACVRL1	1195/896.85	1687.6/1273.1	1045.9	1480.4	0.50076	65182	39436	2.1877	0.98565	0.014347	0.028694	0.13983	True
-AHCY_m32883210	AHCY	301.32/657.1	228.38/137.32	479.21	182.85	-1.3851	33717	18670	2.1749	0.01482	0.98518	0.02964	0.14325	False
-ADAMTS5_p28338667	ADAMTS5	1115.6/923.49	1207.5/1932.8	1019.6	1570.2	0.62248	1.4075e+05	64128	2.1743	0.98516	0.014841	0.029683	0.14325	True
-ADNP_p49520498	ADNP	690.84/767.21	1040.3/993.31	729.02	1016.8	0.47947	2011.1	17776	2.1586	0.98456	0.015442	0.030884	0.14833	True
-ACSL6_p131329830	ACSL6	770.21/735.24	519.85/403.96	752.73	461.91	-0.70332	3663.5	18421	2.1428	0.016066	0.98393	0.032133	0.15359	False
-AFTPH_m64778617	AFTPH	415.97/293.03	242.89/37.192	354.5	140.04	-1.3337	14357	10099	2.1391	0.016214	0.98379	0.032429	0.15398	False
-ADCK5_p145603106	ADCK5	1483.1/1340.8	2315.4/1616.4	1412	1965.9	0.47718	1.2719e+05	67129	2.1379	0.98374	0.016261	0.032523	0.15398	True
-ACLY_m40069993	ACLY	1268.5/1411.9	1136.2/603.65	1340.2	869.94	-0.62286	76050	48686	2.1312	0.016536	0.98346	0.033072	0.15509	False
-ADNP_m49520507	ADNP	959.83/1397.7	1429.6/2811.1	1178.7	2120.4	0.84651	5.2508e+05	1.9526e+05	2.1309	0.98339	0.016611	0.033222	0.15509	True
-AAK1_m69870103	AAK1	712.89/802.73	576.63/359.9	757.81	468.27	-0.69332	13761	18559	2.1254	0.016779	0.98322	0.033557	0.15592	False
-ADCK1_p78285416	ADCK1	826.07/797.4	977.88/2066.7	811.73	1522.3	0.90634	2.966e+05	1.1222e+05	2.1211	0.98291	0.017088	0.034175	0.15806	True
-ACLY_p40070062	ACLY	512.98/269.94	205.67/126.45	391.46	166.06	-1.2322	16336	11379	2.1158	0.017179	0.98282	0.034358	0.15817	False
-AGL_m100327263	AGL	758.45/463.52	410.08/210.56	610.99	310.32	-0.9751	31698	20302	2.1104	0.017414	0.98259	0.034828	0.1596	False
-ADAM12_p128019039	ADAM12	1824.1/815.16	661.8/605.37	1319.6	633.59	-1.0573	2.5529e+05	1.0803e+05	2.0879	0.018404	0.9816	0.036807	0.16759	False
-ACBD6_p180471344	ACBD6	1040.7/1292.9	1392.4/1703.4	1166.8	1547.9	0.40746	40086	33362	2.0865	0.98153	0.018469	0.036937	0.16759	True
-ADRM1_p60878615	ADRM1	477.71/841.8	176.65/448.02	659.75	312.33	-1.0764	51551	27789	2.0849	0.018538	0.98146	0.037075	0.16759	False
-ACTL6B_m100253443	ACTL6B	1114.2/1284	1689.5/1439.6	1199.1	1564.6	0.38355	22826	30927	2.0782	0.98116	0.018844	0.037687	0.16959	True
-ADRB1_m115803922	ADRB1	230.77/223.77	388.63/354.75	227.27	371.69	0.70724	299.14	4861.5	2.0713	0.98082	0.019175	0.038351	0.1717	True
-ABCC1_m16101705	ABCC1	1283.2/1053.1	832.77/786.18	1168.2	809.48	-0.52864	13775	30041	2.0695	0.019249	0.98075	0.038498	0.1717	False
-ACTR8_m53916047	ACTR8	2484.1/2349.6	2172.8/910.91	2416.8	1541.8	-0.64812	4.026e+05	1.7919e+05	2.067	0.019366	0.98063	0.038732	0.17197	False
-AATF_m35306475	AATF	724.65/1086.9	695.24/307.26	905.76	501.25	-0.85232	70435	38567	2.0598	0.019707	0.98029	0.039415	0.17423	False
-ABLIM2_p8108286	ABLIM2	936.31/996.31	1115.4/1572.9	966.31	1344.2	0.47574	53230	33959	2.0505	0.97984	0.020158	0.040316	0.17742	True
-AGPAT3_p45379648	AGPAT3	1030.4/657.1	589.25/411.4	843.74	500.32	-0.75276	42742	28191	2.0453	0.020411	0.97959	0.040821	0.1784	False
-ADRBK1_p67034166	ADRBK1	1270/1213	1591.1/1625	1241.5	1608	0.373	1099.3	32146	2.0446	0.97955	0.020448	0.040896	0.1784	True
-ADD3_p111860505	ADD3	977.46/845.35	620.8/585.34	911.41	603.07	-0.59497	4677.7	22790	2.0425	0.020553	0.97945	0.041105	0.17854	False
-AFTPH_m64778773	AFTPH	60.265/161.61	231.54/191.68	110.94	211.61	0.9255	2964.9	2448.4	2.0345	0.97878	0.021215	0.042431	0.1835	True
-ADH5_p100002510	ADH5	443.9/241.53	451.72/726.67	342.71	589.19	0.77998	29138	14830	2.024	0.97846	0.02154	0.04308	0.1855	True
-ACTR3_p114684941	ACTR3	952.48/1094	1239.1/1457.9	1023.2	1348.5	0.39788	16980	25923	2.0202	0.97832	0.021681	0.043363	0.18592	True
-ADCY1_m45614323	ADCY1	709.95/912.84	1003.7/1190.1	811.39	1096.9	0.43455	18976	20025	2.0179	0.9782	0.021802	0.043604	0.18616	True
-ABL1_m133729449	ABL1	599.71/374.72	1384.2/601.36	487.22	992.77	1.0254	1.6585e+05	62853	2.0165	0.97754	0.022456	0.044913	0.19012	True
-AAK1_m69870137	AAK1	1330.2/522.13	323.02/456.6	926.18	389.81	-1.2464	1.6772e+05	71374	2.0126	0.022081	0.97792	0.044162	0.18773	False
-A1CF_m52603847	A1CF	0/88.797	91.479/152.2	44.399	121.84	1.4361	2893	1492.1	2.0048	0.97429	0.025711	0.051423	0.20798	True
-ADRB1_m115804047	ADRB1	637.92/545.22	385.47/322.14	591.57	353.81	-0.73996	3151.5	14089	2.0031	0.022583	0.97742	0.045166	0.19038	False
-AGPAT3_m45379563	AGPAT3	263.11/250.41	51.102/164.79	256.76	107.95	-1.2424	3271.4	5567.8	1.9995	0.022775	0.97723	0.04555	0.19119	False
-ACO2_m41865159	ACO2	1192.1/879.09	852.33/377.07	1035.6	614.7	-0.75153	80957	44500	1.9952	0.023012	0.97699	0.046024	0.19237	False
-ADK_m76153995	ADK	1011.3/1166.8	652.97/860.56	1089	756.77	-0.52455	16820	27785	1.9934	0.023111	0.97689	0.046221	0.1924	False
-ADRA1A_p26722406	ADRA1A	333.66/557.65	632.15/680.9	445.65	656.52	0.55788	13137	11233	1.9896	0.97668	0.023318	0.046635	0.19331	True
-ABCC1_m16101799	ABCC1	730.53/907.51	491.46/585.34	819.02	538.4	-0.60429	10034	20235	1.9727	0.024264	0.97574	0.048528	0.19967	False
-AFF4_m132272833	AFF4	1365.5/1925.1	1092.1/1252.5	1645.3	1172.3	-0.48869	84728	57563	1.9716	0.024328	0.97567	0.048656	0.19967	False
-ADCY1_p45614309	ADCY1	389.52/195.35	176.02/37.764	292.44	106.89	-1.4435	14203	9024.2	1.9706	0.024384	0.97562	0.048768	0.19967	False
-ADNP2_m77891006	ADNP2	0/0	15.772/168.79	4.4399	92.283	4.1	5853.9	1992.3	1.968	0.95454	0.045461	0.090922	0.29049	True
-AHCTF1_m247068886	AHCTF1	1095.1/882.65	837.82/365.05	988.85	601.44	-0.7164	67157	39023	1.9612	0.024929	0.97507	0.049858	0.20315	False
-ADI1_p3523164	ADI1	1120/1216.5	638.46/1000.2	1168.3	819.32	-0.51137	35036	31708	1.9597	0.025013	0.97499	0.050026	0.20315	False
-AGTPBP1_m88307696	AGTPBP1	0/362.29	437.84/382.79	181.15	410.31	1.1751	33572	13709	1.9573	0.97321	0.026791	0.053581	0.21411	True
-ADI1_p3517642	ADI1	261.64/399.59	406.29/1138.1	330.61	772.18	1.2213	1.3863e+05	51128	1.9529	0.97261	0.027386	0.054772	0.21627	True
-A1CF_m52596056	A1CF	618.82/653.55	357.08/434.29	636.18	395.68	-0.68371	1791.6	15276	1.9458	0.025838	0.97416	0.051677	0.20817	False
-ACAD9_p128598519	ACAD9	636.45/754.78	581.05/224.87	695.62	402.96	-0.78616	35217	22987	1.9303	0.026785	0.97322	0.053569	0.21411	False
-AGAP3_p150783825	AGAP3	326.31/635.79	960.85/615.67	481.05	788.26	0.71131	53731	25373	1.9286	0.97308	0.026923	0.053847	0.21431	True
-ADAM10_m58974490	ADAM10	612.94/699.72	426.48/401.67	656.33	414.08	-0.66324	2036.9	15816	1.9263	0.027032	0.97297	0.054065	0.21433	False
-ADPRHL2_m36554620	ADPRHL2	351.3/298.36	244.79/74.384	324.83	159.58	-1.0208	7959.8	7474.8	1.9126	0.0279	0.9721	0.055799	0.21946	False
-ACTL7A_m111624684	ACTL7A	533.56/348.09	606.92/658.58	440.82	632.75	0.52044	9267.8	10157	1.9043	0.97157	0.028434	0.056869	0.2226	True
-ACTRT3_m169487289	ACTRT3	1117.1/532.78	474.43/389.66	824.94	432.04	-0.93153	87153	42649	1.903	0.028521	0.97148	0.057042	0.2226	False
-AGL_p100327060	AGL	730.53/461.75	329.96/386.22	596.14	358.09	-0.73372	18852	15758	1.8964	0.028956	0.97104	0.057912	0.22511	False
-ADAM12_p128018991	ADAM12	51.445/69.262	83.277/222.58	60.354	152.93	1.327	4930.6	2385.8	1.8953	0.96745	0.032554	0.065108	0.24032	True
-ADCK5_p145608305	ADCK5	376.29/619.81	376.64/94.41	498.05	235.53	-1.0772	34739	19336	1.8904	0.029353	0.97065	0.058706	0.22652	False
-ADIRF_p88728321	ADIRF	1647.7/760.11	685.78/608.23	1203.9	647	-0.89486	1.9847e+05	86867	1.8899	0.029387	0.97061	0.058775	0.22652	False
-ABCF1_p30545610	ABCF1	1975.5/1797.3	1628.3/1289.7	1886.4	1459	-0.37041	36611	51211	1.8885	0.029477	0.97052	0.058955	0.22652	False
-ACBD6_p180471350	ACBD6	607.06/538.11	754.54/830.24	572.58	792.39	0.46802	2620.6	13587	1.8857	0.97033	0.029667	0.059334	0.22708	True
-ABL1_p133729492	ABL1	1105.3/1172.1	1019.5/401.1	1138.7	710.31	-0.68015	96725	51708	1.8841	0.029778	0.97022	0.059555	0.22708	False
-AGAP2_p58129148	AGAP2	762.86/1189.9	622.06/660.3	976.37	641.18	-0.60594	45952	31721	1.882	0.029916	0.97008	0.059832	0.22727	False
-ADH7_m100350762	ADH7	1856.4/1578.8	1422.7/1207.9	1717.6	1315.3	-0.38481	30802	46138	1.8732	0.030518	0.96948	0.061036	0.22984	False
-AFAP1L2_p116100409	AFAP1L2	1344.9/1133.1	2324.8/1356.6	1239	1840.7	0.57073	2.4557e+05	1.0324e+05	1.8728	0.96945	0.030551	0.061102	0.22984	True
-AES_m3061159	AES	565.9/658.88	1000.6/715.8	612.39	858.2	0.48618	22438	17241	1.872	0.9694	0.0306	0.0612	0.22984	True
-ABI1_p27112164	ABI1	1709.5/1655.2	1220.8/1354.9	1682.3	1287.8	-0.38523	5235.8	45083	1.8578	0.031596	0.9684	0.063191	0.23643	False
-ADRB1_p115803909	ADRB1	577.66/634.01	706.6/969.28	605.84	837.94	0.46725	18044	15660	1.8547	0.96818	0.031817	0.063635	0.23721	True
-ABCB8_p150725605	ABCB8	149.93/259.29	880.72/244.89	204.61	562.81	1.4553	1.0406e+05	37570	1.848	0.9622	0.037804	0.075607	0.26117	True
-ACSL6_m131326625	ACSL6	640.86/190.03	897.13/587.06	415.45	742.09	0.83541	74849	31289	1.8466	0.96729	0.032708	0.065415	0.24032	True
-ABLIM2_m8108274	ABLIM2	546.79/1392.3	1411.3/1554.6	969.57	1483	0.61255	1.8387e+05	77568	1.8434	0.96735	0.032647	0.065294	0.24032	True
-ACTRT3_m169487267	ACTRT3	634.98/676.64	847.28/927.51	655.81	887.4	0.43573	2042.6	15802	1.8423	0.96728	0.032716	0.065431	0.24032	True
-ADD1_p2877730	ADD1	194.02/24.863	238.48/209.42	109.44	223.95	1.0263	7364.8	3893.2	1.8351	0.96538	0.034618	0.069237	0.2506	True
-ADD3_p111860500	ADD3	515.92/1049.6	1134.3/1131.8	782.75	1133.1	0.53302	71200	36560	1.8321	0.96653	0.033472	0.066944	0.24497	True
-AHCTF1_m247068867	AHCTF1	748.16/488.39	239.74/477.77	618.27	358.75	-0.78357	31036	20211	1.8256	0.033958	0.96604	0.067917	0.24762	False
-ADI1_m3523251	ADI1	1561/1820.3	2134.3/2023.2	1690.7	2078.8	0.29797	19899	45333	1.8228	0.96583	0.03417	0.06834	0.24826	True
-AGFG1_m228337248	AGFG1	983.34/671.31	675.68/335.87	827.33	505.78	-0.70885	53210	31379	1.8152	0.034743	0.96526	0.069486	0.2506	False
-ABT1_p26597313	ABT1	30.867/179.37	238.48/184.81	105.12	211.65	1.0028	6233.2	3453	1.8128	0.96374	0.036264	0.072527	0.25877	True
-AATK_m79102298	AATK	1067.1/1417.2	1601.2/1531.2	1242.2	1566.2	0.33415	31865	32166	1.8066	0.96459	0.035412	0.070824	0.25451	True
-ADCK4_m41220284	ADCK4	1234.7/1300	1357.7/2232.7	1267.3	1795.2	0.50197	1.9246e+05	86082	1.799	0.96399	0.03601	0.07202	0.25788	True
-ACVR2A_p148653859	ACVR2A	248.41/621.58	605.02/783.89	434.99	694.46	0.67365	42813	20943	1.7929	0.96346	0.036544	0.073087	0.25892	True
-ADPRHL2_m36554557	ADPRHL2	1597.7/1046	759.59/1043.1	1321.9	901.34	-0.55195	96190	55045	1.7925	0.036525	0.96347	0.07305	0.25892	False
-ADD1_p2877736	ADD1	1103.9/809.83	769.69/554.44	956.85	662.06	-0.53065	33197	27105	1.7906	0.036682	0.96332	0.073364	0.25898	False
-ACTRT3_m169487273	ACTRT3	806.96/721.03	177.91/685.47	764	431.69	-0.82211	66251	34569	1.7875	0.036926	0.96307	0.073853	0.25926	False
-ACVR2A_p148653946	ACVR2A	952.48/467.07	919.21/1190.1	709.78	1054.7	0.5707	77255	37255	1.7869	0.96302	0.036982	0.073964	0.25926	True
-ADAD1_p123301335	ADAD1	790.79/408.47	375.38/290.67	599.63	333.02	-0.84652	38337	22314	1.7851	0.037122	0.96288	0.074244	0.25933	False
-ABHD14B_p52004061	ABHD14B	389.52/605.6	377.27/185.39	497.56	281.33	-0.82038	20878	14707	1.7832	0.037275	0.96273	0.074549	0.25949	False
-ACVR1_p158637068	ACVR1	689.37/1438.5	1443.5/1606.1	1063.9	1524.8	0.51878	1.4692e+05	67022	1.7801	0.96247	0.037528	0.075055	0.26035	True
-ACVR2B_m38495825	ACVR2B	2063.7/2365.6	1987.3/1531.7	2214.6	1759.5	-0.33172	74667	65705	1.7755	0.037908	0.96209	0.075815	0.26117	False
-ABCC1_m16043636	ABCC1	70.554/369.4	355.19/467.47	219.98	411.33	0.89992	25479	11618	1.7753	0.96128	0.038724	0.077448	0.26406	True
-ABCF1_p30545638	ABCF1	213.13/376.5	404.4/482.92	294.82	443.66	0.588	8213.8	7066.6	1.7706	0.96168	0.03832	0.076639	0.263	True
-ADIRF_p88728315	ADIRF	702.6/1010.5	1291.4/1017.3	856.56	1154.4	0.43007	42485	28341	1.7691	0.96156	0.038437	0.076873	0.263	True
-ACHE_m100491721	ACHE	1075.9/873.77	824.57/567.03	974.86	695.8	-0.48592	26801	25309	1.7541	0.039707	0.96029	0.079415	0.26985	False
-AEBP1_p44144347	AEBP1	1039.2/994.53	685.78/786.75	1016.9	736.26	-0.46529	3047.7	25743	1.7489	0.040157	0.95984	0.080313	0.27198	False
-ABCB8_p150725600	ABCB8	438.02/399.59	220.81/275.79	418.8	248.3	-0.75183	1125	9594.5	1.7408	0.04086	0.95914	0.081719	0.2758	False
-ADAD1_p123301358	ADAD1	1749.1/1907.4	2041.6/2387.1	1828.3	2214.3	0.27628	36115	49457	1.7361	0.95873	0.041273	0.082545	0.27703	True
-ACVR1B_m52369237	ACVR1B	1472.8/1536.2	1218.2/1098.6	1504.5	1158.4	-0.37684	4584	39812	1.7345	0.041414	0.95859	0.082828	0.27703	False
-AGBL5_m27276006	AGBL5	1133.3/1394.1	639.09/1131.2	1263.7	885.15	-0.51317	77554	47709	1.7331	0.04154	0.95846	0.083081	0.27703	False
-AGTPBP1_p88296203	AGTPBP1	438.02/340.98	458.66/679.75	389.5	569.2	0.54615	14575	10759	1.7325	0.9584	0.041596	0.083193	0.27703	True
-AGPAT3_m45379578	AGPAT3	101.42/156.28	206.93/226.01	128.85	216.47	0.74396	843.48	2586.8	1.7228	0.95729	0.042708	0.085416	0.28166	True
-ADK_m75960552	ADK	1472.8/1829.2	1263/1315.4	1651	1289.2	-0.35659	32444	44151	1.7218	0.042557	0.95744	0.085114	0.28166	False
-AFF2_m147967463	AFF2	604.12/911.06	929.93/1103.7	757.59	1016.8	0.42411	31106	22737	1.7193	0.95722	0.042784	0.085567	0.28166	True
-ACTR3_p114691883	ACTR3	542.38/776.09	418.28/466.9	659.24	442.59	-0.57375	14246	15893	1.7185	0.042856	0.95714	0.085712	0.28166	False
-AHRR_p344036	AHRR	338.07/607.37	378.53/65.229	472.72	221.88	-1.0878	42671	21542	1.7157	0.043111	0.95689	0.086221	0.28174	False
-AFF3_m100623802	AFF3	626.17/191.8	130.59/185.39	408.98	157.99	-1.3666	47918	22202	1.7153	0.043149	0.95685	0.086298	0.28174	False
-ADRB2_p148206408	ADRB2	1074.5/754.78	1548.8/1021.3	914.63	1285.1	0.49016	95113	46958	1.7096	0.95633	0.043672	0.087344	0.28422	True
-AAAS_p53714367	AAAS	474.77/582.51	411.34/268.35	528.64	339.85	-0.63589	8013.4	12432	1.6932	0.045206	0.95479	0.090411	0.29049	False
-ADIRF_p88729975	ADIRF	89.662/209.56	208.82/304.4	149.61	256.61	0.77437	5877.7	3995.3	1.6928	0.95435	0.045653	0.091307	0.29049	True
-AAK1_p69870070	AAK1	1456.6/1275.1	1129.3/962.41	1365.9	1045.9	-0.38484	15199	35751	1.6926	0.045266	0.95473	0.090532	0.29049	False
-AGAP2_m58129187	AGAP2	917.2/768.99	1056.7/1118	843.09	1087.4	0.36672	6431.3	20897	1.69	0.95448	0.045519	0.091037	0.29049	True
-ACP1_p272054	ACP1	645.27/429.78	154.57/448.59	537.53	301.58	-0.8317	33222	19517	1.6895	0.045561	0.95444	0.091122	0.29049	False
-ACTR1A_p104250304	ACTR1A	654.09/1040.7	1092.1/1155.8	847.4	1123.9	0.40703	38383	26805	1.6891	0.9544	0.045603	0.091206	0.29049	True
-ACD_p67694355	ACD	752.57/795.62	1094.6/917.21	774.1	1005.9	0.37747	8329.9	19004	1.6815	0.95367	0.046333	0.092665	0.29388	True
-ADRA1B_m159343996	ADRA1B	748.16/523.9	919.84/777.02	636.03	848.43	0.41512	17672	16072	1.6754	0.95307	0.046933	0.093865	0.296	True
-ABI1_m27149710	ABI1	636.45/1191.7	722.37/328.43	914.06	525.4	-0.7977	1.1586e+05	53863	1.675	0.046963	0.95304	0.093926	0.296	False
-AES_m3061215	AES	523.27/905.73	1206.3/844.54	714.5	1025.4	0.52056	69279	34682	1.6694	0.95248	0.04752	0.09504	0.29857	True
-ADARB2_m1779251	ADARB2	742.28/598.49	943.81/820.51	670.39	882.16	0.39552	8969.8	16193	1.6642	0.95196	0.048038	0.096076	0.30078	True
-ABLIM2_m8108316	ABLIM2	291.03/307.24	154.57/173.94	299.14	164.26	-0.86092	159.5	6598.9	1.6615	0.048306	0.95169	0.096612	0.30078	False
-ADPRHL2_p36554606	ADPRHL2	257.23/245.08	52.995/203.12	251.15	128.06	-0.96627	5671.6	5512.4	1.6613	0.048324	0.95168	0.096648	0.30078	False
-ACLY_p40069998	ACLY	877.51/715.71	538.15/594.5	796.61	566.32	-0.49151	7339.1	19619	1.6441	0.050079	0.94992	0.10016	0.31074	False
-ADAP1_m994091	ADAP1	878.98/1218.3	358.98/956.11	1048.6	657.55	-0.67254	1.1793e+05	57069	1.6372	0.050797	0.9492	0.10159	0.31351	False
-ADRBK2_p26057601	ADRBK2	1456.6/1681.8	1731.2/2079.3	1569.2	1905.2	0.27975	42978	42141	1.6368	0.94916	0.050839	0.10168	0.31351	True
-ACVR2B_p38518841	ACVR2B	587.95/495.49	733.09/717.52	541.72	725.3	0.42037	2197.8	12775	1.6243	0.94784	0.052157	0.10431	0.32065	True
