diff phyloseq_from_dada2.R @ 2:87064cb77a52 draft default tip

planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/phyloseq commit 5ec9f9e81bb9a42dec5c331dd23215ca0b027b2b
author iuc
date Sat, 16 Mar 2024 07:55:48 +0000
parents b85ba18a8f36
children
line wrap: on
line diff
--- a/phyloseq_from_dada2.R	Fri Feb 09 21:42:24 2024 +0000
+++ b/phyloseq_from_dada2.R	Sat Mar 16 07:55:48 2024 +0000
@@ -7,6 +7,7 @@
 option_list <- list(
     make_option(c("--sequence_table"), action = "store", dest = "sequence_table", help = "Input sequence table"),
     make_option(c("--taxonomy_table"), action = "store", dest = "taxonomy_table", help = "Input taxonomy table"),
+    make_option(c("--sample_table"), action = "store", default = NULL, dest = "sample_table", help = "Input sample table"),
     make_option(c("--output"), action = "store", dest = "output", help = "RDS output")
 )
 
@@ -15,20 +16,40 @@
 opt <- args$options
 # The input sequence_table is an integer matrix
 # stored as tabular (rows = samples, columns = ASVs).
-seq_table_numeric_matrix <- data.matrix(read.table(opt$sequence_table, sep = "\t"))
+seq_table_numeric_matrix <- data.matrix(read.table(opt$sequence_table, header = T, sep = "\t", row.names = 1, check.names = FALSE))
 # The input taxonomy_table is a table containing
 # the assigned taxonomies exceeding the minBoot
 # level of bootstrapping confidence. Rows correspond
 # to sequences, columns to taxonomic levels. NA
 # indicates that the sequence was not consistently
 # classified at that level at the minBoot threshold.
-tax_table_matrix <- as.matrix(read.table(opt$taxonomy_table, header = FALSE, sep = "\t"))
+tax_table_matrix <- as.matrix(read.table(opt$taxonomy_table, header = T, sep = "\t", row.names = 1, check.names = FALSE))
 # Construct a tax_table object.  The rownames of
 # tax_tab must match the OTU names (taxa_names)
 # of the otu_table defined below.
 tax_tab <- tax_table(tax_table_matrix)
+
 # Construct an otu_table object.
 otu_tab <- otu_table(seq_table_numeric_matrix, taxa_are_rows = TRUE)
+
 # Construct a phyloseq object.
 phyloseq_obj <- phyloseq(otu_tab, tax_tab)
+if (!is.null(opt$sample_table)) {
+    sample_tab <- sample_data(
+        read.table(opt$sample_table, header = T, sep = "\t", row.names = 1, check.names = FALSE)
+    )
+    phyloseq_obj <- merge_phyloseq(phyloseq_obj, sample_tab)
+}
+
+# use short names for our ASVs and save the ASV sequences
+# refseq slot of the phyloseq object as described in
+# https://benjjneb.github.io/dada2/tutorial.html
+dna <- Biostrings::DNAStringSet(taxa_names(phyloseq_obj))
+names(dna) <- taxa_names(phyloseq_obj)
+phyloseq_obj <- merge_phyloseq(phyloseq_obj, dna)
+taxa_names(phyloseq_obj) <- paste0("ASV", seq(ntaxa(phyloseq_obj)))
+
+print(phyloseq_obj)
+
+# save R object to file
 saveRDS(phyloseq_obj, file = opt$output, compress = TRUE)