Mercurial > repos > iuc > multigsea
view multiGSEA.R @ 1:e48b10ce08b8 draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/multigsea commit 945cc63f011002e3f61d7e848d556b647e9c8878
author | iuc |
---|---|
date | Wed, 21 Feb 2024 15:41:52 +0000 |
parents | 28e29a3d0eda |
children |
line wrap: on
line source
library(multiGSEA, quietly = TRUE, warn.conflicts = FALSE ) library(argparse, quietly = TRUE, warn.conflicts = FALSE) ################################################################################ ### Input Processing ################################################################################ # Collect arguments from command line parser <- ArgumentParser(description = "multiGSEA R script") parser$add_argument("--transcriptomics", required = FALSE, help = "Transcriptomics data" ) parser$add_argument( "--transcriptome_ids", required = FALSE, help = "Transcriptomics ids", default = "SYMBOL" ) parser$add_argument("--proteomics", required = FALSE, help = "Proteomics data" ) parser$add_argument( "--proteome_ids", required = FALSE, help = "Proteomics ids", default = "SYMBOL" ) parser$add_argument("--metabolomics", required = FALSE, help = "Metabolomics data" ) parser$add_argument( "--metabolome_ids", required = FALSE, help = "Metabolomics ids", default = "HMDB" ) parser$add_argument("--organism", required = TRUE, help = "Organism" ) parser$add_argument("--combine_pvalues", required = TRUE, help = "Combine p-values method" ) parser$add_argument("--padj_method", required = TRUE, help = "P-adjustment method" ) parser$add_argument("--databases", required = TRUE, help = "Pathway databases" ) args <- parser$parse_args() ## ----Load library------------------------------------------------------------- organism_mapping <- c( "hsapiens" = "org.Hs.eg.db", "mmusculus" = "org.Mm.eg.db", "rnorvegicus" = "org.Rn.eg.db", "cfamiliaris" = "org.Cf.eg.db", "btaurus" = "org.Bt.eg.db", "sscrofa" = "org.Ss.eg.db", "ggallus" = "org.Gg.eg.db", "drerio" = "org.Xl.eg.db", "xlaevis" = "org.Dr.eg.db", "dmelanogaster" = "org.Dm.eg.db", "celegans" = "org.Ce.eg.db" ) library(organism_mapping[args$organism], character.only = TRUE) ## ----Load omics data---------------------------------------------------------- layer <- c() if (!is.null(args$transcriptomics)) { transcriptome <- read.csv( args$transcriptomics, header = TRUE, sep = "\t", dec = "." ) layer <- append(layer, "transcriptome") } if (!is.null(args$proteomics)) { proteome <- read.csv(args$proteomics, header = TRUE, sep = "\t", dec = "." ) layer <- append(layer, "proteome") } if (!is.null(args$metabolomics)) { metabolome <- read.csv(args$metabolomics, header = TRUE, sep = "\t", dec = "." ) layer <- append(layer, "metabolome") } ## ----rank_features------------------------------------------------------------ # create data structure omics_data <- initOmicsDataStructure(layer) ## add transcriptome layer if (!is.null(args$transcriptomics)) { omics_data$transcriptome <- rankFeatures( transcriptome$logFC, transcriptome$pValue ) names(omics_data$transcriptome) <- transcriptome$Symbol } ## add proteome layer if (!is.null(args$proteomics)) { omics_data$proteome <- rankFeatures(proteome$logFC, proteome$pValue) names(omics_data$proteome) <- proteome$Symbol } ## add metabolome layer ## HMDB features have to be updated to the new HMDB format if (!is.null(args$metabolomics)) { omics_data$metabolome <- rankFeatures(metabolome$logFC, metabolome$pValue) names(omics_data$metabolome) <- metabolome$HMDB names(omics_data$metabolome) <- gsub( "HMDB", "HMDB00", names(omics_data$metabolome) ) } ## remove NA's and sort feature ranks omics_data <- lapply(omics_data, function(vec) { sort(vec[!is.na(vec)]) }) ## ----Pathway definitions------------------------------------------------------ pathways <- getMultiOmicsFeatures( dbs = unlist(strsplit(args$databases, ",", fixed = TRUE)), layer = layer, returnTranscriptome = args$transcriptome_ids, returnProteome = args$proteome_ids, returnMetabolome = args$metabolome_ids, organism = args$organism, useLocal = FALSE ) ## ----calculate enrichment----------------------------------------------------- enrichment_scores <- multiGSEA(pathways, omics_data) ## ----combine_pvalues---------------------------------------------------------- df <- extractPvalues( enrichmentScores = enrichment_scores, pathwayNames = names(pathways[[1]]) ) df$combined_pval <- combinePvalues(df, method = args$combine_pvalues) df$combined_padj <- p.adjust(df$combined_pval, method = args$padj_method) df <- cbind(data.frame(pathway = names(pathways[[1]])), df) ## ----Write output------------------------------------------------------------- write.table( df, file = "results.tsv", quote = FALSE, sep = "\t", col.names = TRUE, row.names = FALSE )