-AGPAT5_p6566262	AGPAT5	696.72/486.61	950.12/681.47	591.66	815.79	0.46276	29080	19088	1.6223	0.94763	0.052374	0.10475	0.32099	True
-ADAMTS5_p28338596	ADAMTS5	840.77/571.86	373.49/573.33	706.31	473.41	-0.57622	28062	20795	1.6151	0.053144	0.94686	0.10629	0.32472	False
-ACP1_m272137	ACP1	1730/722.81	789.87/605.37	1226.4	697.62	-0.81305	2.6214e+05	1.0852e+05	1.6061	0.054128	0.94587	0.10826	0.3284	False
-ADRBK2_m25961078	ADRBK2	316.02/419.12	497.77/529.84	367.57	513.81	0.48208	2914.6	8298.3	1.6053	0.94578	0.054217	0.10843	0.3284	True
-ACVRL1_p52306245	ACVRL1	836.36/973.22	1095.2/1197	904.79	1146.1	0.34076	7272.6	22606	1.6051	0.94576	0.05424	0.10848	0.3284	True
-AGAP2_m58128454	AGAP2	1212.6/1152.6	897.76/908.62	1182.6	903.19	-0.3885	931.14	30454	1.6012	0.054667	0.94533	0.10933	0.32994	False
-ADRBK1_p67034160	ADRBK1	1018.6/717.48	1070.6/1144.4	868.05	1107.5	0.35108	24030	22402	1.5998	0.94517	0.054825	0.10965	0.32994	True
-ACVR2B_p38518817	ACVR2B	1265.6/1760	1651/2271.6	1512.8	1961.3	0.37441	1.5737e+05	79160	1.5942	0.94456	0.055445	0.11089	0.3319	True
-AGAP3_p150783857	AGAP3	1328.8/1038.9	1346.3/1596.4	1183.8	1471.4	0.31342	36634	32538	1.5939	0.94452	0.055483	0.11097	0.3319	True
-ACTN4_p39138459	ACTN4	1575.7/2017.5	1196.8/1602.1	1796.6	1399.5	-0.36017	89860	62290	1.5912	0.05578	0.94422	0.11156	0.33208	False
-ADPRHL2_m36554512	ADPRHL2	495.35/809.83	791.77/982.44	652.59	887.1	0.44234	33814	21748	1.5902	0.94411	0.055895	0.11179	0.33208	True
-AFF2_p147967406	AFF2	1043.6/1051.4	1372.8/1240.5	1047.5	1306.7	0.31867	4392.6	26607	1.5888	0.94395	0.056048	0.1121	0.33208	True
-ACTRT3_m169487247	ACTRT3	432.14/834.7	288.32/464.61	633.42	376.46	-0.7491	48282	26229	1.587	0.056259	0.94374	0.11252	0.33208	False
-ACVR1B_p52369196	ACVR1B	405.68/284.15	173.49/237.46	344.92	205.47	-0.74446	4715.3	7731.4	1.5862	0.056343	0.94366	0.11269	0.33208	False
-AFF3_m100625275	AFF3	521.8/237.98	606.92/516.11	379.89	561.51	0.56251	22201	13139	1.5845	0.94343	0.05657	0.11314	0.33243	True
-AFMID_p76183473	AFMID	383.64/428	833.41/426.85	405.82	630.13	0.63354	41814	20114	1.5816	0.94301	0.056994	0.11399	0.33371	True
-ADARB1_m46595779	ADARB1	665.85/174.04	191.79/144.76	419.95	168.28	-1.3143	61022	26756	1.5794	0.057122	0.94288	0.11424	0.33371	False
-AEN_m89169460	AEN	1606.6/1554	1376.6/1138.1	1580.3	1257.3	-0.32956	14917	42050	1.5748	0.057652	0.94235	0.1153	0.33542	False
-ACVR1_p158655928	ACVR1	288.09/307.24	536.89/335.87	297.67	436.38	0.55035	10194	7773.1	1.5733	0.94216	0.057844	0.11569	0.33542	True
-ACTN1_m69392382	ACTN1	684.96/914.61	846.65/1418.4	799.79	1132.5	0.50135	94919	44777	1.5725	0.94208	0.057918	0.11584	0.33542	True
-ADARB2_p1779233	ADARB2	442.43/229.1	395.57/651.14	335.76	523.36	0.63881	27707	14238	1.5721	0.9419	0.058104	0.11621	0.33552	True
-AFF3_m100625319	AFF3	742.28/781.42	955.8/996.17	761.85	975.98	0.35693	790.26	18669	1.5672	0.94146	0.058537	0.11707	0.33705	True
-ADPRHL2_m36554576	ADPRHL2	1099.5/1115.3	1309.1/1431.6	1107.4	1370.3	0.30714	3814.3	28306	1.563	0.94098	0.059024	0.11805	0.33855	True
-ADCK3_m227149096	ADCK3	270.46/415.57	434.05/525.83	343.01	479.94	0.4834	7370.6	7684	1.5621	0.94086	0.059137	0.11827	0.33855	True
-ACVR2B_p38495805	ACVR2B	804.02/776.09	550.14/595.07	790.05	572.6	-0.46373	699.76	19440	1.5596	0.059426	0.94057	0.11885	0.33924	False
-ACSS2_p33501184	ACSS2	698.19/531.01	504.08/347.89	614.6	425.98	-0.52781	13087	14701	1.5556	0.059898	0.9401	0.1198	0.34096	False
-AAAS_m53715169	AAAS	956.89/1113.5	502.82/966.99	1035.2	734.9	-0.49372	59996	37506	1.5506	0.060496	0.9395	0.12099	0.34299	False
-AATK_p79104850	AATK	438.02/561.2	319.86/344.45	499.61	332.16	-0.58749	3944.4	11675	1.5498	0.060597	0.9394	0.12119	0.34299	False
-ABCC1_m16043645	ABCC1	1609.5/978.55	807.54/1025.9	1294	916.73	-0.49684	1.1145e+05	59593	1.5456	0.061105	0.9389	0.12221	0.34488	False
-ACTL6A_m179287986	ACTL6A	661.44/358.74	296.52/337.59	510.09	317.05	-0.68432	23329	15741	1.5388	0.061929	0.93807	0.12386	0.3477	False
-ADRA1B_p159343912	ADRA1B	1149.4/1465.2	960.21/1086.6	1307.3	1023.4	-0.35292	28911	34048	1.5386	0.061952	0.93805	0.1239	0.3477	False
-AGAP3_p150784015	AGAP3	486.53/673.08	784.83/734.68	579.81	759.75	0.38937	9329.5	13778	1.533	0.93737	0.062632	0.12526	0.34996	True
-ACTR3_p114684915	ACTR3	895.15/824.04	700.29/571.04	859.6	635.66	-0.43481	5440.7	21353	1.5325	0.062705	0.93729	0.12541	0.34996	False
-ADAM10_m59009777	ADAM10	539.44/1021.2	1090.8/1021.3	780.31	1056.1	0.43612	59222	32523	1.5292	0.93689	0.063113	0.12623	0.35125	True
-ACAT2_p160183152	ACAT2	2185.7/1877.2	2122.9/2834.6	2031.4	2478.8	0.28699	1.5041e+05	87211	1.5148	0.93508	0.064918	0.12984	0.36029	True
-ABL2_m179100447	ABL2	1425.8/1026.5	1555.1/1463.6	1226.1	1509.4	0.29963	41949	35119	1.5115	0.93467	0.065331	0.13066	0.36158	True
-ACVR1C_m158443700	ACVR1C	992.16/637.57	876.94/1399.6	814.86	1138.2	0.48168	99717	46653	1.4972	0.93282	0.067177	0.13435	0.37018	True
-ACAT2_m160183968	ACAT2	1816.8/2846.8	1813.8/1763.5	2331.8	1788.6	-0.3824	2.659e+05	1.3186e+05	1.4958	0.067352	0.93265	0.1347	0.37018	False
-ACIN1_m23538815	ACIN1	1308.2/2186.2	1482.6/997.31	1747.2	1240	-0.49441	2.516e+05	1.1521e+05	1.4944	0.06754	0.93246	0.13508	0.37018	False
-AGPAT3_p45379552	AGPAT3	1043.6/1156.1	1405.6/1294.8	1099.9	1350.2	0.29563	6233.8	28093	1.4937	0.93237	0.067625	0.13525	0.37018	True
-ABTB1_m127395233	ABTB1	598.24/546.99	482.63/314.7	572.61	398.67	-0.52129	7706.7	13588	1.4923	0.067814	0.93219	0.13563	0.3702	False
-ACLY_m40070029	ACLY	132.29/241.53	123.02/65.801	186.91	94.412	-0.97779	3802	3911.5	1.4888	0.068272	0.93173	0.13654	0.37168	False
-ADARB1_m46591572	ADARB1	205.78/186.47	225.86/359.9	196.13	292.88	0.57609	4585.1	4279.5	1.479	0.93033	0.069666	0.13933	0.37824	True
-AHCTF1_m247068945	AHCTF1	677.61/316.12	613.86/819.36	496.86	716.61	0.52745	43227	22145	1.4767	0.93009	0.069912	0.13982	0.37855	True
-AFF2_m147924923	AFF2	601.18/328.55	370.96/181.95	464.86	276.46	-0.74764	27513	16354	1.4742	0.070213	0.92979	0.14043	0.37915	False
-ADCK1_p78285402	ADCK1	1246.5/753	1301.5/1264.5	999.73	1283	0.35962	61215	37246	1.4679	0.92894	0.071062	0.14212	0.3827	True
-ADIRF_p88729942	ADIRF	951.01/864.89	606.92/769.01	907.95	687.96	-0.39977	8422.9	22694	1.4603	0.072108	0.92789	0.14422	0.38729	False
-ACVR1B_p52369243	ACVR1B	692.31/749.45	607.55/448.02	720.88	527.78	-0.44908	7178.6	17556	1.4574	0.072508	0.92749	0.14502	0.38839	False
-ACAD9_m128598631	ACAD9	399.8/609.15	281.38/399.95	504.48	340.67	-0.56506	14472	12692	1.4541	0.072959	0.92704	0.14592	0.38977	False
-ADRA1A_p26722438	ADRA1A	1093.6/934.15	726.79/835.96	1013.9	781.37	-0.37536	9334.6	25659	1.4514	0.07333	0.92667	0.14666	0.3907	False
-AFTPH_p64778713	AFTPH	1731.5/1507.8	1543.8/999.6	1619.6	1271.7	-0.34868	86548	57661	1.449	0.073666	0.92633	0.14733	0.39145	False
-ADCK2_m140373155	ADCK2	77.903/97.677	99.681/212.28	87.79	155.98	0.82211	3267.4	2214.8	1.4489	0.92396	0.076041	0.15208	0.39793	True
-ADI1_m3523162	ADI1	592.36/710.38	362.76/578.48	651.37	470.62	-0.46807	15115	15683	1.4433	0.074462	0.92554	0.14892	0.39463	False
-ADCY1_p45614127	ADCY1	1725.6/2271.4	1786.7/1442.5	1998.5	1614.6	-0.30762	1.041e+05	71107	1.4399	0.074949	0.92505	0.1499	0.39616	False
-AFMID_p76187082	AFMID	1137.7/1028.3	803.75/885.74	1083	844.75	-0.35804	4672.8	27613	1.4337	0.075835	0.92417	0.15167	0.39793	False
-AFF1_m87967432	AFF1	173.44/602.05	147.63/215.14	387.75	181.38	-1.0918	47064	21559	1.4316	0.076124	0.92388	0.15225	0.39793	False
-ABHD14B_p52004011	ABHD14B	501.23/635.79	668.74/800.48	568.51	734.61	0.36923	8865.6	13480	1.4307	0.92374	0.07626	0.15252	0.39793	True
-ABT1_p26597361	ABT1	339.54/447.54	310.4/205.99	393.54	258.19	-0.60615	5641.4	8952.9	1.4305	0.07628	0.92372	0.15256	0.39793	False
-ACAD11_p132378566	ACAD11	679.08/777.87	449.82/627.11	728.47	538.47	-0.43532	10297	17761	1.4257	0.076978	0.92302	0.15396	0.40053	False
-ACTR5_m37377189	ACTR5	679.08/774.31	1578.5/680.32	726.7	1129.4	0.63543	2.0394e+05	79789	1.4257	0.92263	0.077373	0.15475	0.40069	True
-ADARB2_m1779337	ADARB2	665.85/701.5	986.71/746.7	683.68	866.7	0.34178	14719	16550	1.4227	0.92259	0.077411	0.15482	0.40069	True
-ACVR1C_m158401030	ACVR1C	1099.5/1435	1341.3/1834.4	1267.2	1587.8	0.32518	88938	51572	1.4119	0.92101	0.078993	0.15799	0.40783	True
-ADH7_p100349698	ADH7	1087.7/847.13	994.28/1551.8	967.42	1273	0.39569	92164	46957	1.4103	0.92077	0.079228	0.15846	0.40798	True
-ADRA1B_p159343905	ADRA1B	410.09/293.03	44.162/334.73	351.56	189.44	-0.88851	24533	13442	1.4058	0.079898	0.9201	0.1598	0.41038	False
-ADARB2_p1421336	ADARB2	561.49/543.44	881.98/580.76	552.47	731.37	0.40409	22765	16293	1.4016	0.91949	0.080514	0.16103	0.412	True
-ABTB1_p127395220	ABTB1	652.62/1113.5	814.48/296.39	883.07	555.43	-0.66795	1.2021e+05	54739	1.4009	0.080627	0.91937	0.16125	0.412	False
-ADRA1B_m159343926	ADRA1B	526.21/820.49	1157.1/708.36	673.35	932.71	0.46947	71980	34842	1.3895	0.91764	0.08236	0.16472	0.41884	True
-AEBP1_p44144306	AEBP1	971.58/944.8	922.99/509.81	958.19	716.4	-0.41904	42858	30350	1.3879	0.082582	0.91742	0.16516	0.41884	False
-ADCK1_m78285358	ADCK1	1547.8/1966	1870/2354	1756.9	2112	0.26543	1.0229e+05	65637	1.386	0.91712	0.082878	0.16576	0.41884	True
-AATK_m79102275	AATK	912.79/772.54	2881.9/634.55	842.66	1758.2	1.0602	1.2676e+06	4.3645e+05	1.3859	0.90779	0.092212	0.18442	0.44502	True
-ABI1_p27112174	ABI1	1484.6/1314.2	2124.2/1406.4	1399.4	1765.3	0.33492	1.3606e+05	69839	1.3847	0.91692	0.083076	0.16615	0.41884	True
-ACO2_p41895716	ACO2	302.79/348.09	404.4/481.78	325.44	443.09	0.44403	2009.6	7247.4	1.382	0.9165	0.083496	0.16699	0.41884	True
-ACVR1C_m158401075	ACVR1C	283.69/312.57	297.15/608.23	298.13	452.69	0.60095	24401	12516	1.3815	0.91612	0.083879	0.16776	0.41884	True
-AEBP2_m19615578	AEBP2	348.36/671.31	820.79/597.36	509.83	709.07	0.47511	38554	20812	1.3811	0.91635	0.083646	0.16729	0.41884	True
-AGFG1_m228337201	AGFG1	933.37/880.87	635.31/763.29	907.12	699.3	-0.37491	4784	22671	1.3802	0.083756	0.91624	0.16751	0.41884	False
-ACTL7A_p111624607	ACTL7A	346.89/715.71	558.34/1060.8	531.3	809.58	0.60672	97130	40711	1.3792	0.91573	0.084272	0.16854	0.41884	True
-AFF4_p132272853	AFF4	756.98/676.64	883.25/914.35	716.81	898.8	0.326	1855.7	17445	1.3778	0.91587	0.084127	0.16825	0.41884	True
-ACIN1_m23535193	ACIN1	561.49/824.04	428.37/579.05	692.77	503.71	-0.45899	22909	18833	1.3776	0.084162	0.91584	0.16832	0.41884	False
-ADARB2_m1779308	ADARB2	1140.6/1191.7	880.09/977.86	1166.1	928.97	-0.32771	3040.9	29983	1.3697	0.085394	0.91461	0.17079	0.42337	False
-ADCK5_m145603137	ADCK5	1195/1083.3	659.91/1098	1139.2	878.96	-0.37373	51102	36508	1.3618	0.086629	0.91337	0.17326	0.42843	False
-ADH5_m100003254	ADH5	1178.8/1243.2	868.1/1075.1	1211	971.62	-0.31745	11749	31269	1.3537	0.087909	0.91209	0.17582	0.43368	False
-ADARB2_p1421307	ADARB2	418.91/300.14	376.64/645.42	359.52	511.03	0.50613	21588	12593	1.3501	0.91144	0.088556	0.17711	0.4358	True
-AEN_m89169544	AEN	536.5/687.29	504.71/394.23	611.9	449.47	-0.44421	8735.7	14629	1.3429	0.089651	0.91035	0.1793	0.43999	False
-ACIN1_p23538745	ACIN1	568.84/612.7	564.02/270.64	590.77	417.33	-0.5004	21998	16711	1.3417	0.089848	0.91015	0.1797	0.43999	False
-ADCK2_m140373220	ADCK2	345.42/582.51	849.18/484.07	463.97	666.62	0.52191	47380	22961	1.3374	0.90935	0.090646	0.18129	0.44173	True
-AHCY_m32883301	AHCY	392.46/412.02	334.37/214	402.24	274.18	-0.55124	3718.3	9173.3	1.3371	0.090599	0.9094	0.1812	0.44173	False
-ADI1_m3517677	ADI1	414.5/488.39	226.49/403.96	451.44	315.22	-0.51679	9238.6	10430	1.3339	0.091125	0.90887	0.18225	0.44261	False
-ACTL7A_p111624699	ACTL7A	1214.1/776.09	893.97/543.57	995.1	718.77	-0.46875	78661	42974	1.333	0.091269	0.90873	0.18254	0.44261	False
-ADRBK1_p67034261	ADRBK1	680.55/634.01	318.6/631.12	657.28	474.86	-0.46818	24958	18880	1.3276	0.092148	0.90785	0.1843	0.44502	False
-ADAM10_m59009883	ADAM10	1197.9/1882.5	1693.9/2150.3	1540.2	1922.1	0.31936	1.6921e+05	83648	1.3204	0.90664	0.093357	0.18671	0.44946	True
-ADNP_m49518579	ADNP	1805/1435	1712.2/2152.5	1620	1932.4	0.25426	82700	56385	1.3156	0.90585	0.094147	0.18829	0.45218	True
-AGL_m100327186	AGL	138.17/159.84	400.62/132.75	149	266.68	0.83553	18056	8045.4	1.312	0.90042	0.099578	0.19916	0.46422	True
-AGL_p100327074	AGL	607.06/985.65	651.08/514.39	796.35	582.73	-0.44991	40504	26576	1.3104	0.095036	0.90496	0.19007	0.45433	False
-AFF4_p132272762	AFF4	561.49/474.18	718.58/605.94	517.83	662.26	0.3543	5078	12150	1.3103	0.90495	0.09505	0.1901	0.45433	True
-ACP1_p264954	ACP1	1267/1397.7	929.3/1247.4	1332.3	1088.3	-0.29162	29557	34775	1.3086	0.095342	0.90466	0.19068	0.45464	False
-ABL1_m133729532	ABL1	1400.8/1465.2	2174.7/1405.3	1433	1790	0.32073	1.4903e+05	74817	1.3052	0.90409	0.095914	0.19183	0.45628	True
-ADRM1_p60878642	ADRM1	94.072/124.32	70.66/451.45	109.19	261.06	1.2498	36479	13594	1.3025	0.88325	0.11675	0.2335	0.50165	True
-AEBP2_p19615498	AEBP2	936.31/907.51	624.58/824.51	921.91	724.55	-0.34712	10201	23083	1.299	0.096966	0.90303	0.19393	0.45921	False
-AFMID_p76183450	AFMID	798.14/1559.3	606.92/1007.6	1178.7	807.26	-0.54554	1.8497e+05	81886	1.2982	0.097118	0.90288	0.19424	0.45921	False
-AFF2_m147891420	AFF2	505.64/122.54	115.45/183.1	314.09	149.28	-1.0681	37834	17256	1.2976	0.09722	0.90278	0.19444	0.45921	False
-AGPAT5_m6566307	AGPAT5	288.09/250.41	232.8/107.57	269.25	170.18	-0.65875	4275.6	5869.9	1.2942	0.097799	0.9022	0.1956	0.46018	False
-ABLIM2_m8160405	ABLIM2	1336.1/1784.8	1398.7/1144.9	1560.5	1271.8	-0.29489	66433	49787	1.2937	0.097886	0.90211	0.19577	0.46018	False
-ABL1_m133729488	ABL1	621.76/651.77	688.3/35.475	636.76	361.89	-0.8135	1.0677e+05	45785	1.2922	0.098144	0.90186	0.19629	0.46031	False
-ACVRL1_m52306921	ACVRL1	740.81/525.68	1467.4/548.15	633.25	1007.8	0.66952	2.2285e+05	84415	1.2891	0.89986	0.10014	0.20028	0.46422	True
-ADCK4_p41220422	ADCK4	161.69/333.88	275.07/465.18	247.78	370.13	0.57703	16449	9050.7	1.286	0.90032	0.09968	0.19936	0.46422	True
-AHNAK2_m105423809	AHNAK2	404.21/470.63	489.57/643.13	437.42	566.35	0.37193	6997.9	10070	1.2848	0.90057	0.099429	0.19886	0.46422	True
-AATK_p79102286	AATK	1887.3/998.08	1163.4/929.22	1442.7	1046.3	-0.46311	2.1139e+05	95793	1.2808	0.10013	0.89987	0.20027	0.46422	False
-ADIRF_p88729951	ADIRF	435.08/435.11	275.7/339.88	435.09	307.79	-0.49803	1029.7	10011	1.2724	0.10161	0.89839	0.20322	0.46994	False
-ADAR_m154574219	ADAR	634.98/1269.8	1618.9/1005.9	952.39	1312.4	0.46214	1.9468e+05	80849	1.266	0.89721	0.10279	0.20558	0.47431	True
-ADH5_p100002504	ADH5	668.79/717.48	772.84/938.95	693.14	855.89	0.3039	7490.8	16805	1.2555	0.89535	0.10465	0.2093	0.48177	True
-AHNAK2_m105444541	AHNAK2	761.39/664.2	846.65/909.2	712.8	877.93	0.30022	3339.3	17337	1.2541	0.8951	0.1049	0.20981	0.48183	True
-ABCB8_p150730680	ABCB8	773.15/854.23	638.46/633.98	813.69	636.22	-0.35447	1648.5	20088	1.2522	0.10525	0.89475	0.21051	0.48234	False
-ACVR1B_m52369192	ACVR1B	632.04/475.95	1491.4/427.99	554	959.71	0.79161	2.8881e+05	1.05e+05	1.252	0.88991	0.11009	0.22017	0.49176	True
-ADRB3_m37823867	ADRB3	251.35/237.98	251.09/438.86	244.66	344.98	0.49401	8859	6470.9	1.2471	0.89369	0.10631	0.21263	0.48496	True
-ACTL6A_p179287911	ACTL6A	1281.7/1189.9	1228.3/725.53	1235.8	976.93	-0.33881	65315	43093	1.247	0.10619	0.89381	0.21238	0.48496	False
-AFF2_m147924918	AFF2	858.4/1136.6	795.55/2439.8	997.51	1617.7	0.69696	6.9522e+05	2.4854e+05	1.244	0.89076	0.10924	0.21847	0.49176	True
-ADIRF_m88728350	ADIRF	244/239.75	130.59/174.52	241.88	152.55	-0.66147	486.77	5210.1	1.2394	0.1076	0.8924	0.2152	0.48865	False
-ADIRF_m88728302	ADIRF	492.41/221.99	309.77/102.99	357.2	206.38	-0.78849	28970	15015	1.2393	0.10761	0.89239	0.21522	0.48865	False
-ACTL6A_p179287902	ACTL6A	754.04/884.42	623.32/663.16	819.23	643.24	-0.34844	4646.4	20240	1.2371	0.10803	0.89197	0.21607	0.48946	False
-AFF4_p132272771	AFF4	551.2/1387	1147/1512.3	969.11	1329.6	0.45588	2.0801e+05	85604	1.2322	0.891	0.109	0.21799	0.49176	True
