Mercurial > repos > iuc > modify_loom
view macros.xml @ 4:59be31ac9dc3 draft
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/anndata/ commit 6497f5415b57bedd849b876883574b3f0050741a"
author | iuc |
---|---|
date | Thu, 07 Jan 2021 23:27:24 +0000 |
parents | eeab712b0b99 |
children | 7784821452ac |
line wrap: on
line source
<macros> <token name="@VERSION@">0.7.4</token> <token name="@GALAXY_VERSION@">galaxy1</token> <xml name="requirements"> <requirements> <requirement type="package" version="@VERSION@">anndata</requirement> <requirement type="package" version="2.0.17">loompy</requirement> <requirement type="package" version="2.9.0">h5py</requirement> <yield /> </requirements> </xml> <xml name="citations"> <citations> <citation type="doi">10.1186/s13059-017-1382-0</citation> </citations> </xml> <xml name="version_command"> <version_command><![CDATA[python -c "import anndata as ad;print('anndata version: %s' % ad.__version__); import loompy;print('\nloompy version: %s' % loompy.__version__)"]]></version_command> </xml> <token name="@CMD@"><![CDATA[ cat '$script_file' && python '$script_file' ]]> </token> <token name="@LOOMCMD@"><![CDATA[ mkdir ./output && mkdir ./attributes && python '$__tool_directory__/loompy_to_tsv.py' -f '${hd5_format.input}' ]]> </token> <token name="@CMD_imports@"><![CDATA[ import anndata as ad ]]> </token> <token name="@HELP@"><![CDATA[ **AnnData** AnnData provides a scalable way of keeping track of data together with learned annotations. It is used within `Scanpy <https://github.com/theislab/scanpy>`__, for which it was initially developed. AnnData stores a data matrix `X` together with annotations of observations `obs`, variables `var` and unstructured annotations `uns`. .. image:: https://falexwolf.de/img/scanpy/anndata.svg AnnData stores observations (samples) of variables (features) in the rows of a matrix. This is the convention of the modern classics of statistics (`Hastie et al., 2009 <https://web.stanford.edu/~hastie/ElemStatLearn/>`__) and machine learning (Murphy, 2012), the convention of dataframes both in R and Python and the established statistics and machine learning packages in Python (statsmodels, scikit-learn). More details on the `AnnData documentation <https://anndata.readthedocs.io/en/latest/anndata.AnnData.html>`__ **Loom data** Loom files are an efficient file format for very large omics datasets, consisting of a main matrix, optional additional layers, a variable number of row and column annotations, and sparse graph objects. .. image:: https://linnarssonlab.org/loompy/_images/Loom_components.png Loom files to store single-cell gene expression data: the main matrix contains the actual expression values (one column per cell, one row per gene); row and column annotations contain metadata for genes and cells, such as Name, Chromosome, Position (for genes), and Strain, Sex, Age (for cells). ]]> </token> <xml name="params_chunk_X"> <conditional name="chunk"> <param name="info" type="select" label="How to select the chunk?"> <option value="random">Random chunk of defined size</option> <option value="specified">Specified indices</option> </param> <when value="random"> <param name="size" type="integer" value="1000" label="Size of chunk to randomly select"/> <param name="replace" type="boolean" truevalue="True" falsevalue="False" checked="true" label="Random sampling of indices with replacement?"/> </when> <when value="specified"> <param name="list" type="text" value="" label="List of comma-separated indices to return"/> </when> </conditional> </xml> </macros>