-ADH5_m100006354	ADH5	1427.2/1157.9	1642.8/1393.3	1292.6	1518	0.2318	33706	33650	1.2291	0.89048	0.10952	0.21903	0.49176	True
-AHNAK_m62303528	AHNAK	266.05/797.4	677.58/839.39	531.72	758.48	0.51163	77130	34052	1.2288	0.89022	0.10978	0.21957	0.49176	True
-AGAP3_p150783972	AGAP3	366/369.4	333.74/746.7	367.7	540.22	0.55377	42636	19746	1.2277	0.88973	0.11027	0.22053	0.49176	True
-AFAP1L2_p116092995	AFAP1L2	1383.1/864.89	894.6/851.98	1124	873.29	-0.36376	67603	41721	1.2275	0.10982	0.89018	0.21963	0.49176	False
-ADIRF_m88729968	ADIRF	734.94/673.08	620.8/470.91	704.01	545.85	-0.3665	6573.2	17099	1.2095	0.11323	0.88677	0.22647	0.50165	False
-ACSL6_p131329816	ACSL6	1797.7/1074.4	1233.4/983.58	1436.1	1108.5	-0.37322	1.4636e+05	73986	1.2043	0.11424	0.88576	0.22849	0.50165	False
-ABTB1_m127395855	ABTB1	560.02/887.97	1113.5/759.28	724	936.4	0.37069	58259	31180	1.2029	0.88549	0.11451	0.22902	0.50165	True
-AHCTF1_p247076572	AHCTF1	551.2/740.57	1103.4/622.53	645.89	862.98	0.41749	66780	32617	1.2021	0.88531	0.11469	0.22938	0.50165	True
-ADRM1_m60878651	ADRM1	736.41/662.43	562.12/523.55	699.42	542.83	-0.36505	1740.2	16975	1.2018	0.11472	0.88528	0.22943	0.50165	False
-AHRR_m344069	AHRR	415.97/372.95	212.61/349.03	394.46	280.82	-0.48876	5115.4	8976.2	1.1995	0.11516	0.88484	0.23032	0.50165	False
-ACVR1B_p52369255	ACVR1B	167.57/166.94	44.162/150.48	167.25	97.323	-0.77502	2826.2	3457	1.1994	0.11518	0.88482	0.23037	0.50165	False
-ADD3_p111860553	ADD3	1881.4/1378.1	1584.8/1004.2	1629.8	1294.5	-0.33207	1.4761e+05	78215	1.1989	0.11528	0.88472	0.23056	0.50165	False
-ADCK3_p227149133	ADCK3	724.65/648.22	702.81/999.6	686.43	851.21	0.30998	23481	18910	1.1982	0.88458	0.11542	0.23083	0.50165	True
-AGPAT5_p6566257	AGPAT5	1383.1/1310.6	1145.1/1099.2	1346.9	1122.1	-0.26321	1840.8	35198	1.1981	0.11543	0.88457	0.23086	0.50165	False
-ADPRHL2_p36554501	ADPRHL2	598.24/694.4	675.68/921.21	646.32	798.45	0.30453	17383	16159	1.1968	0.8843	0.1157	0.2314	0.50165	True
-ACRC_m70811980	ACRC	461.54/502.59	445.41/889.17	482.07	667.29	0.46825	49652	24031	1.1948	0.88382	0.11618	0.23237	0.50165	True
-AGAP3_p150783903	AGAP3	693.78/678.41	784.2/895.46	686.1	839.83	0.2913	3154.2	16616	1.1926	0.8835	0.1165	0.23301	0.50165	True
-AHCTF1_m247094617	AHCTF1	845.18/660.65	541.3/640.84	752.91	591.07	-0.34862	10989	18426	1.1923	0.11658	0.88342	0.23315	0.50165	False
-AAAS_m53715212	AAAS	373.35/603.82	270.65/424.56	488.58	347.61	-0.48996	19201	13993	1.1919	0.11666	0.88334	0.23331	0.50165	False
-ACTRT3_m169487192	ACTRT3	510.05/172.27	218.29/177.38	341.16	197.83	-0.7831	28942	14739	1.1916	0.1167	0.8833	0.23341	0.50165	False
-ACD_m67694260	ACD	1189.1/1653.4	1320.5/977.29	1421.3	1148.9	-0.30672	83330	52689	1.1867	0.11767	0.88233	0.23534	0.50452	False
-ADAMTS5_p28338620	ADAMTS5	399.8/209.56	357.08/470.33	304.68	413.71	0.44006	12254	8574.9	1.1774	0.88042	0.11958	0.23917	0.51163	True
-ACVR2B_p38518810	ACVR2B	1146.5/1292.9	1507.8/1346.9	1219.7	1427.4	0.22667	11831	31519	1.1698	0.87895	0.12105	0.24209	0.51589	True
-AEN_m89169478	AEN	1381.7/1330.2	1509.1/327.29	1355.9	918.19	-0.56192	3.4983e+05	1.4025e+05	1.1695	0.1211	0.8789	0.24219	0.51589	False
-ADRM1_m60878634	ADRM1	410.09/657.1	435.31/356.47	533.6	395.89	-0.42971	16807	13977	1.1648	0.12205	0.87795	0.2441	0.51884	False
-ABL2_p179100503	ABL2	951.01/994.53	996.17/504.09	972.77	750.13	-0.37451	61010	36673	1.1626	0.1225	0.8775	0.245	0.51965	False
-ADNP2_p77875482	ADNP2	561.49/390.71	480.11/775.31	476.1	627.71	0.3981	29077	17069	1.1604	0.87704	0.12296	0.24592	0.51977	True
-ACHE_m100491735	ACHE	1519.8/1601.9	1329.3/1320.6	1560.9	1324.9	-0.23626	1702.3	41476	1.1585	0.12333	0.87667	0.24666	0.51977	False
-ACVR1B_p52369266	ACVR1B	1170/1205.9	1523/1258.2	1187.9	1390.6	0.22706	17843	30607	1.1584	0.87664	0.12336	0.24672	0.51977	True
-AFF4_m132272826	AFF4	1155.3/2191.5	2025.8/2123.4	1673.4	2074.6	0.30985	2.7081e+05	1.2015e+05	1.1573	0.87643	0.12357	0.24714	0.51977	True
-AEBP2_m19615484	AEBP2	104.36/387.16	322.38/409.68	245.76	366.03	0.57281	21899	10835	1.1555	0.87491	0.12509	0.25018	0.52376	True
-AFF1_p87967353	AFF1	1785.9/1459.8	960.21/1647.3	1622.9	1303.8	-0.31564	1.446e+05	77077	1.1494	0.1252	0.8748	0.2504	0.52376	False
-ADH7_p100350718	ADH7	171.97/321.45	229.01/65.229	246.71	147.12	-0.74188	12292	7648	1.1489	0.1253	0.8747	0.25061	0.52376	False
-AEN_m89169484	AEN	1327.3/903.96	975.99/821.65	1115.6	898.82	-0.31144	50758	35946	1.1435	0.12641	0.87359	0.25282	0.52704	False
-ADNP_m49511043	ADNP	408.62/523.9	483.89/701.49	466.26	592.69	0.34548	15160	12261	1.1418	0.87323	0.12677	0.25355	0.52704	True
-ACSL6_p131329859	ACSL6	242.53/225.55	324.91/304.97	234.04	314.94	0.42676	171.47	5022.7	1.1416	0.87312	0.12688	0.25376	0.52704	True
-A1CF_p52595870	A1CF	915.73/1035.4	948.23/639.13	975.55	793.68	-0.29733	27465	25543	1.138	0.12756	0.87244	0.25512	0.52877	False
-AFF3_m100625326	AFF3	467.42/451.09	520.48/629.97	459.25	575.23	0.32421	3063.5	10631	1.1248	0.86966	0.13034	0.26068	0.53916	True
-AGBL5_p27275870	AGBL5	684.96/546.99	394.31/566.46	615.98	480.38	-0.35803	12168	14737	1.1169	0.13201	0.86799	0.26402	0.54481	False
-AGPAT3_p45379618	AGPAT3	58.795/703.28	440.99/837.1	381.04	639.05	0.74447	1.4306e+05	53446	1.116	0.86089	0.13911	0.27822	0.56377	True
-ACTL6B_m100253081	ACTL6B	582.07/690.84	473.17/524.12	636.46	498.64	-0.35143	3607	15284	1.1148	0.13248	0.86752	0.26496	0.54481	False
-ABL1_p133729502	ABL1	774.62/529.23	675.68/228.87	651.93	452.28	-0.52653	64964	32120	1.1145	0.13252	0.86748	0.26504	0.54481	False
-AHRR_m353892	AHRR	351.3/150.96	288.95/416.55	251.13	352.75	0.48857	14105	8323.1	1.1139	0.86694	0.13306	0.26612	0.5459	True
-ADAMTS5_m28338697	ADAMTS5	1068.6/749.45	541.93/875.44	909.02	708.69	-0.35872	53270	32906	1.1044	0.13471	0.86529	0.26942	0.55154	False
-AGBL5_p27275898	AGBL5	1108.3/1969.5	1066.2/1333.8	1538.9	1200	-0.35863	2.0333e+05	94995	1.0997	0.13574	0.86426	0.27148	0.55463	False
-ACVR2B_p38518836	ACVR2B	1465.5/777.87	744.45/951.54	1121.7	847.99	-0.4031	1.2892e+05	62115	1.0981	0.13608	0.86392	0.27217	0.55489	False
-ACTR1A_p104262351	ACTR1A	973.05/1099.3	768.42/2344.2	1036.2	1556.3	0.5864	6.2477e+05	2.2578e+05	1.0947	0.86114	0.13886	0.27772	0.56377	True
-AGTPBP1_p88307700	AGTPBP1	157.28/118.99	40.377/603.08	138.13	321.73	1.2139	79525	28371	1.09	0.82636	0.17364	0.34729	0.6308	True
-ADRB1_p115803878	ADRB1	438.02/1149	1278.8/877.15	793.53	1078	0.4415	1.6672e+05	68596	1.0861	0.86111	0.13889	0.27778	0.56377	True
-ABL1_p133729441	ABL1	630.57/417.35	495.25/280.94	523.96	388.09	-0.43209	22848	15823	1.0802	0.14003	0.85997	0.28006	0.56546	False
-AFF2_m147891412	AFF2	774.62/500.82	838.45/723.24	637.72	780.84	0.2917	22061	17565	1.0799	0.85991	0.14009	0.28018	0.56546	True
-ADIRF_p88729984	ADIRF	1328.8/1571.7	1123/1356.6	1450.2	1239.8	-0.226	28405	38217	1.0764	0.14088	0.85912	0.28175	0.56748	False
-ACAD9_m128598607	ACAD9	133.76/214.89	205.67/272.36	174.32	239.01	0.4531	2757.4	3619.8	1.0752	0.85859	0.14141	0.28281	0.56847	True
-ACHE_p100491631	ACHE	540.91/587.84	672.53/703.78	564.38	688.16	0.28562	794.73	13371	1.0705	0.8578	0.1422	0.28441	0.57053	True
-ADAR_m154574098	ADAR	1572.8/1028.3	1218.2/871.43	1300.5	1044.8	-0.31553	1.0419e+05	57297	1.0681	0.14273	0.85727	0.28546	0.57108	False
-ACVR2A_p148602754	ACVR2A	514.45/252.18	461.18/539.57	383.32	500.37	0.38358	18733	12041	1.0667	0.85692	0.14308	0.28615	0.57108	True
-AFTPH_m64778841	AFTPH	746.69/456.42	1070/553.3	601.56	811.64	0.43153	87807	38838	1.066	0.85663	0.14337	0.28674	0.57108	True
-AHNAK2_m105423822	AHNAK2	316.02/735.24	709.75/664.87	525.63	687.31	0.38627	44440	23049	1.065	0.85651	0.14349	0.28697	0.57108	True
-AGBL5_p27275854	AGBL5	296.91/829.37	489.57/1233.1	563.14	861.31	0.61215	2.0907e+05	78581	1.0637	0.85298	0.14702	0.29403	0.57688	True
-ADAM12_m128019019	ADAM12	1106.8/1305.3	1081.3/955.54	1206.1	1018.4	-0.24372	13808	31127	1.0634	0.14379	0.85621	0.28758	0.57116	False
-AGPAT5_m6566240	AGPAT5	802.55/1594.8	872.52/950.39	1198.7	911.46	-0.39482	1.5843e+05	73420	1.06	0.14457	0.85543	0.28914	0.5713	False
-ABTB1_p127395242	ABTB1	842.24/1424.3	853.59/946.96	1133.3	900.28	-0.33173	86882	48323	1.0599	0.14459	0.85541	0.28918	0.5713	False
-ABT1_p26597293	ABT1	523.27/694.4	336.9/597.93	608.83	467.41	-0.38064	24355	17817	1.0595	0.14468	0.85532	0.28936	0.5713	False
-ACTR8_m53916073	ACTR8	1500.7/1316	800.6/1476.2	1408.4	1138.4	-0.30675	1.2265e+05	65545	1.0544	0.14585	0.85415	0.2917	0.57477	False
-AGBL5_m27276001	AGBL5	624.7/554.1	370.96/558.45	589.4	464.71	-0.34226	10034	14032	1.0526	0.14626	0.85374	0.29251	0.57523	False
-AEBP2_p19615557	AEBP2	1187.7/859.56	1404.4/1045.9	1023.6	1225.2	0.25907	59027	36965	1.0483	0.85275	0.14725	0.2945	0.57688	True
-ADRBK1_m67034255	ADRBK1	586.48/987.43	743.82/1312	786.95	1027.9	0.38494	1.209e+05	53204	1.0447	0.85186	0.14814	0.29627	0.57921	True
-AFMID_m76183493	AFMID	446.84/191.8	220.18/208.85	319.32	214.51	-0.57174	16293	10162	1.0425	0.14858	0.85142	0.29717	0.57983	False
-ADAR_p154574121	ADAR	0/8.8797	0/0	4.4399	0	-2.4436	19.712	61.451	1.0394	0.85069	0.14931	0.29862	0.5806	False
-ADCK4_p41220276	ADCK4	680.55/534.56	550.77/1025.9	607.56	788.34	0.37527	61771	30266	1.0392	0.85061	0.14939	0.29879	0.5806	True
-AATF_p35307505	AATF	995.1/477.73	728.05/275.22	736.42	501.63	-0.55297	1.1818e+05	51379	1.0379	0.14966	0.85034	0.29931	0.5806	False
-ADRB2_p148206432	ADRB2	467.42/1118.8	592.41/537.28	793.13	564.84	-0.48898	1.0685e+05	48633	1.0358	0.15015	0.84985	0.3003	0.5814	False
-AGFG1_m228337138	AGFG1	1049.5/1001.6	1732.4/890.89	1025.6	1311.7	0.35467	1.7762e+05	76532	1.0342	0.84945	0.15055	0.30109	0.58142	True
-ABL2_m179100597	ABL2	621.76/765.43	919.84/735.25	693.59	827.55	0.25441	13679	16818	1.0329	0.84918	0.15082	0.30165	0.58142	True
-ACTR5_p37377198	ACTR5	373.35/479.51	424.59/652.29	426.43	538.44	0.33578	15779	11786	1.0318	0.8489	0.1511	0.30219	0.58142	True
-ACTR5_p37377178	ACTR5	379.23/664.2	864.32/508.1	521.72	686.21	0.39472	52027	25510	1.0299	0.84839	0.15161	0.30322	0.58142	True
-ADRBK1_m67034242	ADRBK1	1462.5/1209.4	1537.5/1519.1	1336	1528.3	0.19391	16099	34881	1.0299	0.84846	0.15154	0.30308	0.58142	True
-ACAD11_m132378487	ACAD11	546.79/717.48	826.47/690.62	632.14	758.54	0.26262	11897	15168	1.0264	0.84764	0.15236	0.30472	0.58317	True
-AFF1_m87967920	AFF1	751.1/1630.3	1093.3/632.83	1190.7	863.08	-0.46379	2.4627e+05	1.0255e+05	1.0235	0.15304	0.84696	0.30609	0.58416	False
-AHCY_p32883227	AHCY	1071.5/406.69	645.4/349.6	739.11	497.5	-0.57015	1.3238e+05	56160	1.0228	0.1532	0.8468	0.30641	0.58416	False
-ABTB1_m127395403	ABTB1	846.65/1557.5	482.63/1248.5	1202.1	865.57	-0.47335	2.7297e+05	1.1166e+05	1.0076	0.15683	0.84317	0.31365	0.59683	False
-ACAT2_p160183940	ACAT2	22.048/0	25.866/22.315	11.024	24.091	1.0612	124.68	168.55	1.0065	0.80415	0.19585	0.3917	0.661	True
-ADCK4_m41220465	ADCK4	812.84/845.35	946.33/999.6	829.09	972.97	0.2306	973.58	20512	1.0046	0.84245	0.15755	0.31511	0.59815	True
-ACP1_p272032	ACP1	1616.9/1427.9	1369/1272.5	1522.4	1320.8	-0.20477	11258	40338	1.0037	0.15777	0.84223	0.31554	0.59815	False
-ABHD14B_p52004005	ABHD14B	186.67/415.57	333.74/472.62	301.12	403.18	0.41987	17921	10405	1.0005	0.84122	0.15878	0.31756	0.60085	True
-ADAM10_m59041696	ADAM10	499.76/458.19	409.45/338.73	478.98	374.09	-0.35573	1682	11140	0.99376	0.16017	0.83983	0.32034	0.6044	False
-ADRM1_p60878730	ADRM1	621.76/635.79	392.41/621.39	628.77	506.9	-0.31028	13157	15078	0.99248	0.16048	0.83952	0.32096	0.6044	False
-ACVR2B_m38518849	ACVR2B	646.74/737.02	715.43/378.78	691.88	547.11	-0.33815	30370	21304	0.99188	0.16063	0.83937	0.32126	0.6044	False
-ACSL6_m131326630	ACSL6	1031.8/605.6	802.49/1259.4	818.72	1030.9	0.33214	97607	46020	0.98921	0.83871	0.16129	0.32258	0.60575	True
-AES_m3056337	AES	827.54/1225.4	1143.2/1261.1	1026.5	1202.1	0.2277	43050	31693	0.98671	0.83811	0.16189	0.32378	0.60652	True
-ACVRL1_m52306910	ACVRL1	1275.8/1136.6	1464.9/1295.4	1206.2	1380.2	0.1942	12030	31132	0.98585	0.8379	0.1621	0.32421	0.60652	True
-ADCK4_m41220291	ADCK4	224.89/188.25	700.29/81.25	206.57	390.77	0.9164	96138	34960	0.98514	0.81248	0.18752	0.37505	0.64631	True
-AAAS_p53714374	AAAS	430.67/463.52	540.04/553.87	447.1	546.96	0.29025	317.6	10318	0.98307	0.83721	0.16279	0.32557	0.60794	True
-ACTN4_p39138433	ACTN4	867.22/840.02	1026.5/966.41	853.62	996.44	0.22294	1086.3	21188	0.98111	0.83673	0.16327	0.32654	0.6086	True
-ACVR2A_p148653965	ACVR2A	573.25/168.72	119.87/333.58	370.98	226.73	-0.70794	52330	23033	0.97466	0.16486	0.83514	0.32973	0.61302	False
-ACTL6B_p100253446	ACTL6B	1209.7/827.59	1085.1/472.62	1018.6	778.88	-0.38675	1.3029e+05	60627	0.97385	0.16507	0.83493	0.33013	0.61302	False
-AGPAT3_m45379590	AGPAT3	1203.8/1630.3	1392.4/997.88	1417.1	1195.1	-0.24556	84380	52957	0.96445	0.16741	0.83259	0.33482	0.62057	False
-ABLIM2_p8108320	ABLIM2	149.93/67.486	97.788/234.59	108.71	166.19	0.60785	6378.1	3553.6	0.96432	0.82664	0.17336	0.34671	0.6308	True
-ABCB8_m150730720	ABCB8	146.99/266.39	292.73/247.75	206.69	270.24	0.38516	4070.2	4374.5	0.9609	0.83155	0.16845	0.3369	0.62326	True
-ACVR2A_m148653941	ACVR2A	582.07/653.55	470.64/1227.3	617.81	848.99	0.45795	1.4442e+05	57998	0.95993	0.83058	0.16942	0.33884	0.62453	True
-ABT1_p26597240	ABT1	119.06/378.28	185.48/128.74	248.67	157.11	-0.65907	17603	9449.8	0.95907	0.16876	0.83124	0.33752	0.62326	False
-ADRBK2_p25961098	ADRBK2	2034.3/822.26	1083.2/1041.9	1428.3	1062.6	-0.42635	3.6769e+05	1.4761e+05	0.95215	0.17051	0.82949	0.34102	0.62738	False
-ACAT2_m160183956	ACAT2	796.67/1024.7	1444.1/813.64	910.7	1128.9	0.30954	1.1237e+05	52638	0.95096	0.82918	0.17082	0.34164	0.62738	True
-AATK_p79102311	AATK	107.3/326.77	531.84/160.78	217.04	346.31	0.67165	46463	18567	0.94873	0.81853	0.18147	0.36294	0.6361	True
-ABCB8_m150725669	ABCB8	1206.8/754.78	952.64/616.24	980.77	784.44	-0.32188	79365	42941	0.94744	0.17171	0.82829	0.34341	0.62949	False
-ABCC1_m16101788	ABCC1	665.85/525.68	475.69/490.36	595.77	483.03	-0.30208	4965.8	14200	0.94608	0.17205	0.82795	0.34411	0.6296	False
-ADAMTS5_p28338524	ADAMTS5	902.5/1040.7	1009.4/594.5	971.6	801.96	-0.27652	47816	32253	0.94461	0.17243	0.82757	0.34486	0.6296	False
-AGPAT5_p6566182	AGPAT5	483.59/413.8	498.4/591.06	448.69	544.73	0.27926	3364.2	10359	0.94362	0.82732	0.17268	0.34537	0.6296	True
-ABLIM2_m8108294	ABLIM2	1042.1/2282.1	1859.2/2234.4	1662.1	2046.8	0.30019	4.1955e+05	1.6951e+05	0.93436	0.82494	0.17506	0.35013	0.631	True
-ADAM12_m128018982	ADAM12	643.8/353.41	417.02/350.17	498.61	383.6	-0.37745	22199	15166	0.93401	0.17515	0.82485	0.3503	0.631	False
-AGAP3_p150783866	AGAP3	352.77/234.43	310.4/429.14	293.6	369.77	0.33177	7026	6650.8	0.934	0.82482	0.17518	0.35036	0.631	True
-ACTN1_m69445694	ACTN1	311.61/630.46	514.81/110.43	471.04	312.62	-0.58989	66296	29388	0.93365	0.17524	0.82476	0.35049	0.631	False
-ADK_p76074475	ADK	198.43/28.415	249.83/114.44	113.42	182.13	0.67851	11810	5433.1	0.93218	0.81278	0.18722	0.37443	0.64631	True
-ADAR_p154574126	ADAR	342.48/403.14	234.69/339.88	372.81	287.28	-0.37482	3685.9	8429.9	0.93159	0.17577	0.82423	0.35155	0.631	False
-ADCK4_m41220243	ADCK4	830.48/864.89	1349.5/740.97	847.68	1045.2	0.3019	92864	44971	0.93153	0.8242	0.1758	0.35159	0.631	True
-AGBL5_p27275820	AGBL5	423.32/412.02	224.6/426.85	417.67	325.72	-0.35775	10258	9796.5	0.92903	0.17644	0.82356	0.35287	0.631	False
-AGAP2_m58128438	AGAP2	817.25/896.85	1170.9/832.52	857.05	1001.7	0.22479	30214	24260	0.92887	0.82352	0.17648	0.35296	0.631	True
-AATF_m35307525	AATF	405.68/259.29	324.28/166.5	332.49	245.39	-0.43668	11581	8808.4	0.92863	0.17654	0.82346	0.35308	0.631	False
-ACTL6A_p179287976	ACTL6A	317.49/985.65	1232.8/599.07	651.57	915.92	0.49065	2.12e+05	81125	0.9281	0.82134	0.17866	0.35732	0.63178	True
-ACVRL1_p52306883	ACVRL1	1552.2/1129.5	1162.1/1157	1340.8	1159.5	-0.20944	44671	38239	0.92724	0.1769	0.8231	0.3538	0.63116	False
-AFAP1L2_p116164194	AFAP1L2	590.89/365.85	606.29/552.15	478.37	579.22	0.27547	13394	11881	0.92528	0.82259	0.17741	0.35482	0.63146	True
-ABTB1_p127395252	ABTB1	526.21/399.59	411.34/771.3	462.9	591.32	0.35256	36401	19284	0.92477	0.82238	0.17762	0.35524	0.63146	True
-ACHE_m100491729	ACHE	486.53/831.14	860.53/730.1	658.84	795.32	0.27124	33943	21903	0.92221	0.82179	0.17821	0.35642	0.63178	True
-AGBL5_m27275950	AGBL5	354.24/280.6	204.41/275.79	317.42	240.1	-0.4013	2629.6	7049	0.92117	0.17848	0.82152	0.35696	0.63178	False
-ACTN4_m39138399	ACTN4	793.73/710.38	763.38/989.87	752.05	876.63	0.22085	14562	18402	0.91829	0.82077	0.17923	0.35847	0.6327	True
-ACVR1C_m158401016	ACVR1C	448.31/458.19	456.13/637.41	453.25	546.77	0.27008	8239.7	10476	0.91368	0.81956	0.18044	0.36089	0.63576	True
-ABL1_m133729456	ABL1	1145/985.65	1194.3/478.92	1065.3	836.6	-0.34834	1.3428e+05	62837	0.91256	0.18074	0.81926	0.36147	0.63576	False
-ADRA1A_p26722419	ADRA1A	567.37/507.92	500.3/370.2	537.65	435.25	-0.30419	5114.7	12668	0.90978	0.18147	0.81853	0.36294	0.6361	False
-AHNAK2_p105423957	AHNAK2	676.14/552.32	313.55/654	614.23	483.78	-0.3438	32810	20731	0.90607	0.18245	0.81755	0.3649	0.63841	False
-ACVR1_p158655958	ACVR1	410.09/360.52	675.05/325.57	385.31	500.31	0.37596	31149	16213	0.90322	0.81657	0.18343	0.36687	0.64073	True
-ABLIM2_m8108279	ABLIM2	673.2/600.27	476.32/574.47	636.74	525.4	-0.27681	3738	15291	0.90039	0.18396	0.81604	0.36791	0.64111	False
-ADRM1_p60878704	ADRM1	273.4/671.31	363.39/323.28	472.35	343.34	-0.45909	39986	20641	0.89954	0.18418	0.81582	0.36836	0.64111	False
-ACBD6_p180471263	ACBD6	355.71/285.93	278.22/212.28	320.82	245.25	-0.38612	2304.5	7133	0.89497	0.1854	0.8146	0.37081	0.64423	False
-AFF3_m100623914	AFF3	242.53/216.67	112.3/222.01	229.6	167.15	-0.45561	3176.2	4916.9	0.89214	0.18616	0.81384	0.37232	0.64573	False
-ACBD6_p180471286	ACBD6	723.18/1007	934.98/428.56	865.07	681.77	-0.34308	84248	42419	0.89002	0.18673	0.81327	0.37346	0.64631	False
-ADRBK1_p67034172	ADRBK1	1321.4/1795.5	1478.8/1237.1	1558.4	1357.9	-0.19856	70796	51201	0.88616	0.18777	0.81223	0.37553	0.64631	False
-ADCK1_p78285311	ADCK1	868.69/701.5	720.48/603.65	785.1	662.06	-0.24556	10401	19304	0.88551	0.18794	0.81206	0.37588	0.64631	False
-ACP1_m264983	ACP1	2104.9/1738.7	1569.7/1866.5	1921.8	1718.1	-0.16156	55549	53370	0.88174	0.18896	0.81104	0.37792	0.64866	False
-ACBD6_p180471251	ACBD6	488/204.23	565.28/348.46	346.12	456.87	0.39952	31883	15802	0.88105	0.81029	0.18971	0.37941	0.64903	True
-ACD_p67694333	ACD	307.2/243.3	157.09/256.91	275.25	207	-0.40941	3511.6	6015.7	0.88058	0.18927	0.81073	0.37855	0.64866	False
-ACP1_p272042	ACP1	862.81/1184.6	890.82/876.01	1023.7	883.41	-0.21239	25934	25936	0.87101	0.19187	0.80813	0.38375	0.65417	False
-ACAT2_p160183133	ACAT2	520.33/671.31	659.91/739.26	595.82	699.58	0.23126	7272.3	14202	0.8707	0.80804	0.19196	0.38392	0.65417	True
-ADNP2_p77891013	ADNP2	742.28/607.37	525.53/601.93	674.83	563.73	-0.25909	6009.6	16312	0.86985	0.19219	0.80781	0.38438	0.65417	False
-ACTN4_p39138465	ACTN4	1705.1/1083.3	1088.9/1277.7	1394.2	1183.3	-0.23643	1.0554e+05	59565	0.86409	0.19377	0.80623	0.38754	0.65842	False
-ACTN4_p39138381	ACTN4	657.03/635.79	678.21/829.66	646.41	753.93	0.22167	5847.6	15550	0.86227	0.80573	0.19427	0.38854	0.659	True
-ADCK2_p140373137	ADCK2	194.02/53.278	121.76/25.176	123.65	73.469	-0.74318	7284.5	4075.4	0.86081	0.19467	0.80533	0.38934	0.65924	False
-A1CF_p52603829	A1CF	111.71/252.18	209.46/269.5	181.95	239.48	0.39447	5834.5	4475.7	0.85992	0.80444	0.19556	0.39111	0.661	True
-ADRB2_p148206474	ADRB2	148.46/442.21	418.91/358.19	295.33	388.55	0.39458	22495	11835	0.85682	0.80358	0.19642	0.39285	0.66181	True
-ADD3_m111860450	ADD3	1597.7/1502.5	1651/1794.9	1550.1	1723	0.15246	7446.8	41157	0.85219	0.80294	0.19706	0.39411	0.66282	True
-ABCF1_m30539291	ABCF1	216.07/289.48	192.42/498.37	252.78	345.4	0.44887	24748	11897	0.84914	0.80005	0.19995	0.3999	0.66917	True
-ABCF1_p30539272	ABCF1	1111.2/1038.9	948.23/922.36	1075.1	935.29	-0.20075	1473.9	27389	0.84464	0.19916	0.80084	0.39831	0.66838	False
-AATK_m79102320	AATK	1474.3/1163.2	1218.9/1844.1	1318.8	1531.5	0.21562	1.2192e+05	63562	0.84385	0.80062	0.19938	0.39875	0.66838	True
-ADD1_m2877771	ADD1	530.62/809.83	815.74/747.27	670.23	781.5	0.2213	20661	17680	0.83689	0.79867	0.20133	0.40265	0.67266	True
-AGL_m100327112	AGL	1142.1/957.24	1162.1/1210.2	1049.7	1186.1	0.17618	9120.3	26669	0.83566	0.79833	0.20167	0.40335	0.67269	True
-ACAD11_p132378489	ACAD11	749.63/1323.1	848.55/870.86	1036.4	859.7	-0.26933	82335	44974	0.833	0.20242	0.79758	0.40484	0.67407	False
-ADH7_m100350735	ADH7	812.84/664.2	774.73/453.74	738.52	614.24	-0.26545	31282	22450	0.82949	0.20341	0.79659	0.40683	0.67624	False
-AAAS_m53715176	AAAS	801.08/158.06	247.31/379.93	479.57	313.62	-0.61114	1.0777e+05	43359	0.82646	0.20427	0.79573	0.40854	0.67796	False
-AHNAK_p62303551	AHNAK	51.445/40.847	117.35/31.47	46.146	74.408	0.67757	1871.7	1174.8	0.82454	0.77515	0.22485	0.4497	0.70415	True
-ADRBK1_m67034219	ADRBK1	1109.8/1138.4	970.31/999.03	1124.1	984.67	-0.19084	411.13	28781	0.82169	0.20563	0.79437	0.41126	0.68051	False
-ADRB2_p148206467	ADRB2	761.39/925.27	649.82/799.34	843.33	724.58	-0.21868	12303	20904	0.82136	0.20572	0.79428	0.41144	0.68051	False
-ADNP2_p77890985	ADNP2	776.09/1280.5	1125.5/1259.4	1028.3	1192.4	0.2135	68076	40069	0.82012	0.79393	0.20607	0.41215	0.68056	True
-ACAD9_m128598614	ACAD9	676.14/966.12	1724.2/528.12	821.13	1126.2	0.45527	3.7868e+05	1.3976e+05	0.81598	0.78979	0.21021	0.42041	0.68195	True
-ADRA1A_m26722434	ADRA1A	1052.4/1303.5	984.82/1087.1	1178	1036	-0.18516	18383	30322	0.8155	0.20739	0.79261	0.41478	0.68056	False
-ADNP_p49510949	ADNP	429.2/889.75	567.8/1132.9	659.48	850.36	0.36626	1.3287e+05	54888	0.81476	0.79189	0.20811	0.41623	0.68056	True
-ADH7_p100350692	ADH7	585.01/452.87	409.45/913.2	518.94	661.32	0.3492	67807	30721	0.81236	0.79139	0.20861	0.41723	0.68056	True
-AFF4_p132272747	AFF4	527.68/113.66	72.552/331.29	320.67	201.92	-0.66466	59590	24616	0.81217	0.20835	0.79165	0.4167	0.68056	False
-ADAM12_p128076650	ADAM12	779.03/648.22	424.59/759.86	713.63	592.22	-0.26861	32379	22366	0.81178	0.20846	0.79154	0.41692	0.68056	False
-ADH5_p100002584	ADH5	2173.9/1182.8	1374.1/1439	1678.4	1406.6	-0.25472	2.4665e+05	1.1219e+05	0.81146	0.20855	0.79145	0.4171	0.68056	False
-ACTR1A_m104248862	ACTR1A	1056.8/2156	1396.2/1228.5	1606.4	1312.3	-0.29153	3.0907e+05	1.3157e+05	0.81082	0.20874	0.79126	0.41747	0.68056	False
-ADRB3_p37823958	ADRB3	2221/976.77	1393/1151.8	1598.9	1272.4	-0.32927	4.0156e+05	1.6225e+05	0.81059	0.2088	0.7912	0.4176	0.68056	False
-AHNAK_p62303510	AHNAK	473.3/451.09	598.08/493.22	462.19	545.65	0.239	2872.4	10707	0.80657	0.79004	0.20996	0.41992	0.68195	True
-ACIN1_p23538730	ACIN1	946.6/470.63	663.07/457.75	708.61	560.41	-0.33799	67176	33874	0.80541	0.21029	0.78971	0.42058	0.68195	False
-ADAD1_p123301314	ADAD1	1456.6/1408.3	1311/1241.6	1432.5	1276.3	-0.16642	1786.1	37697	0.80437	0.21059	0.78941	0.42118	0.68195	False
-AGBL5_p27275876	AGBL5	440.96/630.46	434.68/457.17	535.71	445.93	-0.2641	9104	12617	0.79931	0.21206	0.78794	0.42411	0.68531	False
-ACSS2_m33501222	ACSS2	662.91/777.87	864.95/787.32	720.39	826.14	0.19735	4810.1	17542	0.79841	0.78768	0.21232	0.42463	0.68531	True
-AATF_m35306444	AATF	659.97/809.83	880.72/802.2	734.9	841.46	0.19509	7156	17936	0.79565	0.78688	0.21312	0.42623	0.68679	True
-ADRBK2_m26000349	ADRBK2	263.11/385.38	578.53/260.34	324.24	419.43	0.37036	29048	14494	0.79066	0.78467	0.21533	0.43066	0.69033	True
-ADCK4_m41220249	ADCK4	1481.6/1994.4	2044.1/1811	1738	1927.5	0.14923	79318	57604	0.78959	0.78512	0.21488	0.42977	0.69033	True
-AGTPBP1_m88307605	AGTPBP1	727.59/445.76	502.19/471.48	586.67	486.83	-0.26863	20092	16004	0.78923	0.21499	0.78501	0.42998	0.69033	False
-ACBD6_m180471277	ACBD6	1175.9/518.58	833.41/473.19	847.24	653.3	-0.37452	1.4046e+05	60826	0.78714	0.2156	0.7844	0.4312	0.69033	False
-AATF_m35307516	AATF	518.86/632.24	627.74/308.98	575.55	468.36	-0.29676	28615	18649	0.78499	0.21623	0.78377	0.43246	0.69124	False
-AFTPH_m64778646	AFTPH	999.51/939.48	826.47/1464.2	969.49	1145.3	0.24024	1.0258e+05	50469	0.78274	0.78311	0.21689	0.43378	0.69225	True
-ABLIM2_m8108265	ABLIM2	1587.5/1193.4	1145.7/1324	1390.4	1234.9	-0.17107	46764	39900	0.77891	0.21802	0.78198	0.43603	0.69473	False
-ADRB1_m115803930	ADRB1	440.96/220.22	451.72/361.62	330.59	406.67	0.298	14211	9653.8	0.77431	0.78054	0.21946	0.43892	0.69735	True
-AFAP1L2_m116100394	AFAP1L2	665.85/989.2	859.9/518.4	827.53	689.15	-0.26364	55296	32078	0.77262	0.21987	0.78013	0.43975	0.69735	False
-AGPAT3_m45379606	AGPAT3	376.29/294.81	332.48/204.84	335.55	268.66	-0.31967	5732.6	7498.1	0.77258	0.21988	0.78012	0.43977	0.69735	False
-ACVR1_p158637019	ACVR1	668.79/1074.4	722.37/761.57	871.62	741.97	-0.23205	41524	28298	0.7707	0.22044	0.77956	0.44088	0.69801	False
-ADD1_m2877698	ADD1	477.71/403.14	471.27/246.04	440.42	358.66	-0.29555	14073	11456	0.76401	0.22243	0.77757	0.44486	0.70037	False
-AAAS_p53714441	AAAS	401.27/580.73	689.56/474.34	491	581.95	0.2447	19632	14178	0.76378	0.7775	0.2225	0.445	0.70037	True
-ACTN1_p69445745	ACTN1	868.69/744.12	765.27/632.26	806.41	698.76	-0.20643	8302.4	19888	0.76329	0.22265	0.77735	0.44529	0.70037	False
-ADAM10_p59009761	ADAM10	361.59/237.98	184.85/290.67	299.78	237.76	-0.33316	6619.3	6616.3	0.76281	0.22279	0.77721	0.44558	0.70037	False
-ADD3_m111860445	ADD3	1267/694.4	1038.4/534.42	980.71	786.43	-0.31815	1.4549e+05	64981	0.7623	0.22294	0.77706	0.44588	0.70037	False
-ACVR2B_p38495827	ACVR2B	1159.7/1097.5	1008.2/1576.9	1128.6	1292.5	0.19548	81842	46555	0.75969	0.77628	0.22372	0.44744	0.70171	True
-ADRBK2_m25961092	ADRBK2	1675.7/966.12	1316/1752	1320.9	1534	0.21567	1.7338e+05	80755	0.75004	0.77339	0.22661	0.45323	0.70857	True
-AFF4_m132272813	AFF4	953.95/749.45	755.81/1234.2	851.7	995	0.22411	67669	36646	0.74858	0.77294	0.22706	0.45411	0.70884	True
-AGL_p100327246	AGL	463.01/253.96	201.88/358.19	358.48	280.04	-0.35518	17033	11058	0.74686	0.22757	0.77243	0.45515	0.70935	False
-AFF3_p100623867	AFF3	936.31/561.2	664.33/601.36	748.75	632.84	-0.24229	36168	24264	0.74411	0.22841	0.77159	0.45681	0.71083	False
-ADD3_m111860456	ADD3	1484.6/879.09	1263/687.19	1181.8	975.12	-0.27712	1.7455e+05	78472	0.73797	0.23027	0.76973	0.46054	0.71551	False
-ADCK2_p140373194	ADCK2	1255.3/1015.8	1528/1049.4	1135.6	1288.7	0.18236	71604	43274	0.73618	0.76919	0.23081	0.46162	0.71609	True
-ACSL6_m131329874	ACSL6	795.2/1069.1	1364.6/817.07	932.16	1090.8	0.22657	93708	46815	0.7334	0.76834	0.23166	0.46332	0.7176	True
-AFAP1L2_p116100376	AFAP1L2	220.48/513.25	374.12/537.85	366.86	455.98	0.31297	28130	14897	0.73016	0.76705	0.23295	0.46591	0.71859	True
-ACTR8_m53916091	ACTR8	351.3/781.42	227.75/624.25	566.36	426	-0.41002	85553	37466	0.72943	0.23287	0.76713	0.46574	0.71859	False
-ACAT2_m160183168	ACAT2	658.5/261.06	358.35/354.18	459.78	356.26	-0.3671	39494	20261	0.72882	0.23305	0.76695	0.46611	0.71859	False
-AEBP1_m44144355	AEBP1	524.74/1969.5	1010.7/842.82	1247.1	926.75	-0.42796	5.2889e+05	1.9784e+05	0.7266	0.23374	0.76626	0.46747	0.71902	False
-ADRB1_m115803938	ADRB1	864.28/1175.7	965.26/1358.4	1020	1161.8	0.18766	62873	38178	0.72587	0.76604	0.23396	0.46792	0.71902	True
-ACO2_p41903813	ACO2	1045.1/488.39	1190.5/694.06	766.73	942.27	0.29707	1.3909e+05	58898	0.72332	0.76507	0.23493	0.46986	0.71902	True
-ACVR1B_m52369187	ACVR1B	1039.2/1157.9	1012.6/942.38	1098.6	977.48	-0.16831	4755.4	28055	0.72287	0.23488	0.76512	0.46976	0.71902	False
-ADRB2_p148206462	ADRB2	1352.3/939.48	1104.7/1499.7	1145.9	1302.2	0.18433	81608	46805	0.7225	0.76501	0.23499	0.46999	0.71902	True
-AFAP1L2_m116092987	AFAP1L2	878.98/465.3	635.94/975.57	672.14	805.75	0.26122	71621	34700	0.71726	0.76336	0.23664	0.47328	0.72295	True
-ACTL7A_m111624669	ACTL7A	554.14/381.83	603.13/481.78	467.99	542.45	0.21262	11105	10939	0.71201	0.76177	0.23823	0.47646	0.72669	True
-AFF1_p87967926	AFF1	792.26/1030	1313.5/799.34	911.16	1056.4	0.2132	80230	41932	0.70942	0.76097	0.23903	0.47807	0.72803	True
-ADAM10_m59009866	ADAM10	610/626.91	339.42/695.77	618.45	517.6	-0.25638	31819	20475	0.70487	0.24045	0.75955	0.48089	0.73	False
-ADARB1_p46595705	ADARB1	1987.3/1898.5	1793.6/2477.5	1942.9	2135.6	0.13637	1.1891e+05	74917	0.70405	0.7593	0.2407	0.4814	0.73	True
-ACTN4_p39138403	ACTN4	837.83/1486.5	1100.3/1614.7	1162.1	1357.5	0.22396	1.7134e+05	77026	0.70382	0.75923	0.24077	0.48155	0.73	True
-ACO2_p41865164	ACO2	646.74/310.79	666.22/487.5	478.77	576.86	0.26838	36201	19490	0.70263	0.75878	0.24122	0.48243	0.73023	True
-AEBP1_p44144293	AEBP1	901.03/1152.6	991.13/1306.9	1026.8	1149	0.16205	40743	30930	0.69475	0.75639	0.24361	0.48721	0.73496	True
-ADCK2_m140373177	ADCK2	582.07/804.5	745.08/427.42	693.29	586.25	-0.24156	37597	23739	0.69472	0.24362	0.75638	0.48723	0.73496	False
-ACAT2_p160183141	ACAT2	1243.5/843.58	613.86/1148.4	1043.5	881.11	-0.24384	1.1141e+05	54802	0.69387	0.24388	0.75612	0.48776	0.73496	False
-ACTR5_m37377155	ACTR5	95.542/369.4	415.76/207.7	232.47	311.73	0.42168	29571	13180	0.69038	0.74965	0.25035	0.50069	0.74006	True
-AFMID_p76183465	AFMID	158.75/598.49	317.97/236.88	378.62	277.43	-0.44726	49988	22380	0.69003	0.24509	0.75491	0.49018	0.73555	False
-ABI1_m27149743	ABI1	1412.5/703.28	808.8/964.13	1057.9	886.46	-0.25482	1.318e+05	61867	0.68931	0.24531	0.75469	0.49063	0.73555	False
-ACTR1A_p104262374	ACTR1A	1337.6/722.81	750.13/991.02	1030.2	870.57	-0.24263	1.0899e+05	53744	0.68856	0.24555	0.75445	0.4911	0.73555	False
-ACAD11_m132378578	ACAD11	526.21/593.17	497.77/463.47	559.69	480.62	-0.21931	1414.9	13247	0.687	0.24604	0.75396	0.49208	0.73555	False
-ABHD14B_m52004113	ABHD14B	579.13/651.77	926.78/517.82	615.45	722.3	0.23061	43130	24192	0.68696	0.75394	0.24606	0.49212	0.73555	True
-ABCB8_p150725675	ABCB8	943.66/756.55	615.12/1467.6	850.11	1041.4	0.29247	1.9045e+05	77545	0.68688	0.75364	0.24636	0.49271	0.73555	True
-ADD1_m2877722	ADD1	479.18/362.29	508.5/467.47	420.74	487.98	0.21345	3836.3	9643.7	0.6848	0.75326	0.24674	0.49347	0.73555	True
-AGFG1_m228337217	AGFG1	336.6/618.03	361.5/429.14	477.32	395.32	-0.2713	20944	14379	0.68388	0.24702	0.75298	0.49405	0.73555	False
-ABL2_p179100556	ABL2	605.59/502.59	842.87/465.18	554.09	654.03	0.23883	38313	21504	0.68149	0.7522	0.2478	0.4956	0.73676	True
-ABCF1_p30545605	ABCF1	501.23/387.16	436.58/314.7	444.19	375.64	-0.24125	6966.4	10244	0.67735	0.24909	0.75091	0.49819	0.73951	False
-ADCK1_p78285341	ADCK1	1168.5/907.51	879.46/977.86	1038	928.66	-0.16046	19456	26340	0.67388	0.25019	0.74981	0.50039	0.74006	False
-ACSS2_m33500940	ACSS2	1655.1/943.03	1069.4/2038.1	1299.1	1553.7	0.2581	3.6137e+05	1.43e+05	0.6735	0.74961	0.25039	0.50078	0.74006	True
-ACO2_p41895844	ACO2	264.58/525.68	376.01/576.76	395.13	476.38	0.26918	27119	15035	0.66268	0.74607	0.25393	0.50786	0.74941	True
-AFF2_m147924509	AFF2	122/81.694	31.544/115.01	101.85	73.276	-0.46951	2147.7	2043.7	0.65991	0.25466	0.74534	0.50931	0.75045	False
-AFAP1L2_m116100466	AFAP1L2	457.13/433.33	488.94/534.42	445.23	511.68	0.20027	658.65	10270	0.65568	0.74398	0.25602	0.51203	0.75335	True
-ACP1_p272099	ACP1	352.77/325	345.73/444.01	338.88	394.87	0.21999	2607.8	7581.1	0.64301	0.73988	0.26012	0.52024	0.7643	True
-AHCTF1_m247068844	AHCTF1	1106.8/1056.7	1743.1/807.35	1081.8	1275.2	0.23721	2.1956e+05	91572	0.63943	0.73868	0.26132	0.52263	0.76668	True
-ADCY1_m45614206	ADCY1	179.32/312.57	409.45/200.84	245.95	305.14	0.31001	15318	8644.5	0.63668	0.73676	0.26324	0.52648	0.7694	True
-ACTR1A_p104248833	ACTR1A	804.02/745.9	651.08/1125.5	774.96	888.28	0.19666	57109	31721	0.63626	0.7377	0.2623	0.52461	0.76845	True
-A1CF_m52603842	A1CF	402.74/431.56	198.1/489.22	417.15	343.66	-0.27886	21395	13500	0.6329	0.2634	0.7366	0.5268	0.7694	False
-ACVR1C_m158401097	ACVR1C	961.3/788.52	982.3/952.68	874.91	967.49	0.14496	7682	21777	0.62737	0.73479	0.26521	0.53042	0.77356	True
-ACVR1C_p158443795	ACVR1C	1481.6/1044.3	1328.7/1444.2	1262.9	1386.4	0.13447	51161	38897	0.62607	0.73437	0.26563	0.53127	0.77367	True
-ACTL6A_p179287920	ACTL6A	1202.4/1166.8	1205/946.39	1184.6	1075.7	-0.13898	17036	30511	0.62335	0.26653	0.73347	0.53305	0.77462	False
-AFF4_m132272866	AFF4	1199.4/1466.9	1408.1/1490.5	1333.2	1449.3	0.12044	19588	34799	0.62272	0.73326	0.26674	0.53347	0.77462	True
-ABI1_p27149733	ABI1	123.47/470.63	249.2/199.12	297.05	224.16	-0.40459	30757	14617	0.61835	0.26817	0.73183	0.53634	0.77589	False
-AGPAT3_p45379613	AGPAT3	598.24/305.46	466.86/275.22	451.85	371.04	-0.28358	30611	17164	0.61746	0.26847	0.73153	0.53693	0.77589	False
-ADAD1_m123301308	ADAD1	780.5/754.78	553.92/1272.5	767.64	913.23	0.25024	1.2927e+05	55640	0.6172	0.7313	0.2687	0.53741	0.77589	True
-ACSS2_p33470688	ACSS2	880.45/621.58	671.9/1040.8	751.02	856.35	0.18911	50775	29175	0.61667	0.73127	0.26873	0.53746	0.77589	True
-ADAMTS5_m28338537	ADAMTS5	981.87/1282.2	680.73/1288.6	1132.1	984.64	-0.20108	1.1492e+05	57645	0.61399	0.26961	0.73039	0.53923	0.77732	False
-ABL2_p179095768	ABL2	535.03/577.18	807.54/470.33	556.11	638.94	0.19997	28871	18392	0.61074	0.72931	0.27069	0.54138	0.77843	True
-ADAM12_p128076618	ADAM12	120.53/232.65	192.42/234.59	176.59	213.51	0.27249	3587.3	3672.2	0.60923	0.72833	0.27167	0.54334	0.77843	True
-AES_p3061186	AES	238.12/266.39	169.71/461.18	252.26	315.44	0.32135	21438	10786	0.60843	0.72648	0.27352	0.54704	0.77843	True
-AFTPH_p64778754	AFTPH	849.59/861.33	762.11/771.87	855.46	766.99	-0.15729	58.314	21239	0.60703	0.27191	0.72809	0.54383	0.77843	False
-ABL1_p133729469	ABL1	930.43/1090.4	1011.3/1203.3	1010.4	1107.3	0.13196	15614	25562	0.60593	0.72772	0.27228	0.54456	0.77843	True
-ABI1_p27112180	ABI1	455.66/380.05	335.63/381.64	417.86	358.64	-0.21991	1958.4	9570.3	0.60534	0.27248	0.72752	0.54495	0.77843	False
-ACTR3_p114684946	ACTR3	770.21/548.77	752.65/367.91	659.49	560.28	-0.23481	49265	27022	0.60358	0.27306	0.72694	0.54612	0.77843	False
-ADD1_p2877743	ADD1	573.25/1397.7	728.68/910.34	985.46	819.51	-0.26574	1.7817e+05	75963	0.6025	0.27342	0.72658	0.54684	0.77843	False
-ACRC_p70814187	ACRC	961.3/1097.5	959.58/905.19	1029.4	932.39	-0.14268	5380	26097	0.60062	0.27405	0.72595	0.54809	0.77843	False
-ACIN1_p23538719	ACIN1	640.86/559.42	711.64/632.26	600.14	671.95	0.16279	3233.6	14317	0.60014	0.72579	0.27421	0.54841	0.77843	True
-AFF2_m147967470	AFF2	892.21/1278.7	893.97/1599.8	1085.4	1246.9	0.19988	1.619e+05	72420	0.59993	0.72572	0.27428	0.54857	0.77843	True
-AGTPBP1_p88307705	AGTPBP1	655.56/449.31	451.72/516.68	552.44	484.2	-0.18985	11690	13056	0.59722	0.27518	0.72482	0.55036	0.7796	False
-AGFG1_p228337142	AGFG1	0/42.623	0/78.389	21.311	39.194	0.84922	1990.4	897.03	0.59709	0.63864	0.36136	0.72272	0.86416	True
-AFTPH_p64778649	AFTPH	1724.2/1500.7	1326.8/1650.7	1612.4	1488.8	-0.11505	38727	43003	0.59634	0.27547	0.72453	0.55095	0.7796	False
-AFF1_m87967374	AFF1	257.23/191.8	170.34/379.93	224.51	275.13	0.29215	12052	7214.6	0.59595	0.72326	0.27674	0.55348	0.78097	True
-AFF2_m147891407	AFF2	355.71/374.72	271.91/602.51	365.22	437.21	0.25892	27413	14631	0.5952	0.72379	0.27621	0.55241	0.78056	True
-ADRB3_p37823913	ADRB3	454.19/381.83	525.53/425.7	418.01	475.62	0.18585	3800.5	9574.2	0.58875	0.72198	0.27802	0.55604	0.78336	True
-AFMID_p76183445	AFMID	911.32/856.01	938.13/1003.6	883.66	970.87	0.13563	1836.6	22020	0.58768	0.72163	0.27837	0.55674	0.78336	True
-ABHD14B_p52004019	ABHD14B	41.156/284.15	169.08/259.77	162.65	214.42	0.39653	16818	7840.3	0.58468	0.71105	0.28895	0.5779	0.79519	True
-AGPAT5_m6566212	AGPAT5	2451.7/2452.6	2151.3/2447.8	2452.2	2299.6	-0.092657	21972	68578	0.58273	0.28004	0.71996	0.56008	0.78694	False
-ACLY_p40070039	ACLY	314.55/252.18	88.955/359.9	283.37	224.43	-0.33509	19325	10584	0.57916	0.28124	0.71876	0.56248	0.78852	False
-ABHD14B_m52004073	ABHD14B	473.3/339.21	388.63/312.41	406.25	350.52	-0.21232	5947.5	9275.2	0.57872	0.28139	0.71861	0.56278	0.78852	False
-AFF1_m87967978	AFF1	549.73/365.85	375.38/697.49	457.79	536.43	0.22826	34392	18526	0.57781	0.71819	0.28181	0.56361	0.78858	True
-ACSS2_m33470722	ACSS2	734.94/358.74	541.93/378.78	546.84	460.36	-0.24786	42035	22618	0.57532	0.28254	0.71746	0.56508	0.78884	False
-ADAR_p154574157	ADAR	1030.4/522.13	676.31/663.73	776.25	670.02	-0.21203	64619	34248	0.57406	0.28296	0.71704	0.56593	0.78884	False
-ABL2_p179100578	ABL2	623.23/570.08	549.5/506.95	596.65	528.23	-0.17541	1158.8	14224	0.57371	0.28308	0.71692	0.56616	0.78884	False
-ABHD14B_p52004076	ABHD14B	2079.9/1886.1	2073.1/1622.7	1983	1847.9	-0.10171	60105	56127	0.57007	0.28431	0.71569	0.56863	0.79112	False
-ADAMTS5_m28338702	ADAMTS5	602.65/497.27	627.1/602.51	549.96	614.81	0.16054	2927.6	12991	0.56896	0.71531	0.28469	0.56938	0.79112	True
-AGAP2_p58128423	AGAP2	421.85/511.47	400.62/414.83	466.66	407.72	-0.19434	2058.5	10822	0.56659	0.2855	0.7145	0.571	0.7914	False
-ADI1_m3523239	ADI1	579.13/316.12	406.29/636.84	447.62	521.57	0.22011	30581	17082	0.56575	0.71413	0.28587	0.57174	0.7914	True
-ACTR5_m37377161	ACTR5	342.48/548.77	531.21/203.12	445.62	367.17	-0.2787	37549	19370	0.56516	0.28598	0.71402	0.57196	0.7914	False
-ADRBK2_m26000370	ADRBK2	711.42/431.56	571.59/423.41	571.49	497.5	-0.19965	25069	17395	0.56098	0.28741	0.71259	0.57481	0.79333	False
-ADAM10_p58974481	ADAM10	1339.1/1152.6	1468.1/1225	1245.8	1346.6	0.1121	23459	32271	0.56078	0.71253	0.28747	0.57495	0.79333	True
-ACTL6B_p100253094	ACTL6B	945.13/1408.3	1386.1/645.99	1176.7	1016	-0.21164	1.9057e+05	83712	0.55546	0.28929	0.71071	0.57858	0.79519	False
-AHCY_m32883267	AHCY	789.32/671.31	723.63/588.77	730.31	656.2	-0.15415	8028.3	17811	0.55531	0.28934	0.71066	0.57868	0.79519	False
-AGTPBP1_p88307675	AGTPBP1	1175.9/1147.3	909.11/1223.3	1161.6	1066.2	-0.12347	24887	29852	0.55193	0.2905	0.7095	0.58099	0.79727	False
-ADCK3_p227149079	ADCK3	2312.1/1088.7	1301.5/1652.5	1700.4	1477	-0.20307	4.05e+05	1.6541e+05	0.54929	0.2914	0.7086	0.58281	0.79866	False
-AEBP1_m44144289	AEBP1	1960.8/2106.3	1629/2164	2033.5	1896.5	-0.10062	76855	62737	0.54723	0.29211	0.70789	0.58422	0.79877	False
-ADRBK2_p26040592	ADRBK2	426.26/607.37	258.66/615.09	516.82	436.88	-0.24191	39961	21402	0.54684	0.29224	0.70776	0.58449	0.79877	False
-ACTN4_m39138527	ACTN4	214.6/159.84	251.09/38.336	187.22	144.72	-0.36926	12066	6634.6	0.54379	0.29329	0.70671	0.58658	0.80054	False
-AHRR_m353878	AHRR	1.4699/83.47	0/62.94	42.47	31.47	-0.4209	2671.3	1392.8	0.54162	0.29404	0.70596	0.58808	0.80117	False
-ABCC1_m16101777	ABCC1	699.66/728.14	938.13/639.13	713.9	788.63	0.14344	22554	19096	0.5408	0.70568	0.29432	0.58865	0.80117	True
-AHNAK_p62303477	AHNAK	655.56/500.82	554.55/475.48	578.19	515.02	-0.16662	7549.5	13735	0.53903	0.29493	0.70507	0.58987	0.80117	False
-A1CF_p52601638	A1CF	1093.6/815.16	777.89/1377.2	954.37	1077.6	0.17498	1.0919e+05	52388	0.53823	0.70479	0.29521	0.59043	0.80117	True
-ACTRT3_p169487280	ACTRT3	1469.9/1001.6	1264.9/975	1235.8	1120	-0.14182	75827	46596	0.53639	0.29584	0.70416	0.59169	0.80117	False
-ACVR2A_p148653997	ACVR2A	1603.6/1811.5	1557.7/1627.9	1707.5	1592.8	-0.10034	12031	45836	0.53615	0.29593	0.70407	0.59186	0.80117	False
-AFF3_p100623873	AFF3	318.96/438.66	435.31/210.56	378.81	322.94	-0.22956	16210	11124	0.53008	0.29803	0.70197	0.59606	0.80226	False
-ACVRL1_p52306287	ACVRL1	1687.4/1525.5	1391.1/2109.1	1606.5	1750.1	0.12345	1.3541e+05	73689	0.52904	0.70161	0.29839	0.59678	0.80226	True
-ADIRF_p88728292	ADIRF	1074.5/950.13	1100.9/743.84	1012.3	922.37	-0.13409	35740	28990	0.52821	0.29868	0.70132	0.59736	0.80226	False
-ADD3_m111860540	ADD3	1167.1/1316	1367.1/901.19	1241.5	1134.2	-0.13038	59821	41372	0.52785	0.2988	0.7012	0.5976	0.80226	False
-ADRA1A_p26722329	ADRA1A	1571.3/1456.3	1434/1382.4	1513.8	1408.2	-0.10423	3973.3	40085	0.52735	0.29897	0.70103	0.59795	0.80226	False
-AAAS_p53714405	AAAS	1644.8/1520.2	1395.5/1553.5	1582.5	1474.5	-0.10191	10116	42116	0.52625	0.29936	0.70064	0.59871	0.80226	False
-ACRC_p70800697	ACRC	232.24/681.96	275.7/467.47	457.1	371.59	-0.2981	59757	26969	0.52615	0.29939	0.70061	0.59879	0.80226	False
-AGFG1_p228337168	AGFG1	667.32/667.76	492.09/709.5	667.54	600.8	-0.15173	11817	16116	0.52571	0.29954	0.70046	0.59909	0.80226	False
-ADRBK2_p25960997	ADRBK2	1311.1/429.78	1237.2/823.37	870.45	1030.3	0.24293	2.37e+05	93436	0.52285	0.6988	0.3012	0.60241	0.80403	True
-AEN_m89169507	AEN	567.37/737.02	333.11/790.18	652.19	561.65	-0.21528	59424	30278	0.52055	0.30134	0.69866	0.60268	0.80403	False
-ADARB2_m1779246	ADARB2	1863.8/1585.9	1761.4/1464.2	1724.9	1612.8	-0.096827	41390	46354	0.52035	0.30141	0.69859	0.60282	0.80403	False
-AGAP2_p58129143	AGAP2	756.98/500.82	792.4/260.91	628.9	526.66	-0.25553	87024	39063	0.51878	0.30196	0.69804	0.60391	0.80441	False
-ABT1_m26597238	ABT1	488/367.62	312.29/441.15	427.81	376.72	-0.18301	7773.9	9824.3	0.51545	0.30312	0.69688	0.60624	0.80644	False
-ADH7_p100349706	ADH7	464.48/394.26	171.6/547.01	429.37	359.3	-0.25636	36465	18731	0.51365	0.30375	0.69625	0.6075	0.80704	False
-ADRA1A_p26722412	ADRA1A	1012.7/983.87	1008.8/825.66	998.31	917.23	-0.12208	8592.9	25221	0.51056	0.30483	0.69517	0.60966	0.80883	False
-AGAP3_m150784003	AGAP3	1387.6/1120.6	1214.5/1111.2	1254.1	1162.8	-0.10892	20481	32510	0.50621	0.30636	0.69364	0.61271	0.81147	False
-ADCK5_p145597774	ADCK5	576.19/541.66	670.64/303.83	558.93	487.23	-0.19767	33935	20130	0.5054	0.30664	0.69336	0.61328	0.81147	False
-ACAD11_p132378547	ACAD11	51.445/465.3	251.09/143.05	258.37	197.07	-0.38901	45737	18984	0.50398	0.30714	0.69286	0.61428	0.81172	False
-AGL_p100327114	AGL	47.036/147.4	239.74/30.898	97.22	135.32	0.47289	13422	5734.9	0.50309	0.65854	0.34146	0.68293	0.84021	True
-ACVR1_m158637054	ACVR1	291.03/866.66	570.32/389.08	578.85	479.7	-0.27053	91049	39518	0.50227	0.30774	0.69226	0.61548	0.81224	False
-AFF4_m132272841	AFF4	241.06/637.57	282.64/802.2	439.31	542.42	0.30354	1.0679e+05	42342	0.50107	0.68671	0.31329	0.62659	0.81924	True
-ACRC_p70800656	ACRC	258.7/685.52	533.73/560.74	472.11	547.24	0.21263	45726	22550	0.5003	0.69131	0.30869	0.61738	0.8126	True
-ADCY1_p45614284	ADCY1	435.08/504.37	371.59/463.47	469.73	417.53	-0.16955	3310.3	10901	0.49993	0.30856	0.69144	0.61713	0.8126	False
-ADD3_p111860545	ADD3	1381.7/1209.4	1247.3/1161	1295.5	1204.1	-0.10551	9280.7	33708	0.49803	0.30923	0.69077	0.61846	0.81295	False
-AGFG1_m228337208	AGFG1	671.73/781.42	554.55/766.72	726.57	660.64	-0.13705	14262	17710	0.49547	0.31013	0.68987	0.62027	0.81426	False
-ADNP_m49520451	ADNP	1649.2/783.19	773.47/1332	1216.2	1052.8	-0.20802	2.6549e+05	1.0944e+05	0.49427	0.31056	0.68944	0.62111	0.81429	False
-ADRM1_p60878682	ADRM1	1011.3/713.93	792.4/1100.3	862.6	946.35	0.13353	45805	29559	0.48712	0.68691	0.31309	0.62617	0.81924	True
-ADAP1_m975116	ADAP1	586.48/335.65	379.8/433.71	461.07	406.75	-0.1804	16455	12603	0.48382	0.31426	0.68574	0.62851	0.81924	False
-AFTPH_p64778890	AFTPH	620.29/529.23	366.55/657.44	574.76	511.99	-0.16653	23227	16839	0.48371	0.31429	0.68571	0.62859	0.81924	False
-AES_m3057717	AES	999.51/1026.5	938.13/1242.2	1013	1090.2	0.10581	23297	25635	0.48195	0.68508	0.31492	0.62984	0.81924	True
-ADRB3_p37823900	ADRB3	180.79/239.75	279.48/205.41	210.27	242.45	0.20451	2240.7	4458.9	0.48184	0.68478	0.31522	0.63043	0.81924	True
-ADCY1_m45614270	ADCY1	667.32/614.48	543.2/873.15	640.9	708.17	0.14379	27915	19573	0.48085	0.68469	0.31531	0.63063	0.81924	True
-ACTRT3_m169487252	ACTRT3	283.69/854.23	348.88/597.93	568.96	473.41	-0.26473	96887	41290	0.47513	0.31735	0.68265	0.6347	0.82346	False
-ABCC1_p16101667	ABCC1	320.43/248.63	247.31/397.67	284.53	322.49	0.18006	6940.6	6474.6	0.4717	0.68136	0.31864	0.63727	0.82573	True
-ABCC1_p16101721	ABCC1	1480.2/1214.7	882.61/1568.3	1347.5	1225.5	-0.13678	1.3517e+05	68533	0.46592	0.32064	0.67936	0.64127	0.82911	False
-AFMID_m76183481	AFMID	701.13/978.55	617.01/908.62	839.84	762.82	-0.1386	40500	27372	0.46554	0.32077	0.67923	0.64155	0.82911	False
-ABL2_m179100554	ABL2	1055.4/722.81	915.42/1007.6	889.09	961.52	0.11286	29773	24704	0.4608	0.67753	0.32247	0.64494	0.8294	True
-AAK1_m69870049	AAK1	535.03/825.82	437.21/1147.8	680.42	792.5	0.21968	1.4737e+05	60100	0.45717	0.67533	0.32467	0.64934	0.8294	True
-ADK_p76074446	ADK	1505.1/451.09	653.6/991.02	978.12	822.31	-0.25005	3.0622e+05	1.1851e+05	0.45682	0.3239	0.6761	0.6478	0.8294	False
-ACP1_m264989	ACP1	1456.6/1333.7	1753.9/1236.5	1395.2	1495.2	0.099788	70699	47970	0.45653	0.67599	0.32401	0.64801	0.8294	True
-ADNP2_p77875511	ADNP2	1293.5/1303.5	1006.9/1416.1	1298.5	1211.5	-0.099961	41896	36495	0.45537	0.32442	0.67558	0.64885	0.8294	False
-ADAD1_m123301345	ADAD1	514.45/468.85	733.09/374.21	491.65	553.65	0.17101	32720	18552	0.45517	0.67546	0.32454	0.64908	0.8294	True
-ACTR5_p37377204	ACTR5	291.03/305.46	359.61/310.69	298.25	335.15	0.16776	650.16	6577.1	0.45502	0.67542	0.32458	0.64917	0.8294	True
-A1CF_m52595977	A1CF	313.08/486.61	557.08/100.13	399.85	328.6	-0.28232	59727	25984	0.45424	0.32483	0.67517	0.64966	0.8294	False
-ACSL6_p131329878	ACSL6	908.38/1435	998.7/1151.8	1171.7	1075.2	-0.12379	75183	45155	0.45376	0.325	0.675	0.65	0.8294	False
-ACD_p67694194	ACD	1439/1046	1161.5/1155.8	1242.5	1158.6	-0.10075	38614	34322	0.45277	0.32536	0.67464	0.65071	0.8294	False
-ABCC1_p16043597	ABCC1	307.2/412.02	305.35/332.44	359.61	318.89	-0.17285	2930.1	8098.6	0.45251	0.32545	0.67455	0.6509	0.8294	False
-ADPRHL2_m36554563	ADPRHL2	1209.7/420.9	786.72/609.95	815.3	698.33	-0.22312	1.6337e+05	67877	0.4506	0.32614	0.67386	0.65228	0.8301	False
-ABT1_m26597359	ABT1	358.65/394.26	593.04/268.35	376.45	430.69	0.19371	26672	14572	0.44933	0.67311	0.32689	0.65379	0.83096	True
-AEBP2_m19615553	AEBP2	1371.4/534.56	865.58/796.48	952.97	831.03	-0.19732	1.7626e+05	74721	0.44657	0.32759	0.67241	0.65519	0.83141	False
-ADRA1B_p159343940	ADRA1B	1074.5/1252	1269.4/1211.3	1163.3	1240.3	0.092473	8724.8	29900	0.4457	0.67209	0.32791	0.65581	0.83141	True
-ACVR2B_p38518854	ACVR2B	2146/1630.3	1712.9/1851	1888.2	1781.9	-0.083494	71255	57928	0.44137	0.32947	0.67053	0.65895	0.83325	False
-ACD_p67694350	ACD	543.85/245.08	295.89/388.51	394.47	342.2	-0.20451	24461	14138	0.44042	0.32982	0.67018	0.65963	0.83325	False
-AGAP3_p150783915	AGAP3	837.83/719.26	374.75/993.88	778.54	684.31	-0.18586	99345	45865	0.44025	0.32988	0.67012	0.65976	0.83325	False
-ADAM12_m128019025	ADAM12	560.02/861.33	956.43/613.95	710.68	785.19	0.14365	52020	28860	0.43861	0.66952	0.33048	0.66095	0.8337	True
-ACTN1_p69392370	ACTN1	2125.4/1632.1	1962.7/1996.9	1878.8	1979.8	0.075535	61138	54367	0.43334	0.66762	0.33238	0.66477	0.83695	True
-ACVR1B_m52369211	ACVR1B	1512.5/1339.1	1062.4/1594.1	1425.8	1328.3	-0.10214	78190	51064	0.43157	0.33303	0.66697	0.66605	0.83695	False
-ADCY1_p45614294	ADCY1	149.93/312.57	287.69/239.74	231.25	263.71	0.18878	7187.5	5700	0.43005	0.66606	0.33394	0.66789	0.83695	True
-ADRB3_p37823952	ADRB3	1233.2/1458.1	1519.8/1332.6	1345.6	1426.2	0.083838	21399	35162	0.4297	0.66629	0.33371	0.66742	0.83695	True
-ACTN1_p69445708	ACTN1	179.32/252.18	249.2/240.32	215.75	244.76	0.18118	1346.9	4588.3	0.42819	0.6655	0.3345	0.669	0.83695	True
-ACSL6_p131329824	ACSL6	1027.4/978.55	1338.1/414.83	1003	876.47	-0.19432	2.1371e+05	88139	0.42682	0.33475	0.66525	0.66951	0.83695	False
-ACTL6B_p100253037	ACTL6B	1394.9/816.94	642.25/1321.2	1105.9	981.71	-0.17172	1.9875e+05	85092	0.42596	0.33507	0.66493	0.67014	0.83695	False
-AAK1_m69870119	AAK1	595.3/488.39	508.5/478.92	541.84	493.71	-0.13396	3076.3	12778	0.42583	0.33512	0.66488	0.67023	0.83695	False
-ACBD6_m180471378	ACBD6	592.36/577.18	782.93/494.36	584.77	638.65	0.12695	20876	16231	0.4229	0.66382	0.33618	0.67237	0.83796	True
-ABI1_m27149764	ABI1	204.31/332.1	203.15/268.93	268.21	236.04	-0.18361	5164.3	5844.6	0.42122	0.3368	0.6632	0.67359	0.83796	False
-ADRA1B_m159343934	ADRA1B	748.16/1200.5	1029.6/751.27	974.35	890.44	-0.12978	70529	39875	0.4202	0.33717	0.66283	0.67434	0.83796	False
-AEBP2_p19615440	AEBP2	1030.4/1092.2	878.2/1106.6	1061.3	992.4	-0.096738	13997	26998	0.4193	0.3375	0.6625	0.675	0.83796	False
-AHRR_m353898	AHRR	561.49/170.49	199.36/411.97	365.99	305.67	-0.25908	49521	22013	0.41892	0.33764	0.66236	0.67528	0.83796	False
-ADPRHL2_p36554568	ADPRHL2	492.41/793.85	555.81/863.99	643.13	709.9	0.14231	46460	25795	0.41577	0.6612	0.3388	0.6776	0.83796	True
-AFMID_p76187060	AFMID	454.19/1129.5	697.13/699.21	791.85	698.17	-0.1814	1.1401e+05	50997	0.41523	0.33899	0.66101	0.67797	0.83796	False
-ADAP1_m975132	ADAP1	956.89/941.25	1210.7/826.8	949.07	1018.7	0.1021	36901	28194	0.41493	0.6609	0.3391	0.6782	0.83796	True
-ADAD1_m123301332	ADAD1	1045.1/1118.8	1071.9/954.4	1082	1013.1	-0.094726	4811	27584	0.41438	0.3393	0.6607	0.67859	0.83796	False
-ADNP_p49510837	ADNP	495.35/301.91	336.9/555.02	398.63	445.96	0.16147	21248	13137	0.41291	0.66008	0.33992	0.67985	0.83796	True
-ADAM10_p59009767	ADAM10	886.33/751.23	969.05/521.83	818.78	745.44	-0.13521	54564	31673	0.4121	0.34013	0.65987	0.68027	0.83796	False
-ACSS2_m33500955	ACSS2	626.17/884.42	517.33/858.27	755.29	687.8	-0.13486	45735	27572	0.40647	0.3422	0.6578	0.6844	0.84098	False
-AFAP1L2_p116100433	AFAP1L2	333.66/296.58	346.36/216.28	315.12	281.32	-0.16314	4573.5	6992.3	0.40436	0.34297	0.65703	0.68595	0.84101	False
-AHNAK2_m105423801	AHNAK2	1215.6/1655.2	1491.4/1543.7	1435.4	1517.6	0.080286	48996	41520	0.40341	0.65668	0.34332	0.68664	0.84101	True
-ACTL6B_m100253076	ACTL6B	924.55/1115.3	1301.5/888.03	1019.9	1094.8	0.10208	51842	34500	0.403	0.65652	0.34348	0.68695	0.84101	True
-ADRB2_m148206447	ADRB2	826.07/822.26	880.09/654	824.17	767.05	-0.10349	12783	20376	0.40014	0.34453	0.65547	0.68905	0.84176	False
-AGTPBP1_m88307687	AGTPBP1	1988.7/1243.2	1431.5/1579.2	1615.9	1505.4	-0.10221	1.4443e+05	76881	0.39887	0.345	0.655	0.68999	0.84176	False
-ADRBK2_m25961108	ADRBK2	1031.8/392.48	904.7/696.34	712.17	800.52	0.1685	1.1305e+05	49230	0.39821	0.65453	0.34547	0.69094	0.84176	True
-ADH7_m100350690	ADH7	170.51/715.71	366.55/382.22	443.11	374.38	-0.24254	74373	31601	0.39783	0.34538	0.65462	0.69076	0.84176	False
-ADD1_p2877644	ADD1	820.19/1019.4	1227.7/763.29	919.79	995.5	0.114	63843	36630	0.39558	0.65379	0.34621	0.69242	0.84235	True
-ACLY_m40070116	ACLY	1009.8/1102.9	1237.2/1004.8	1056.3	1121	0.085596	15670	26858	0.39437	0.65335	0.34665	0.69331	0.84235	True
-ADD1_m2877776	ADD1	565.9/438.66	539.41/550.44	502.28	544.92	0.11734	4078	11744	0.39351	0.65303	0.34697	0.69395	0.84235	True
-ADAR_m154574108	ADAR	1594.8/1092.2	1489.5/1000.2	1343.5	1244.9	-0.10995	1.2302e+05	64407	0.38874	0.34873	0.65127	0.69747	0.84559	False
-ACTR8_m53916103	ACTR8	903.97/1445.6	1482.6/1055.1	1174.8	1268.8	0.11102	1.1903e+05	59831	0.3845	0.6497	0.3503	0.70061	0.84801	True
-AATK_m79102325	AATK	930.43/1282.2	1182.3/1161.5	1106.3	1171.9	0.083003	31050	29201	0.38375	0.64942	0.35058	0.70116	0.84801	True
-ADPRHL2_p36554580	ADPRHL2	849.59/935.92	934.35/739.83	892.75	837.09	-0.092776	11323	22272	0.373	0.35457	0.64543	0.70915	0.85664	False
-ADAM10_m59041689	ADAM10	89.662/99.453	49.84/176.8	94.558	113.32	0.25866	4053.9	2573.9	0.36987	0.63281	0.36719	0.73438	0.86924	True
-ACVR1_m158655997	ACVR1	1349.3/2315.8	1698.4/1722.3	1832.6	1710.3	-0.099568	2.3367e+05	1.1095e+05	0.3671	0.35677	0.64323	0.71354	0.8609	False
-ADCK3_p227149124	ADCK3	1208.2/1010.5	1032.8/1063.1	1109.4	1047.9	-0.082114	10004	28363	0.36479	0.35764	0.64236	0.71527	0.86195	False
-ACP1_m272095	ACP1	511.52/669.53	495.25/783.89	590.52	639.57	0.11492	27071	18398	0.36158	0.64117	0.35883	0.71767	0.8638	True
-ADAP1_m975089	ADAP1	471.83/632.24	523.64/662.59	552.03	593.11	0.10337	11259	13046	0.35966	0.64045	0.35955	0.7191	0.86416	True
-AEN_p89169516	AEN	1444.9/1069.1	1717.3/994.45	1257	1355.9	0.10914	1.6592e+05	77036	0.3562	0.63915	0.36085	0.72169	0.86416	True
-AES_m3057678	AES	868.69/792.07	746.34/1016.2	830.38	881.27	0.085704	19673	20547	0.35499	0.6387	0.3613	0.7226	0.86416	True
-ADI1_m3523156	ADI1	768.74/722.81	643.51/948.68	745.78	796.09	0.09407	23809	20091	0.35498	0.6387	0.3613	0.72261	0.86416	True
-ACVR1_p158637035	ACVR1	2013.7/1378.1	1688.3/1887.1	1695.9	1787.7	0.075951	1.1087e+05	67284	0.35363	0.63819	0.36181	0.72362	0.86416	True
-ACD_m67694316	ACD	279.28/451.09	408.82/385.65	365.18	397.23	0.12105	7514.3	8238.3	0.35311	0.63799	0.36201	0.72402	0.86416	True
-ACVR1C_m158401113	ACVR1C	329.25/328.55	306.61/410.25	328.9	358.43	0.12369	2685.5	7333.1	0.34487	0.63488	0.36512	0.73024	0.86924	True
-ADCK3_m227149153	ADCK3	1240.6/2438.4	1870/2081.6	1839.5	1975.8	0.10307	3.6988e+05	1.5649e+05	0.34456	0.63479	0.36521	0.73043	0.86924	True
-ACSS2_m33501214	ACSS2	680.55/747.67	533.1/1016.2	714.11	774.65	0.11723	59471	31405	0.3416	0.63366	0.36634	0.73268	0.86924	True
-ACD_p67694285	ACD	608.53/495.49	551.4/630.54	552.01	590.97	0.098226	4760.4	13045	0.34114	0.6335	0.3665	0.733	0.86924	True
-ADI1_p3517660	ADI1	980.4/834.7	943.81/769.01	907.55	856.41	-0.083578	12946	22683	0.33954	0.3671	0.6329	0.7342	0.86924	False
-A1CF_p52596023	A1CF	286.62/761.88	493.99/442.87	524.25	468.43	-0.16211	57120	27252	0.33943	0.36714	0.63286	0.73429	0.86924	False
-ADARB1_p46595724	ADARB1	343.95/129.64	305.98/227.16	236.8	266.57	0.17018	13035	7737.4	0.33846	0.63118	0.36882	0.73764	0.87104	True
-ADRB2_m148206406	ADRB2	829.01/861.33	992.39/795.33	845.17	893.86	0.080714	9969.2	20955	0.33635	0.6317	0.3683	0.7366	0.87085	True
-AES_p3061179	AES	268.99/310.79	112.93/397.67	289.89	255.3	-0.18265	20706	11150	0.33263	0.36971	0.63029	0.73942	0.87211	False
-ABTB1_p127395834	ABTB1	502.7/861.33	413.86/825.09	682.02	619.47	-0.13855	74431	35814	0.33073	0.37042	0.62958	0.74085	0.87233	False
-ADPRHL2_p36554520	ADPRHL2	1102.4/1054.9	1372.8/910.34	1078.7	1141.6	0.081719	54035	36338	0.33007	0.62933	0.37067	0.74135	0.87233	True
-ACTN1_p69445679	ACTN1	257.23/131.42	240.37/191.11	194.32	215.74	0.15009	4563.5	4244.2	0.32872	0.62828	0.37172	0.74343	0.87279	True
-ADARB1_p46595700	ADARB1	739.35/914.61	992.39/755.85	826.98	874.12	0.079888	21667	20858	0.32641	0.62794	0.37206	0.74411	0.87279	True
-ADAM12_m128076635	ADAM12	355.71/708.6	520.48/635.69	532.16	578.09	0.11923	34452	19833	0.32616	0.62782	0.37218	0.74437	0.87279	True
-ADCK1_m78285376	ADCK1	1459.6/1179.2	1296.5/1222.2	1319.4	1259.3	-0.067181	21030	34400	0.32391	0.373	0.627	0.746	0.87369	False
-AAK1_p69870063	AAK1	485.06/296.58	229.64/651.71	390.82	440.68	0.17281	53417	23728	0.32368	0.62481	0.37519	0.75038	0.87676	True
-ACAD9_p128598551	ACAD9	1159.7/1335.5	1120.5/1258.8	1247.6	1189.6	-0.06861	12509	32323	0.32255	0.37352	0.62648	0.74703	0.87387	False
-AES_p3061195	AES	539.44/355.19	834.67/193.97	447.32	514.32	0.20095	1.1111e+05	43919	0.31971	0.61916	0.38084	0.76168	0.88069	True
-ADCK2_p140373122	ADCK2	579.13/932.37	760.85/653.43	755.75	707.14	-0.095779	34080	23695	0.31578	0.37609	0.62391	0.75217	0.87782	False
-AFF1_p87967869	AFF1	718.77/1246.7	1205.6/897.18	982.74	1051.4	0.09734	93468	47678	0.31446	0.62341	0.37659	0.75317	0.87797	True
-ACLY_p40070105	ACLY	761.39/475.95	559.6/596.79	618.67	578.19	-0.097466	20715	16778	0.31253	0.37732	0.62268	0.75464	0.8784	False
-ADRM1_p60878671	ADRM1	420.38/134.97	307.87/312.41	277.68	310.14	0.15898	20370	10840	0.31182	0.62096	0.37904	0.75808	0.87899	True
-ACP1_p272185	ACP1	1625.7/797.4	951.38/1287.4	1211.5	1119.4	-0.11402	1.9974e+05	87436	0.31165	0.37765	0.62235	0.75531	0.8784	False
-ABHD14B_p52004124	ABHD14B	858.4/969.67	791.14/1137.5	914.04	964.32	0.077173	33086	26271	0.31021	0.6218	0.3782	0.7564	0.87866	True
-ADCK5_m145603095	ADCK5	906.91/1017.6	848.55/1175.3	962.26	1011.9	0.072493	29749	26056	0.30752	0.62078	0.37922	0.75845	0.87899	True
-AHNAK2_m105444555	AHNAK2	504.17/277.05	162.14/738.11	390.61	450.13	0.20413	95833	37863	0.30588	0.61147	0.38853	0.77707	0.88952	True
-ACTL6A_p179291144	ACTL6A	185.2/449.31	146.37/412.54	317.26	279.45	-0.18244	35151	16414	0.30587	0.37985	0.62015	0.7597	0.87942	False
-ACTL7A_p111624686	ACTL7A	341.01/118.99	105.99/296.96	230	201.48	-0.19014	21441	10431	0.29891	0.38251	0.61749	0.76501	0.88352	False
-ACVR2A_m148653961	ACVR2A	862.81/431.56	651.08/545.86	647.18	598.47	-0.11272	49264	26802	0.29763	0.38299	0.61701	0.76599	0.88363	False
-AEBP2_p19615492	AEBP2	730.53/387.16	403.77/822.22	558.84	613	0.13321	73252	33234	0.29707	0.61638	0.38362	0.76725	0.88386	True
-AES_p3056318	AES	1078.9/658.88	797.44/839.39	868.88	818.42	-0.08622	44542	29254	0.29504	0.38398	0.61602	0.76796	0.88386	False
-ADAP1_m994106	ADAP1	440.96/660.65	675.05/498.94	550.81	587	0.091646	19820	15282	0.29275	0.61514	0.38486	0.76972	0.88486	True
-ADRA1B_m159344006	ADRA1B	501.23/221.99	217.66/434.86	361.61	326.26	-0.14799	31287	15861	0.28397	0.38822	0.61178	0.77644	0.88952	False
-AFMID_m76187079	AFMID	395.4/470.63	546.35/251.76	433.01	399.06	-0.11753	23111	14342	0.28378	0.38829	0.61171	0.77658	0.88952	False
-ADNP2_p77891053	ADNP2	354.24/321.45	338.16/288.38	337.84	313.27	-0.10862	888.29	7555.2	0.2828	0.38866	0.61134	0.77733	0.88952	False
-ADRA1A_p26722465	ADRA1A	555.61/497.27	957.69/225.44	526.44	591.57	0.16797	1.349e+05	53216	0.28232	0.60673	0.39327	0.78654	0.89485	True
-ADAR_m154574165	ADAR	673.2/518.58	545.72/579.05	595.89	562.38	-0.083345	6254.9	14204	0.28113	0.3893	0.6107	0.77861	0.88997	False
-ACTN1_m69445718	ACTN1	1086.2/632.24	1101.5/731.25	859.24	916.39	0.092804	85806	42831	0.27617	0.60878	0.39122	0.78243	0.8914	True
-ACAT2_p160183121	ACAT2	1668.3/1926.9	2248.5/1506.6	1797.6	1877.5	0.062721	1.5434e+05	83802	0.27607	0.60875	0.39125	0.78249	0.8914	True
-ACVRL1_m52306307	ACVRL1	818.72/976.77	1041.6/836.53	897.74	939.06	0.064848	16759	22410	0.27601	0.60873	0.39127	0.78254	0.8914	True
-AGAP2_m58129192	AGAP2	795.2/726.36	1025.2/378.78	760.78	701.99	-0.11587	1.0565e+05	47642	0.26974	0.39368	0.60632	0.78736	0.89485	False
-ACTR3_p114674498	ACTR3	1317/1179.2	1340.6/1059.1	1248.1	1199.9	-0.056823	24561	32337	0.26827	0.39424	0.60576	0.78849	0.89511	False
-AHNAK_m62303507	AHNAK	116.12/236.2	292.73/19.454	176.16	156.09	-0.17343	22275	9866.6	0.26114	0.39699	0.60301	0.79398	0.89922	False
-ADH7_m100349694	ADH7	811.37/1031.8	1026.5/896.04	921.6	961.25	0.060706	16403	23074	0.26102	0.60296	0.39704	0.79407	0.89922	True
-ADAP1_p975103	ADAP1	909.85/710.38	528.05/1215.3	810.11	871.68	0.10555	1.2803e+05	56003	0.26017	0.60251	0.39749	0.79498	0.89922	True
-ADK_p75960554	ADK	363.06/825.82	736.88/349.6	594.44	543.24	-0.1297	91032	39787	0.25891	0.39785	0.60215	0.7957	0.89922	False
-AHCY_m32883330	AHCY	2009.3/2235.9	2437.1/1938	2122.6	2187.6	0.043454	75125	63974	0.25674	0.60131	0.39869	0.79738	0.9001	True
-AGFG1_m228337178	AGFG1	549.73/1021.2	786.72/874.87	785.45	830.79	0.080867	57506	32045	0.25329	0.59998	0.40002	0.80005	0.90139	True
-ADAR_p154574043	ADAR	765.8/1046	1073.8/821.08	905.92	947.43	0.064565	35596	26957	0.25282	0.5998	0.4002	0.80041	0.90139	True
-ADH5_p100003224	ADH5	555.61/362.29	341.94/643.13	458.95	492.54	0.10167	32022	17756	0.25204	0.59938	0.40062	0.80124	0.90139	True
-ACTL6B_m100253971	ACTL6B	483.59/458.19	227.75/640.84	470.89	434.3	-0.11645	42822	21561	0.25025	0.4012	0.5988	0.80239	0.90168	False
-ADAMTS5_p28338612	ADAMTS5	114.65/294.81	175.39/274.07	204.73	224.73	0.13386	10549	6401.9	0.24999	0.59658	0.40342	0.80683	0.90361	True
-ADARB1_m46595675	ADARB1	568.84/470.63	704.7/398.81	519.73	551.76	0.086102	25804	16734	0.24756	0.59775	0.40225	0.8045	0.90303	True
-AEBP1_m44144302	AEBP1	590.89/848.9	495.88/861.13	719.9	678.51	-0.085304	49995	28351	0.24583	0.40291	0.59709	0.80582	0.90349	False
-AGTPBP1_m88296222	AGTPBP1	1672.7/903.96	1204.4/1508.8	1288.3	1356.6	0.074437	1.7092e+05	79307	0.24242	0.59577	0.40423	0.80845	0.90386	True
-AEN_p89169534	AEN	1030.4/1065.6	1486.4/452.02	1048	969.2	-0.11263	2.6778e+05	1.0701e+05	0.24185	0.40445	0.59555	0.80889	0.90386	False
-AGPAT5_m6566254	AGPAT5	764.33/475.95	369.7/785.6	620.14	577.65	-0.10223	64035	31244	0.24073	0.40488	0.59512	0.80976	0.90386	False
-ADAD1_p123301373	ADAD1	923.08/836.47	918.58/770.16	879.78	844.37	-0.059198	7382.3	21912	0.23921	0.40547	0.59453	0.81094	0.90416	False
-ADH5_m100009841	ADH5	1943.2/2260.8	2097.1/1992.9	2102	2045	-0.039631	27932	57767	0.23708	0.4063	0.5937	0.81259	0.90499	False
-ADRB3_m37823842	ADRB3	142.58/0	0/138.47	71.289	69.234	-0.041603	9875.4	4185	0.23486	0.40716	0.59284	0.81431	0.90538	False
-AFF2_p147891422	AFF2	122/626.91	374.12/303.26	374.45	338.69	-0.14443	64989	27310	0.23431	0.40737	0.59263	0.81475	0.90538	False
-ADAP1_m994101	ADAP1	1148/797.4	909.11/1116.3	972.68	1012.7	0.058131	41459	30154	0.23055	0.59117	0.40883	0.81767	0.90609	True
-ADH7_p100350724	ADH7	342.48/385.38	449.19/320.42	363.93	384.81	0.08026	4605.7	8206.9	0.23045	0.59112	0.40888	0.81776	0.90609	True
-ACVR1C_p158443786	ACVR1C	1409.6/918.16	1267.5/1152.9	1163.9	1210.2	0.056251	63657	41164	0.22828	0.59029	0.40971	0.81943	0.90609	True
-ABI1_p27149695	ABI1	232.24/76.366	152.68/185.39	154.3	169.03	0.13072	6341.7	4221	0.2267	0.58604	0.41396	0.82792	0.9069	True
-ADCK2_m140373231	ADCK2	1314.1/1149	1178.5/1203.9	1231.6	1191.2	-0.048039	6969.3	31860	0.22615	0.41054	0.58946	0.82109	0.90609	False
-ACAD11_p132378525	ACAD11	818.72/1150.8	718.58/1158.7	984.77	938.63	-0.06916	75990	41891	0.22544	0.41082	0.58918	0.82164	0.90609	False
-ADARB1_m46595697	ADARB1	712.89/566.53	600.61/623.11	639.71	611.86	-0.064117	5481.9	15371	0.22465	0.41113	0.58887	0.82226	0.90609	False
-ADAMTS5_p28338607	ADAMTS5	1114.2/941.25	1267.5/690.05	1027.7	978.75	-0.070341	90824	47641	0.22428	0.41127	0.58873	0.82254	0.90609	False
-ADNP_m49518587	ADNP	3017.6/2642.6	1834.6/3573.3	2830.1	2703.9	-0.065775	7.9088e+05	3.1726e+05	0.22401	0.41137	0.58863	0.82275	0.90609	False
-ACAD9_p128598525	ACAD9	574.72/531.01	271.28/929.22	552.86	600.25	0.11844	1.087e+05	44945	0.22353	0.58655	0.41345	0.82689	0.9069	True
-ABL2_m179100544	ABL2	649.68/268.17	547.61/301.54	458.93	424.58	-0.11198	51526	24257	0.22298	0.41178	0.58822	0.82355	0.90609	False
-ADH7_p100349757	ADH7	605.59/575.41	513.54/719.23	590.5	616.39	0.061807	10805	14061	0.21835	0.58642	0.41358	0.82716	0.9069	True
-AFF3_p100623814	AFF3	949.54/1074.4	610.7/1307.4	1012	959.07	-0.077415	1.2526e+05	58824	0.21824	0.41362	0.58638	0.82725	0.9069	False
-ACTR5_p37377163	ACTR5	532.09/822.26	991.13/451.45	677.18	721.29	0.090912	93862	42205	0.21472	0.5848	0.4152	0.83039	0.90861	True
-ABCB8_p150730705	ABCB8	1092.1/927.04	883.25/1204.4	1009.6	1043.8	0.048104	32604	27893	0.20516	0.58128	0.41872	0.83745	0.91533	True
-ADRB1_m115803996	ADRB1	645.27/515.02	705.97/400.53	580.15	553.25	-0.068381	27564	18379	0.19845	0.42134	0.57866	0.84269	0.92005	False
-AHCTF1_m247067252	AHCTF1	196.96/301.91	423.96/34.331	249.44	229.14	-0.12191	40706	17163	0.19677	0.422	0.578	0.84401	0.92049	False
-ACTR3_p114684953	ACTR3	85.253/635.79	181.07/624.25	360.52	402.66	0.15905	1.2488e+05	47040	0.19428	0.55559	0.44441	0.88882	0.94234	True
-ADRM1_p60878687	ADRM1	202.84/319.67	429.01/51.496	261.26	240.25	-0.12044	39040	16798	0.19427	0.42298	0.57702	0.84596	0.92161	False
-ABLIM2_p8108331	ABLIM2	1300.8/1157.9	1311.6/1078.6	1229.4	1195.1	-0.040773	18685	31797	0.19227	0.42376	0.57624	0.84753	0.92205	False
-ACTL7A_m111624726	ACTL7A	405.68/303.69	417.02/257.48	354.69	337.25	-0.072514	8963.8	8304.8	0.1914	0.42411	0.57589	0.84821	0.92205	False
-AFF1_m87967382	AFF1	371.88/348.09	144.47/526.41	359.98	335.44	-0.10157	36610	17608	0.18984	0.42472	0.57528	0.84944	0.92238	False
-ACTR8_m53916111	ACTR8	651.15/1081.6	576/1072.3	866.35	824.14	-0.071988	1.0788e+05	50320	0.18828	0.42533	0.57467	0.85066	0.9227	False
-ACD_p67694362	ACD	1590.4/1097.5	1333.1/1433.3	1344	1383.2	0.041472	63241	44489	0.18596	0.57376	0.42624	0.85247	0.92307	True
-ADRA1B_m159344028	ADRA1B	1074.5/527.46	930.56/746.12	800.97	838.34	0.06572	83312	40930	0.18475	0.57327	0.42673	0.85346	0.92307	True
-ADNP2_p77875445	ADNP2	655.56/619.81	562.12/667.74	637.68	614.93	-0.052338	3108.2	15316	0.18386	0.42706	0.57294	0.85412	0.92307	False
-AGPAT5_m6566223	AGPAT5	1149.4/2033.5	1704/1361.2	1591.4	1532.6	-0.054301	2.2475e+05	1.0317e+05	0.18313	0.42735	0.57265	0.85469	0.92307	False
-ADCK2_m140373168	ADCK2	689.37/548.77	447.93/740.97	619.07	594.45	-0.05844	26411	18683	0.18009	0.42854	0.57146	0.85708	0.92465	False
-ADCK1_p78285386	ADCK1	809.9/687.29	678.84/865.71	748.6	772.27	0.044868	12489	18308	0.175	0.56946	0.43054	0.86108	0.92796	True
-AEBP1_m44144338	AEBP1	580.6/351.64	693.35/293.53	466.12	493.44	0.082003	53070	24895	0.17315	0.56806	0.43194	0.86389	0.92909	True
-ADD1_p2877761	ADD1	1411.1/648.22	1070/1076.8	1029.6	1073.4	0.060002	1.455e+05	65902	0.1705	0.56768	0.43232	0.86465	0.92909	True
-ADCY1_p45614255	ADCY1	451.25/825.82	820.16/515.54	638.53	667.85	0.064655	58273	29651	0.17023	0.56754	0.43246	0.86492	0.92909	True
-ACRC_p70800708	ACRC	2395.9/2441.9	2463/2461.5	2418.9	2462.3	0.025616	530.42	67543	0.1668	0.56624	0.43376	0.86753	0.93089	True
-ADAD1_p123301349	ADAD1	956.89/285.93	505.97/664.87	621.41	585.42	-0.085913	1.1886e+05	49541	0.16543	0.4343	0.5657	0.86861	0.93105	False
-ADRB2_p148206418	ADRB2	443.9/412.02	461.81/361.62	427.96	411.71	-0.055699	2763.7	9828.1	0.16388	0.43491	0.56509	0.86983	0.93136	False
-AGAP2_p58129153	AGAP2	305.73/204.23	254.25/279.8	254.98	267.02	0.066304	2738.7	5525.1	0.16197	0.5642	0.4358	0.8716	0.93225	True
-ACVR2A_m148602767	ACVR2A	1593.3/1419	1124.2/1805.2	1506.2	1464.7	-0.040206	1.2354e+05	67752	0.15914	0.43678	0.56322	0.87356	0.93336	False
-ADAD1_m123301295	ADAD1	595.3/887.97	957.69/578.48	741.64	768.08	0.050485	57366	31201	0.14973	0.5595	0.4405	0.88099	0.94029	True
-ACO2_m41895824	ACO2	590.89/333.88	292.1/679.75	462.38	485.93	0.071499	54082	25168	0.1484	0.5582	0.4418	0.8836	0.94106	True
-ACTL7A_m111624641	ACTL7A	1931.4/1555.7	1583.5/1838.4	1743.6	1711	-0.027209	51526	48451	0.14808	0.44114	0.55886	0.88228	0.94066	False
-ABL2_p179100489	ABL2	2303.3/1491.8	1720.4/1986.6	1897.5	1853.5	-0.033842	1.8234e+05	95146	0.1427	0.44326	0.55674	0.88653	0.94234	False
-ADCK2_p140373158	ADCK2	837.83/953.68	861.16/972.71	895.76	916.94	0.03368	6466.2	22355	0.14167	0.55633	0.44367	0.88734	0.94234	True
-ABL1_m133729594	ABL1	780.5/502.59	1136.9/78.389	641.55	607.63	-0.078246	2.994e+05	1.1008e+05	0.13952	0.44452	0.55548	0.88904	0.94234	False
-ACVR1_m158637066	ACVR1	709.95/658.88	675.05/658.01	684.41	666.53	-0.038138	724.69	16570	0.13891	0.44476	0.55524	0.88952	0.94234	False
-AHNAK_m62303523	AHNAK	179.32/298.36	150.15/305.54	238.84	227.85	-0.067691	9579.1	6618	0.13747	0.44533	0.55467	0.89066	0.94255	False
-ACTN1_m69445724	ACTN1	1471.3/1317.8	1537.5/1199.9	1394.5	1368.7	-0.027001	34393	36587	0.13528	0.4462	0.5538	0.89239	0.94308	False
-ADK_p76074481	ADK	438.02/74.59	254.88/231.16	256.31	243.02	-0.076482	33161	14758	0.13372	0.44681	0.55319	0.89362	0.94308	False
-AAK1_m69870131	AAK1	1108.3/1355	890.19/1508.8	1231.7	1199.5	-0.038129	1.1091e+05	58211	0.13326	0.44699	0.55301	0.89399	0.94308	False
-AFAP1L2_m116093045	AFAP1L2	708.48/847.13	752.65/767.87	777.8	760.26	-0.032869	4863.8	19105	0.12692	0.4495	0.5505	0.899	0.94737	False
-ACAD11_p132378501	ACAD11	1065.7/742.35	903.43/865.71	904	884.57	-0.03131	26488	23886	0.12571	0.44998	0.55002	0.89996	0.94737	False
-AHRR_p344030	AHRR	736.41/893.3	1114.8/459.46	814.85	787.12	-0.049891	1.1352e+05	51252	0.12272	0.45117	0.54883	0.90233	0.94887	False
-AATK_p79104858	AATK	417.44/614.48	570.96/487.5	515.96	529.23	0.036555	11447	12101	0.1206	0.54799	0.45201	0.90401	0.94964	True
-AAAS_m53715238	AAAS	47.036/239.75	265.6/44.058	143.39	154.83	0.10997	21556	9127.4	0.11971	0.51532	0.48468	0.96936	0.97895	True
-ADRB2_p148206455	ADRB2	4950.5/3555.4	3992.9/4392.1	4253	4192.5	-0.020666	5.2639e+05	2.5987e+05	0.11869	0.45276	0.54724	0.90552	0.95023	False
-AATF_p35307527	AATF	2185.7/1482.9	1741.9/1862.5	1834.3	1802.2	-0.025487	1.2711e+05	75463	0.11699	0.45343	0.54657	0.90687	0.95064	False
-ADCK5_m145603170	ADCK5	858.4/802.73	1068.7/548.15	830.57	808.44	-0.03891	68525	36543	0.11576	0.45392	0.54608	0.90784	0.95066	False
-ACAD11_m132378519	ACAD11	401.27/440.43	453.61/365.62	420.85	409.62	-0.038954	2318.8	9646.8	0.11443	0.45445	0.54555	0.9089	0.95077	False
-ADRM1_m60878679	ADRM1	1584.5/1610.8	1700.9/1448.8	1597.7	1574.8	-0.020753	16063	42565	0.11067	0.45594	0.54406	0.91188	0.9529	False
-ACVR1B_m52369226	ACVR1B	51.445/364.07	324.91/117.3	207.76	221.1	0.0894	35209	14669	0.11019	0.5233	0.4767	0.95339	0.97432	True
-ADCK5_p145603142	ADCK5	1280.3/1479.4	1263/1536.3	1379.8	1399.7	0.020605	28579	36157	0.10446	0.5416	0.4584	0.9168	0.95704	True
-ADRA1A_m26722473	ADRA1A	811.37/580.73	739.4/625.97	696.05	682.68	-0.027935	16515	16884	0.10287	0.45903	0.54097	0.91806	0.95726	False
-ABL1_m133729467	ABL1	984.81/797.4	1328/394.23	891.11	861.13	-0.049315	2.2677e+05	90408	0.10177	0.45947	0.54053	0.91894	0.95726	False
-ADARB2_m1779266	ADARB2	1568.4/2083.2	1810.7/1887.6	1825.8	1849.1	0.01834	67745	55503	0.099199	0.53951	0.46049	0.92098	0.95824	True
-AEN_m89169495	AEN	662.91/594.94	834.04/391.94	628.93	612.99	-0.036969	50016	26727	0.097564	0.46114	0.53886	0.92228	0.95824	False
-AGTPBP1_p88307644	AGTPBP1	302.79/335.65	274.44/347.89	319.22	311.16	-0.036787	1618.7	7093.6	0.095825	0.46183	0.53817	0.92366	0.95824	False
-AGBL5_m27275975	AGBL5	779.03/932.37	778.52/905.19	855.7	841.85	-0.02351	9889.9	21246	0.095004	0.46216	0.53784	0.92431	0.95824	False
-ABHD14B_m52004106	ABHD14B	446.84/394.26	519.22/340.45	420.55	429.84	0.03143	8681.2	9639	0.094568	0.53767	0.46233	0.92467	0.95824	True
-ABTB1_m127395808	ABTB1	1184.7/650	888.29/910.91	917.36	899.6	-0.028163	71609	39174	0.089702	0.46426	0.53574	0.92852	0.96124	False
-ADRB1_m115804041	ADRB1	414.5/1147.3	604.39/1002.5	780.88	803.43	0.041009	1.7385e+05	70742	0.084761	0.533	0.467	0.934	0.96456	True
-ACO2_m41903807	ACO2	474.77/1126	864.95/773.02	800.36	818.98	0.033145	1.0812e+05	49189	0.083972	0.53339	0.46661	0.93322	0.96456	True
-AFTPH_m64778724	AFTPH	49.976/127.87	105.99/66.945	88.922	86.467	-0.039928	1897.9	1774.5	0.081538	0.46751	0.53249	0.93501	0.96456	False
-ADCK3_m227149144	ADCK3	263.11/168.72	189.27/231.73	215.91	210.5	-0.036444	2678.3	4592	0.080811	0.4678	0.5322	0.93559	0.96456	False
-ABCF1_p30545888	ABCF1	264.58/353.41	442.25/191.68	309	316.97	0.036632	17670	10451	0.077983	0.53049	0.46951	0.93902	0.9661	True
-ADD3_p111860411	ADD3	593.83/834.7	523.01/932.66	714.26	727.83	0.027114	56457	30403	0.077825	0.53101	0.46899	0.93799	0.96603	True
-ADARB2_m1779272	ADARB2	1018.6/513.25	679.47/824.51	765.93	751.99	-0.026472	69110	35557	0.07398	0.47051	0.52949	0.94103	0.96717	False
-ADRA1B_m159343921	ADRA1B	67.614/245.08	196.21/110.43	156.35	153.32	-0.028039	9713	5375.9	0.063038	0.47487	0.52513	0.94974	0.97432	False
-ACTR3_p114688931	ACTR3	721.71/768.99	584.83/888.6	745.35	736.72	-0.016779	23627	20022	0.060988	0.47568	0.52432	0.95137	0.97432	False
-AAAS_p53714391	AAAS	415.97/708.6	601.87/537.85	562.29	569.86	0.019263	22433	16355	0.059205	0.5236	0.4764	0.95279	0.97432	True
-ADARB1_m46595715	ADARB1	749.63/378.28	472.54/673.46	563.96	573	0.022906	44569	23763	0.058653	0.52333	0.47667	0.95335	0.97432	True
-ADI1_p3523171	ADI1	636.45/156.28	564.02/250.04	396.37	407.03	0.038194	82286	33445	0.058293	0.51593	0.48407	0.96814	0.97895	True
-AGPAT3_m45379570	AGPAT3	127.88/230.87	191.16/160.78	179.38	175.97	-0.027492	2882.6	3736.7	0.057892	0.47692	0.52308	0.95383	0.97432	False
-AHRR_p344042	AHRR	1230.3/525.68	837.19/945.24	877.98	891.22	0.021562	1.2703e+05	56920	0.055478	0.52207	0.47793	0.95587	0.9754	True
-AEN_m89169500	AEN	679.08/568.3	741.3/492.65	623.69	616.97	-0.015604	18524	16137	0.052901	0.47891	0.52109	0.95781	0.976	False
-ADCK4_m41220523	ADCK4	565.9/776.09	878.2/445.73	670.99	661.96	-0.01952	57802	30074	0.052147	0.47921	0.52079	0.95841	0.976	False
-AEBP2_p19615544	AEBP2	745.22/751.23	736.25/773.59	748.23	754.92	0.012832	357.59	18298	0.049483	0.51973	0.48027	0.96053	0.97716	True
-AEBP1_p44144359	AEBP1	770.21/880.87	577.9/1056.8	825.54	817.36	-0.014356	60403	33744	0.044558	0.48223	0.51777	0.96446	0.97895	False
-AHCTF1_p247079429	AHCTF1	601.18/900.41	735.62/754.13	750.79	744.88	-0.011396	22470	19735	0.042105	0.48321	0.51679	0.96641	0.97895	False
-ADNP2_p77875499	ADNP2	745.22/614.48	453.61/920.64	679.85	687.12	0.015331	58803	30566	0.041603	0.51657	0.48343	0.96686	0.97895	True
-ACTR5_m37377171	ACTR5	438.02/443.99	482/391.94	441	436.97	-0.013222	2036.4	10162	0.040007	0.48404	0.51596	0.96809	0.97895	False
-ABTB1_m127395860	ABTB1	945.13/1102.9	885.77/1174.7	1024	1030.2	0.0087472	27089	26326	0.038419	0.51532	0.48468	0.96935	0.97895	True
-ACTL6B_m100253168	ACTL6B	751.1/939.48	471.91/1238.2	845.29	855.05	0.016548	1.5567e+05	65863	0.038041	0.51493	0.48507	0.97013	0.97895	True
-AEBP2_m19615572	AEBP2	1023/468.85	729.31/774.73	745.94	752.02	0.011697	77295	37922	0.031226	0.51242	0.48758	0.97515	0.98302	True
-AFF1_p87967890	AFF1	824.6/1007	526.79/1316.6	915.78	921.69	0.0092723	1.6426e+05	70028	0.022338	0.50878	0.49122	0.98244	0.98938	True
-ACHE_p100491656	ACHE	2626.7/1706.7	1749.5/2570.2	2166.7	2159.8	-0.0045493	3.8001e+05	1.665e+05	0.016725	0.49333	0.50667	0.98666	0.9925	False
-ACHE_m100491816	ACHE	295.44/420.9	380.43/338.73	358.17	359.58	0.005641	4369.4	8062.6	0.015671	0.50624	0.49376	0.98753	0.9925	True
-ACHE_m100491779	ACHE	280.75/525.68	298.41/505.24	403.21	401.82	-0.0049676	25692	14696	0.012018	0.49521	0.50479	0.99041	0.99439	False
-AGAP2_m58128444	AGAP2	2459.1/1609	1964.6/2109.6	2034.1	2037.1	0.0021679	1.8592e+05	99102	0.0097214	0.50388	0.49612	0.99224	0.99523	True
-ADRB2_p148206450	ADRB2	608.53/877.32	955.17/533.27	742.92	744.22	0.0025145	62561	32956	0.0071485	0.50284	0.49716	0.99432	0.99631	True
-ACVRL1_m52306881	ACVRL1	1665.4/1102.9	1593/1178.1	1384.1	1385.6	0.0015047	1.2213e+05	64899	0.0056737	0.50226	0.49774	0.99547	0.99647	True
-ACAD11_m132378564	ACAD11	989.22/1545.1	1045.4/1487.1	1267.1	1266.2	-0.0010322	1.2602e+05	63931	0.0035873	0.49857	0.50143	0.99714	0.99714	False
--- a/test-data/output.count_normalized.txt	Thu Apr 19 05:34:53 2018 -0400
+++ b/test-data/output.count_normalized.txt	Mon Jun 04 10:58:04 2018 -0400
@@ -1,4 +1,4 @@
-sgRNA	Gene	test1_fastq_gz
+sgRNA	Gene	test1.fastq.gz
 s_47512	RNF111	2.0
 s_24835	HCFC1R1	2.0
 s_14784	CYP4B1	8.0
--- a/test-data/output_summary.Rnw	Thu Apr 19 05:34:53 2018 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1063 +0,0 @@
-% This is a template file for Sweave used in MAGeCK
-% Author: Wei Li, Shirley Liu lab
-% Do not modify lines beginning with "#__".
-\documentclass{article}
-
-\usepackage{amsmath}
-\usepackage{amscd}
-\usepackage[tableposition=top]{caption}
-\usepackage{ifthen}
-\usepackage{fullpage}
-\usepackage[utf8]{inputenc}
-
-\begin{document}
-\setkeys{Gin}{width=0.9\textwidth}
-
-\title{MAGeCK Comparison Report}
-\author{Wei Li}
-
-\maketitle
-
-
-\tableofcontents
-
-\section{Summary}
-
-%Function definition
-<<label=funcdef,include=FALSE,echo=FALSE>>=
-genreporttable<-function(comparisons,ngenes,direction,fdr1,fdr5,fdr25){
-  xtb=data.frame(Comparison=comparisons,Genes=ngenes,Selection=direction,FDR1=fdr1,FDR5=fdr5,FDR25=fdr25);
-  colnames(xtb)=c("Comparison","Genes","Selection","FDR1%","FDR5%","FDR25%");
-  return (xtb);
-}
-@
-
-The statistics of comparisons is as indicated in the following table. 
-
-<<label=tab1,echo=FALSE,results=tex>>=
-library(xtable)
-comparisons=c("HL60_final,KBM7_final_vs_HL60_initial,KBM7_initial neg.","HL60_final,KBM7_final_vs_HL60_initial,KBM7_initial pos.");
-ngenes=c(100,100);
-direction=c("negative","positive");
-fdr1=c(0,0);
-fdr5=c(2,0);
-fdr25=c(9,1);
-
-cptable=genreporttable(comparisons,ngenes,direction,fdr1,fdr5,fdr25);
-print(xtable(cptable, caption = "Summary of comparisons", label = "tab:one",
-    digits = c(0, 0, 0, 0, 0, 0, 0),
-    table.placement = "tbp",
-    caption.placement = "top"))
-@
-
-The meanings of the columns are as follows.
-
-\begin{itemize}
-\item \textbf{Comparison}: The label for comparisons;
-\item \textbf{Genes}: The number of genes in the library;
-\item \textbf{Selection}: The direction of selection, either positive selection or negative selection;
-\item \textbf{FDR1\%}: The number of genes with FDR $<$ 1\%;
-\item \textbf{FDR5\%}: The number of genes with FDR $<$ 5\%;
-\item \textbf{FDR25\%}: The number of genes with FDR $<$ 25\%;
-\end{itemize}
-
-The following figures show:
-
-\begin{itemize}
-\item Individual sgRNA read counts of selected genes in selected samples; 
-\item The distribution of RRA scores and p values of all genes; and
-\item The RRA scores and p values of selected genes.
-\end{itemize}
-
-
-\newpage\section{Comparison results of HL60 final,KBM7 final vs HL60 initial,KBM7 initial neg.}
-
-The following figure shows the distribution of RRA score in the comparison HL60 final,KBM7 final vs HL60 initial,KBM7 initial neg., and the RRA scores of 10 genes.
-
-<<echo=FALSE>>=
-gstable=read.table('output.gene_summary.txt',header=T)
-@
-%
-
-
-<<fig=TRUE,echo=FALSE,width=4.5,height=4.5>>=# 
-#
-# parameters
-# Do not modify the variables beginning with "__"
-
-# gstablename='__GENE_SUMMARY_FILE__'
-startindex=3
-# outputfile='__OUTPUT_FILE__'
-targetgenelist=c("ACIN1","ACTR8","AHCY","ACLY","AATF","AGBL5","AHCTF1","ABT1","ADIRF","ABCF1")
-# samplelabel=sub('.\w+.\w+$','',colnames(gstable)[startindex]);
-samplelabel='HL60_final,KBM7_final_vs_HL60_initial,KBM7_initial neg.'
-
-
-# You need to write some codes in front of this code:
-# gstable=read.table(gstablename,header=T)
-# pdf(file=outputfile,width=6,height=6)
-
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-######
-# function definition
-
-plotrankedvalues<-function(val, tglist, ...){
-  
-  plot(val,log='y',ylim=c(max(val),min(val)),type='l',lwd=2, ...)
-  if(length(tglist)>0){
-    for(i in 1:length(tglist)){
-      targetgene=tglist[i];
-      tx=which(names(val)==targetgene);ty=val[targetgene];
-      points(tx,ty,col=colors[(i %% length(colors)) ],cex=2,pch=20)
-      # text(tx+50,ty,targetgene,col=colors[i])
-    }
-    legend('topright',tglist,pch=20,pt.cex = 2,cex=1,col=colors)
-  }
-}
-
-
-
-plotrandvalues<-function(val,targetgenelist, ...){
-  # choose the one with the best distance distribution
-  
-  mindiffvalue=0;
-  randval=val;
-  for(i in 1:20){
-    randval0=sample(val)
-    vindex=sort(which(names(randval0) %in% targetgenelist))
-    if(max(vindex)>0.9*length(val)){
-      # print('pass...')
-      next;
-    }
-    mindiffind=min(diff(vindex));
-    if (mindiffind > mindiffvalue){
-      mindiffvalue=mindiffind;
-      randval=randval0;
-      # print(paste('Diff: ',mindiffvalue))
-    }
-  }
-  plot(randval,log='y',ylim=c(max(randval),min(randval)),pch=20,col='grey', ...)
-  
-  if(length(targetgenelist)>0){
-    for(i in 1:length(targetgenelist)){
-      targetgene=targetgenelist[i];
-      tx=which(names(randval)==targetgene);ty=randval[targetgene];
-      points(tx,ty,col=colors[(i %% length(colors)) ],cex=2,pch=20)
-      text(tx+50,ty,targetgene,col=colors[i])
-    }
-  }
-  
-}
-
-
-
-
-# set.seed(1235)
-
-
-
-pvec=gstable[,startindex]
-names(pvec)=gstable[,'id']
-pvec=sort(pvec);
-
-plotrankedvalues(pvec,targetgenelist,xlab='Genes',ylab='RRA score',main=paste('Distribution of RRA scores in \n',samplelabel))
-
-# plotrandvalues(pvec,targetgenelist,xlab='Genes',ylab='RRA score',main=paste('Distribution of RRA scores in \n',samplelabel))
-
-
-pvec=gstable[,startindex+1]
-names(pvec)=gstable[,'id']
-pvec=sort(pvec);
-
-plotrankedvalues(pvec,targetgenelist,xlab='Genes',ylab='p value',main=paste('Distribution of p values in \n',samplelabel))
-
-# plotrandvalues(pvec,targetgenelist,xlab='Genes',ylab='p value',main=paste('Distribution of p values in \n',samplelabel))
-
-
-
-# you need to write after this code:
-# dev.off()
-
-
-
-
-@
-%%
-\clearpage
-\newpage
-The following figures show the distribution of sgRNA read counts (normalized) of selected genes in selected samples.
-%
-
-
-<<fig=TRUE,echo=FALSE,width=4.5,height=4.5>>=
-par(mfrow=c(2,2));
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(561.4907165816957,824.0396348113272,428.37415340969943,579.047491896501),c(3424.79939695118,3818.2871009576584,1992.3498917052,690.0506672205338),c(846.6456878299913,985.6508562937211,335.0024675413113,415.97581680707134),c(2432.636481525409,2122.257249136931,1067.465489792653,155.6333179800872),c(1308.1851773762019,2186.1913587343615,1482.5909580453515,997.3120339679854),c(405.68439208520414,268.16807081144486,170.34023773287015,109.85881269182627),c(640.8637498157573,559.4234589775174,711.6436598617687,632.2603542941043),c(946.5969148654764,470.6260845366416,663.0651476194316,457.74505288260946),c(246.9383256170808,177.59474888175154,28.39003962214503,0.0),c(568.8400715107754,612.7018836420428,564.0154538266146,270.64176251684285))
-targetgene="ACIN1"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(2484.0819660289676,2349.578527705573,2172.7843657481662,910.9126552363929),c(992.1629154257711,1005.1862786707138,743.8190381001997,200.26346063614164),c(1267.0287897733551,1156.1418152202027,251.09412821363824,42.34141739164138),c(1500.738276518092,1315.977089213779,800.5991173444897,1476.2277955464156),c(1925.5309914189038,2054.7712445618654,194.94493873872918,235.16652091844063),c(351.29916561001374,781.4168950797068,227.75120674654121,624.2498158686586),c(1719.74905340467,1006.9622261595313,356.45271970026533,222.0063506480656),c(903.9706562768137,1445.6212558974576,1482.5909580453515,1055.1023468944147),c(651.152846716469,1081.552020689867,576.0023594448536,1072.2677863775127),c(285.1549712482957,408.46792242802854,99.0496937928171,44.630142656054424))
-targetgene="ACTR8"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(301.3235520922712,657.1005708624807,228.38209651592223,137.32351586478285),c(1142.0897559789987,1099.311495578042,112.92926871919911,100.70391163417409),c(789.3207193831689,671.3081507730209,723.6305654800077,588.7745742702564),c(392.45555321286054,412.0198174056636,334.37157777193033,213.99581222261992),c(2009.3136376104133,2235.917888421252,2437.1271791188055,1937.9781176417478),c(1071.5359486598327,406.69197493921104,645.4002340767636,349.602784139093),c(61.7345814042702,218.44154112455442,614.4866353770946,452.5954210376801),c(651.152846716469,879.0940069646701,237.21455328725622,18.88198343140764),c(1625.6773103124485,1410.1023061211074,2146.286995434164,1986.613529510525),c(1053.8974968300413,882.6459019423052,106.6203710253891,105.85354347910344))
-targetgene="AHCY"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(1268.498660759171,1411.8782536099247,1136.2324746551822,603.6512884889412),c(327.78122983695846,454.642557137284,51.73296108924205,24.031615276336996),c(132.28838872343613,241.5288584791821,123.02350502929512,65.80085135187511),c(495.34652221997754,586.0626713097802,279.4841678357833,243.74924065998954),c(1009.8013672555626,1102.8633905556771,1237.174837756142,1004.7503910773278),c(877.5129785321263,715.7068379934587,538.1489732819936,594.496387431289),c(1594.8100196103135,1108.1912330221296,605.6541786057605,127.59643349102738),c(314.5523909646148,252.1845434120872,88.95545748272109,359.9020478289517),c(512.984974049769,269.94401830026237,205.67006481820619,126.45207085882086),c(761.3931706526657,475.9539270030942,559.5992254409475,596.7851126957021))
-targetgene="ACLY"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-par(mfrow=c(1,1));
-@
-%
-
-
-<<fig=TRUE,echo=FALSE,width=4.5,height=4.5>>=
-par(mfrow=c(2,2));
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(659.9720726313648,809.832054900787,880.7221180558769,802.1982051767731),c(724.6463960072668,1086.8798631563195,695.2405258578626,307.26136674745163),c(836.3565909292796,1289.3378768815162,468.75109865008346,177.94838930811443),c(367.46774645398926,571.85509139924,300.30353022535627,116.72498848506541),c(518.8644579930328,632.2373060190355,627.7353205340956,308.9779106957614),c(405.68439208520414,259.28833336735727,324.27734146183434,166.5047629860492),c(2096.0360257735547,1960.6460276545372,1573.4390848362154,629.9716290296913),c(277.8056163192159,435.1071347602913,182.32714335110919,0.0),c(995.1026573974029,477.7298744919117,728.0467938656747,275.21921304566894),c(2185.6981559083283,1482.9161531626255,1741.8866532609427,1862.4501839161173))
-targetgene="AATF"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(640.8637498157573,602.0461987091378,307.2433176885473,192.82510352679924),c(354.23890758164566,280.5997032331675,204.4082852794442,275.79139436177223),c(779.0316224824572,932.3724316291956,778.5179754161547,905.1908420753603),c(624.6951689717818,554.0956165110648,370.96318439602834,558.4489645167836),c(1133.270530064103,1394.1187787217498,639.0913363829536,1131.2024619361487),c(423.32284391499564,412.0198174056636,224.59675789963623,426.84726181303336),c(296.91393913482335,829.3674772777797,489.5704610396565,1233.0507362025292),c(684.959879390236,546.9918265557948,394.30610586312537,566.4595029422292),c(440.96129574478715,630.461358530218,434.6830511035094,457.1728715665062),c(1108.2827233052317,1969.5257650986248,1066.2037102538911,1333.7546478367033))
-targetgene="AGBL5"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(196.96271209933826,301.9110730989776,423.9579250240324,34.33087896619571),c(1106.8128523194157,1056.6887558464218,1743.1484327997048,807.3478370217025),c(748.1643317803222,488.3855594248168,239.73811236478022,477.77139894622366),c(1095.053884432888,882.6459019423052,837.8216137379688,365.05167967388104),c(677.6105244611563,316.11865300951774,613.8557456077136,819.3636446598709),c(1078.8853035889126,1609.008424868669,348.88204246769334,193.96946615900578),c(1437.533824128006,1095.759600600407,320.4920028455483,161.35513114111984),c(845.1758168441753,660.6524658401157,541.3034221288985,640.8430740356532),c(551.2016196809839,740.570102836904,1103.42620664737,622.5332719203489),c(601.1772331987264,900.4053768304803,735.6174710982467,754.1349746240991))
-targetgene="AHCTF1"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(487.9971672908978,367.6211301852257,312.2904358435953,441.15179471561487),c(358.6485205390935,394.2603425174884,593.0363832181406,268.35303725242983),c(1743.266989177725,1980.1814500315297,837.1907239685878,281.5132075228048),c(1597.7497615819454,1465.1566782744503,1065.57282048451,992.7345834391593),c(119.05954985109253,378.2768151181308,185.48159219801417,128.7407961232339),c(986.2834314825072,745.8979453033566,328.0626800781203,302.11173490252224),c(523.2740709504807,694.3954681276485,336.89513684945433,597.9294753279087),c(1562.4728579223624,763.6574201915316,422.0652557158894,220.28980669975581),c(30.8672907021351,179.37069637056908,238.47633282601822,184.81456510135357),c(339.5401977234861,447.5387671820139,310.3977665354523,205.98527379717427))
-targetgene="ABT1"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-par(mfrow=c(1,1));
-@
-%
-
-
-<<fig=TRUE,echo=FALSE,width=4.5,height=4.5>>=
-par(mfrow=c(2,2));
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(492.4067802483456,221.99343610218943,309.7668767660713,102.99263689858714),c(243.9985836454489,239.7529109903646,130.59418226186713,174.51530141149487),c(734.9354929079785,673.0840982618383,620.7955330709046,470.9052231529845),c(1074.4756906314647,950.1319065173708,1100.902647569846,743.8357109342404),c(702.5983312200275,1010.5141211371663,1291.4313579229083,1017.3383800315995),c(1647.7253750996879,760.1055252138966,685.7771793171477,608.2287390177673),c(951.0065278229242,864.8864270541301,606.9159581445226,769.0116888427839),c(435.0818118015233,435.1071347602913,275.69882921949727,339.8757017653375),c(89.66213013477338,209.56180368046682,208.8245136651112,304.4004601669353),c(1328.7633711776252,1571.7135276035012,1122.983789498181,1356.6419004808338))
-targetgene="ADIRF"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(216.0710349149457,289.479440677255,192.42137966120518,498.36992632594104),c(1127.391046120839,1198.764554951823,371.5940741654094,370.2013115188104),c(1111.2224652768637,1038.9292809582466,948.227323379644,922.3562815584581),c(1164.137820766238,1204.0923974182756,1686.9992433247955,2089.033985093009),c(48.505742531926586,248.63264843445216,665.5887066969557,248.8988725049189),c(501.2260061632414,387.1565525622184,436.5757204116524,314.69972385679404),c(1975.5066049366465,1797.2588586833258,1628.3264947723626,1289.6966864967521),c(213.13129294331378,376.5008676293133,404.4003421732214,482.921030791153),c(2012.2533795820452,1989.0611874756173,1064.3110409457481,431.9968936579627),c(264.57677744687226,353.4135502746856,442.25372833608145,191.6807408945927))
-targetgene="ABCF1"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-par(mfrow=c(1,1));
-@
-
-\newpage\section{Comparison results of HL60 final,KBM7 final vs HL60 initial,KBM7 initial pos.}
-
-The following figure shows the distribution of RRA score in the comparison HL60 final,KBM7 final vs HL60 initial,KBM7 initial pos., and the RRA scores of 10 genes.
-
-<<echo=FALSE>>=
-gstable=read.table('output.gene_summary.txt',header=T)
-@
-%
-
-
-<<fig=TRUE,echo=FALSE,width=4.5,height=4.5>>=# 
-#
-# parameters
-# Do not modify the variables beginning with "__"
-
-# gstablename='__GENE_SUMMARY_FILE__'
-startindex=9
-# outputfile='__OUTPUT_FILE__'
-targetgenelist=c("ACRC","AGAP3","ADCK4","AHRR","ADRBK1","ADK","ADCK1","ADARB2","ACSS2","ADNP")
-# samplelabel=sub('.\w+.\w+$','',colnames(gstable)[startindex]);
-samplelabel='HL60_final,KBM7_final_vs_HL60_initial,KBM7_initial pos.'
-
-
-# You need to write some codes in front of this code:
-# gstable=read.table(gstablename,header=T)
-# pdf(file=outputfile,width=6,height=6)
-
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-######
-# function definition
-
-plotrankedvalues<-function(val, tglist, ...){
-  
-  plot(val,log='y',ylim=c(max(val),min(val)),type='l',lwd=2, ...)
-  if(length(tglist)>0){
-    for(i in 1:length(tglist)){
-      targetgene=tglist[i];
-      tx=which(names(val)==targetgene);ty=val[targetgene];
-      points(tx,ty,col=colors[(i %% length(colors)) ],cex=2,pch=20)
-      # text(tx+50,ty,targetgene,col=colors[i])
-    }
-    legend('topright',tglist,pch=20,pt.cex = 2,cex=1,col=colors)
-  }
-}
-
-
-
-plotrandvalues<-function(val,targetgenelist, ...){
-  # choose the one with the best distance distribution
-  
-  mindiffvalue=0;
-  randval=val;
-  for(i in 1:20){
-    randval0=sample(val)
-    vindex=sort(which(names(randval0) %in% targetgenelist))
-    if(max(vindex)>0.9*length(val)){
-      # print('pass...')
-      next;
-    }
-    mindiffind=min(diff(vindex));
-    if (mindiffind > mindiffvalue){
-      mindiffvalue=mindiffind;
-      randval=randval0;
-      # print(paste('Diff: ',mindiffvalue))
-    }
-  }
-  plot(randval,log='y',ylim=c(max(randval),min(randval)),pch=20,col='grey', ...)
-  
-  if(length(targetgenelist)>0){
-    for(i in 1:length(targetgenelist)){
-      targetgene=targetgenelist[i];
-      tx=which(names(randval)==targetgene);ty=randval[targetgene];
-      points(tx,ty,col=colors[(i %% length(colors)) ],cex=2,pch=20)
-      text(tx+50,ty,targetgene,col=colors[i])
-    }
-  }
-  
-}
-
-
-
-
-# set.seed(1235)
-
-
-
-pvec=gstable[,startindex]
-names(pvec)=gstable[,'id']
-pvec=sort(pvec);
-
-plotrankedvalues(pvec,targetgenelist,xlab='Genes',ylab='RRA score',main=paste('Distribution of RRA scores in \n',samplelabel))
-
-# plotrandvalues(pvec,targetgenelist,xlab='Genes',ylab='RRA score',main=paste('Distribution of RRA scores in \n',samplelabel))
-
-
-pvec=gstable[,startindex+1]
-names(pvec)=gstable[,'id']
-pvec=sort(pvec);
-
-plotrankedvalues(pvec,targetgenelist,xlab='Genes',ylab='p value',main=paste('Distribution of p values in \n',samplelabel))
-
-# plotrandvalues(pvec,targetgenelist,xlab='Genes',ylab='p value',main=paste('Distribution of p values in \n',samplelabel))
-
-
-
-# you need to write after this code:
-# dev.off()
-
-
-
-
-@
-%%
-\clearpage
-\newpage
-The following figures show the distribution of sgRNA read counts (normalized) of selected genes in selected samples.
-%
-
-
-<<fig=TRUE,echo=FALSE,width=4.5,height=4.5>>=
-par(mfrow=c(2,2));
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(461.5394895462105,502.5931393353569,445.40817718298644,889.1697652244688),c(76.43329126242978,90.5733219296933,447.30084649112945,357.0411412484354),c(258.6972935036084,685.515730683561,533.7327448963265,560.7376897811967),c(232.23961575892122,681.9638357059259,275.69882921949727,467.47213525636494),c(1393.4376945535273,1472.2604682297203,1039.706339939889,532.7008052921368),c(2395.88970688001,2441.927797124084,2462.9936596634266,2461.5240218762324),c(495.34652221997754,605.5980936867728,1159.575396122279,1617.5565806239213),c(682.0201374186041,822.2636873225097,1572.1773052974536,1333.7546478367033),c(961.2956247236359,1097.5355480892247,959.5833392285019,905.1908420753603),c(1940.2297012770634,1289.3378768815162,942.5493154552149,1103.737758763192))
-targetgene="ACRC"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(1387.5582106102636,1120.6228654438523,1214.4628060584262,1111.1761158725344),c(388.0459402554127,509.69692929062694,933.0859689144999,750.1297054113762),c(326.3113588511425,635.7892009966705,960.8451187672639,615.6670961271097),c(1328.7633711776252,1038.9292809582466,1346.3187678590552,1596.3858719281006),c(352.7690365958297,234.42506852391205,310.3977665354523,429.1359870774464),c(693.7791053051318,678.4119407282909,784.1959833405838,895.4637597016048),c(837.8264619150956,719.2587329710938,374.74852301231437,993.8789460713658),c(365.99787546817333,369.3970776740432,333.74068800254935,746.6966175147567),c(707.0079441774753,635.7892009966705,837.1907239685878,1465.3563505404536),c(486.5272963050818,673.0840982618383,784.8268731099647,734.6808098765882))
-targetgene="AGAP3"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(830.4771069860158,864.8864270541301,1349.4732167059603,740.974804353724),c(1481.6299537024847,1994.38902994207,2044.082852794442,1810.9538654668238),c(1234.6916280854039,1299.9935618144214,1357.6747837079133,2232.6514954349277),c(224.89026082984142,188.25043381465665,700.2876440129107,81.24974688666317),c(812.8386551562243,845.3510046771374,946.334654071501,999.6007592323984),c(1978.4463469082782,1751.0842239740703,2659.2003779409174,2851.1794981425537),c(565.9003295391435,776.0890526132542,878.1985589783528,445.72924524444096),c(680.5502664327881,534.5601941340722,550.7667686696135,1025.9210997731484),c(161.68580843975528,333.87812789769293,275.0679394501163,465.18340999195186),c(2523.768482645998,2445.4796921017187,2153.226782897355,1516.8526689897471))
-targetgene="ADCK4"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(345.4196816667499,163.38716897121142,474.42910657451245,481.2044868428432),c(415.9734889859159,372.9489726516783,212.6098522813972,349.03060282298975),c(1.469870985815957,83.46953197442323,0.0,62.9399447713588),c(351.29916561001374,150.9555365494888,288.9475143764983,416.54799812317464),c(561.4907165816957,170.49095892648148,199.3611671243962,411.97054759434855),c(251.34793857452865,221.99343610218943,1564.6066280648815,1502.5481360871656),c(736.4053638937945,893.3015868752103,1114.782222496228,459.46159683091923),c(338.07032673767014,607.3740411755903,378.5338616286004,65.22867003577186),c(1230.2820151279561,525.6804566899846,837.1907239685878,945.2435342025885))
-targetgene="AHRR"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-par(mfrow=c(1,1));
-@
-%
-
-
-<<fig=TRUE,echo=FALSE,width=4.5,height=4.5>>=
-par(mfrow=c(2,2));
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(371.87735941143717,877.3180594758527,2395.4884543396593,1564.9158995424211),c(1109.7525942910477,1138.3823403320275,970.308465307979,999.0285779162951),c(1462.5216308868773,1209.420239884728,1537.4783679814984,1519.14139425416),c(586.4785233405669,987.4268037825386,743.8190381001997,1312.0117578247794),c(1018.6205931704583,717.4827854822763,1070.619938639558,1144.3626322065236),c(1269.9685317449869,1212.9721348623632,1591.1039983788835,1624.9949377332637),c(1321.4140162485455,1795.4829111945082,1478.8056194290655,1237.056005415252),c(908.3802692342615,832.9193722554148,1639.6825106212207,1268.5259778009315),c(923.078979092421,758.3295777250792,1479.4365091984464,1275.964334910274),c(680.5502664327881,634.013253507853,318.5993335374053,631.1159916618979))
-targetgene="ADRBK1"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(1472.810727787589,1829.225913482041,1263.0413183007631,1315.444845721399),c(208.7216799858659,65.71005708624807,292.1019632234033,350.17496545519623),c(1011.2712382413785,1166.7975001531076,652.9709113093356,860.5606994193058),c(557.0811036242477,685.515730683561,875.0441101314478,1019.6271052960126),c(363.0581334965414,825.8155823001447,736.8792506370087,349.602784139093),c(1505.14788947554,451.09066215964896,653.6018010787167,991.0180394908496),c(198.43258308515422,28.41515982108025,249.83234867487624,114.43626322065236),c(438.02155377315523,74.58979453033565,254.87946682992424,231.16125170571777),c(804.0194292413286,472.4020320254591,1336.2245315489592,1203.2973077651598),c(454.19013461713075,490.1615069136343,896.4943622904019,685.4732166917076))
-targetgene="ADK"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(662.9118146029966,1008.7381736483488,1101.533537339227,1694.8010582978616),c(1547.7741480642028,1965.9738701209897,1869.9572764452857,2353.9539344488194),c(1459.5818889152454,1179.2291325748304,1296.4784760779562,1222.1792911965672),c(1193.5352404825571,1355.0479339677643,1622.0175970785526,1905.9359639399652),c(868.6937526172306,701.4992580829187,720.4761166331027,603.6512884889412),c(798.1399452980647,768.9852626579842,1478.8056194290655,1756.0244591209105),c(1168.5474337236858,907.5091667857504,879.4603385171149,977.8578692204745),c(809.8989131845924,687.2916781723785,678.8373918539567,865.7103312642352),c(1246.4505959719315,753.0017352586266,1301.5255942330043,1264.5207085882087),c(826.0674940285679,797.4004224790644,977.8791425405509,2066.7189137649816))
-targetgene="ADCK1"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(1863.7964100146337,1585.9211075140413,1761.4442361117538,1464.211987908247),c(742.2848478370584,598.4943037315028,943.8110949939769,820.5080072920774),c(1568.3523418656262,2083.1864043829455,1810.6536381234716,1887.6261618246608),c(1018.6205931704583,513.248824268262,679.4682816233377,824.5132765048003),c(1140.6198849931827,1191.6607649965529,880.0912282864958,977.8578692204745),c(135.22813069506805,118.98848175077354,351.40560154521734,399.95473995618005),c(665.8515565746286,701.4992580829187,986.7115993118849,746.6966175147567),c(418.9132309575478,300.1351256101601,376.6411923204574,645.4205245644794),c(561.4907165816957,543.4399315781598,881.9838975946388,580.7640358448108),c(442.4311667306031,229.0972260574595,395.5678854018874,651.142337725512))
-targetgene="ADARB2"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-par(mfrow=c(1,1));
-@
-%
-
-
-<<fig=TRUE,echo=FALSE,width=4.5,height=4.5>>=
-par(mfrow=c(2,2));
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(734.9354929079785,358.74139274113816,541.9343118982795,378.7840312603593),c(595.2977492554626,591.3905137762326,1061.787481868224,887.4532212761591),c(1655.0747300287676,943.0281165621008,1069.358159100796,2038.1098479598186),c(626.1650399575977,884.4218494311227,517.3296108924205,858.2719741548927),c(680.5502664327881,747.673892792174,533.1018551269456,1016.194017399393),c(662.9118146029966,777.8650001020718,864.9498738213518,787.3214909580882),c(880.4527205037583,621.5816210861304,671.8976043907657,1040.7978139918332),c(94.07174309222125,447.5387671820139,711.6436598617687,927.5059134033875),c(399.80490814194036,806.280159923152,1147.58849050404,1059.1076161071376),c(698.1887182625796,531.0082991564371,504.0809257354195,347.8862401907832))
-targetgene="ACSS2"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-# parameters
-# Do not modify the variables beginning with "__"
-targetmat=list(c(408.62413405683606,523.9045092011671,483.89245311522745,701.494293542599),c(1805.0015705819953,1434.9655709645526,1712.2348341000356,2152.546111180471),c(3017.64513388016,2642.609863360463,1834.6274493599499,3573.2723190648703),c(1649.1952460855039,783.1928425685244,773.4708572611067,1332.0381038883936),c(959.82575373782,1397.6706736993847,1429.5962174173474,2811.126806015325),c(495.34652221997754,301.9110730989776,336.89513684945433,555.015876620164),c(1491.9190506031964,1331.9606166131366,2087.614246881731,1983.1804416139055),c(429.2023278582595,889.7496918975753,567.8007924429005,1132.9190058844583),c(427.7324568724435,573.6310388880576,655.4944703868597,899.4690289143276),c(690.8393633334998,767.2093151691668,1040.33722970927,993.3067647552625))
-targetgene="ADNP"
-collabel=c("HL60_initial","KBM7_initial","HL60_final","KBM7_final")
-
-# set up color using RColorBrewer
-#library(RColorBrewer)
-#colors <- brewer.pal(length(targetgenelist), "Set1")
-
-colors=c( "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",  "#A65628", "#F781BF",
-          "#999999", "#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3", 
-          "#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462", "#B3DE69", "#FCCDE5",
-          "#D9D9D9", "#BC80BD", "#CCEBC5", "#FFED6F")
-
-
-## code
-
-targetmatvec=unlist(targetmat)+1
-yrange=range(targetmatvec[targetmatvec>0]);
-# yrange[1]=1; # set the minimum value to 1
-for(i in 1:length(targetmat)){
-  vali=targetmat[[i]]+1;
-  if(i==1){
-    plot(1:length(vali),vali,type='b',las=1,pch=20,main=paste('sgRNAs in',targetgene),ylab='Read counts',xlab='Samples',xlim=c(0.7,length(vali)+0.3),ylim = yrange,col=colors[(i %% length(colors))],xaxt='n',log='y')
-    axis(1,at=1:length(vali),labels=(collabel),las=2)
-    # lines(0:100,rep(1,101),col='black');
-  }else{
-    lines(1:length(vali),vali,type='b',pch=20,col=colors[(i %% length(colors))])
-  }
-}
-
-
-
-par(mfrow=c(1,1));
-@
-%__INDIVIDUAL_PAGE__
-
-
-
-
-
-
-
-
-
-\end{document}
-